2
0

ne2000.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791
  1. /*
  2. * QEMU NE2000 emulation
  3. *
  4. * Copyright (c) 2003-2004 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "hw/hw.h"
  25. #include "hw/pci/pci.h"
  26. #include "net/net.h"
  27. #include "ne2000.h"
  28. #include "hw/loader.h"
  29. #include "sysemu/sysemu.h"
  30. /* debug NE2000 card */
  31. //#define DEBUG_NE2000
  32. #define MAX_ETH_FRAME_SIZE 1514
  33. #define E8390_CMD 0x00 /* The command register (for all pages) */
  34. /* Page 0 register offsets. */
  35. #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
  36. #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
  37. #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
  38. #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
  39. #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
  40. #define EN0_TSR 0x04 /* Transmit status reg RD */
  41. #define EN0_TPSR 0x04 /* Transmit starting page WR */
  42. #define EN0_NCR 0x05 /* Number of collision reg RD */
  43. #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
  44. #define EN0_FIFO 0x06 /* FIFO RD */
  45. #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
  46. #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
  47. #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
  48. #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
  49. #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
  50. #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
  51. #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
  52. #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
  53. #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
  54. #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
  55. #define EN0_RSR 0x0c /* rx status reg RD */
  56. #define EN0_RXCR 0x0c /* RX configuration reg WR */
  57. #define EN0_TXCR 0x0d /* TX configuration reg WR */
  58. #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
  59. #define EN0_DCFG 0x0e /* Data configuration reg WR */
  60. #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
  61. #define EN0_IMR 0x0f /* Interrupt mask reg WR */
  62. #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
  63. #define EN1_PHYS 0x11
  64. #define EN1_CURPAG 0x17
  65. #define EN1_MULT 0x18
  66. #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
  67. #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
  68. #define EN3_CONFIG0 0x33
  69. #define EN3_CONFIG1 0x34
  70. #define EN3_CONFIG2 0x35
  71. #define EN3_CONFIG3 0x36
  72. /* Register accessed at EN_CMD, the 8390 base addr. */
  73. #define E8390_STOP 0x01 /* Stop and reset the chip */
  74. #define E8390_START 0x02 /* Start the chip, clear reset */
  75. #define E8390_TRANS 0x04 /* Transmit a frame */
  76. #define E8390_RREAD 0x08 /* Remote read */
  77. #define E8390_RWRITE 0x10 /* Remote write */
  78. #define E8390_NODMA 0x20 /* Remote DMA */
  79. #define E8390_PAGE0 0x00 /* Select page chip registers */
  80. #define E8390_PAGE1 0x40 /* using the two high-order bits */
  81. #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
  82. /* Bits in EN0_ISR - Interrupt status register */
  83. #define ENISR_RX 0x01 /* Receiver, no error */
  84. #define ENISR_TX 0x02 /* Transmitter, no error */
  85. #define ENISR_RX_ERR 0x04 /* Receiver, with error */
  86. #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
  87. #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
  88. #define ENISR_COUNTERS 0x20 /* Counters need emptying */
  89. #define ENISR_RDC 0x40 /* remote dma complete */
  90. #define ENISR_RESET 0x80 /* Reset completed */
  91. #define ENISR_ALL 0x3f /* Interrupts we will enable */
  92. /* Bits in received packet status byte and EN0_RSR*/
  93. #define ENRSR_RXOK 0x01 /* Received a good packet */
  94. #define ENRSR_CRC 0x02 /* CRC error */
  95. #define ENRSR_FAE 0x04 /* frame alignment error */
  96. #define ENRSR_FO 0x08 /* FIFO overrun */
  97. #define ENRSR_MPA 0x10 /* missed pkt */
  98. #define ENRSR_PHY 0x20 /* physical/multicast address */
  99. #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
  100. #define ENRSR_DEF 0x80 /* deferring */
  101. /* Transmitted packet status, EN0_TSR. */
  102. #define ENTSR_PTX 0x01 /* Packet transmitted without error */
  103. #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
  104. #define ENTSR_COL 0x04 /* The transmit collided at least once. */
  105. #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
  106. #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
  107. #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
  108. #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
  109. #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
  110. typedef struct PCINE2000State {
  111. PCIDevice dev;
  112. NE2000State ne2000;
  113. } PCINE2000State;
  114. void ne2000_reset(NE2000State *s)
  115. {
  116. int i;
  117. s->isr = ENISR_RESET;
  118. memcpy(s->mem, &s->c.macaddr, 6);
  119. s->mem[14] = 0x57;
  120. s->mem[15] = 0x57;
  121. /* duplicate prom data */
  122. for(i = 15;i >= 0; i--) {
  123. s->mem[2 * i] = s->mem[i];
  124. s->mem[2 * i + 1] = s->mem[i];
  125. }
  126. }
  127. static void ne2000_update_irq(NE2000State *s)
  128. {
  129. int isr;
  130. isr = (s->isr & s->imr) & 0x7f;
  131. #if defined(DEBUG_NE2000)
  132. printf("NE2000: Set IRQ to %d (%02x %02x)\n",
  133. isr ? 1 : 0, s->isr, s->imr);
  134. #endif
  135. qemu_set_irq(s->irq, (isr != 0));
  136. }
  137. static int ne2000_buffer_full(NE2000State *s)
  138. {
  139. int avail, index, boundary;
  140. index = s->curpag << 8;
  141. boundary = s->boundary << 8;
  142. if (index < boundary)
  143. avail = boundary - index;
  144. else
  145. avail = (s->stop - s->start) - (index - boundary);
  146. if (avail < (MAX_ETH_FRAME_SIZE + 4))
  147. return 1;
  148. return 0;
  149. }
  150. int ne2000_can_receive(NetClientState *nc)
  151. {
  152. NE2000State *s = qemu_get_nic_opaque(nc);
  153. if (s->cmd & E8390_STOP)
  154. return 1;
  155. return !ne2000_buffer_full(s);
  156. }
  157. #define MIN_BUF_SIZE 60
  158. ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
  159. {
  160. NE2000State *s = qemu_get_nic_opaque(nc);
  161. int size = size_;
  162. uint8_t *p;
  163. unsigned int total_len, next, avail, len, index, mcast_idx;
  164. uint8_t buf1[60];
  165. static const uint8_t broadcast_macaddr[6] =
  166. { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
  167. #if defined(DEBUG_NE2000)
  168. printf("NE2000: received len=%d\n", size);
  169. #endif
  170. if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
  171. return -1;
  172. /* XXX: check this */
  173. if (s->rxcr & 0x10) {
  174. /* promiscuous: receive all */
  175. } else {
  176. if (!memcmp(buf, broadcast_macaddr, 6)) {
  177. /* broadcast address */
  178. if (!(s->rxcr & 0x04))
  179. return size;
  180. } else if (buf[0] & 0x01) {
  181. /* multicast */
  182. if (!(s->rxcr & 0x08))
  183. return size;
  184. mcast_idx = compute_mcast_idx(buf);
  185. if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
  186. return size;
  187. } else if (s->mem[0] == buf[0] &&
  188. s->mem[2] == buf[1] &&
  189. s->mem[4] == buf[2] &&
  190. s->mem[6] == buf[3] &&
  191. s->mem[8] == buf[4] &&
  192. s->mem[10] == buf[5]) {
  193. /* match */
  194. } else {
  195. return size;
  196. }
  197. }
  198. /* if too small buffer, then expand it */
  199. if (size < MIN_BUF_SIZE) {
  200. memcpy(buf1, buf, size);
  201. memset(buf1 + size, 0, MIN_BUF_SIZE - size);
  202. buf = buf1;
  203. size = MIN_BUF_SIZE;
  204. }
  205. index = s->curpag << 8;
  206. /* 4 bytes for header */
  207. total_len = size + 4;
  208. /* address for next packet (4 bytes for CRC) */
  209. next = index + ((total_len + 4 + 255) & ~0xff);
  210. if (next >= s->stop)
  211. next -= (s->stop - s->start);
  212. /* prepare packet header */
  213. p = s->mem + index;
  214. s->rsr = ENRSR_RXOK; /* receive status */
  215. /* XXX: check this */
  216. if (buf[0] & 0x01)
  217. s->rsr |= ENRSR_PHY;
  218. p[0] = s->rsr;
  219. p[1] = next >> 8;
  220. p[2] = total_len;
  221. p[3] = total_len >> 8;
  222. index += 4;
  223. /* write packet data */
  224. while (size > 0) {
  225. if (index <= s->stop)
  226. avail = s->stop - index;
  227. else
  228. avail = 0;
  229. len = size;
  230. if (len > avail)
  231. len = avail;
  232. memcpy(s->mem + index, buf, len);
  233. buf += len;
  234. index += len;
  235. if (index == s->stop)
  236. index = s->start;
  237. size -= len;
  238. }
  239. s->curpag = next >> 8;
  240. /* now we can signal we have received something */
  241. s->isr |= ENISR_RX;
  242. ne2000_update_irq(s);
  243. return size_;
  244. }
  245. static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
  246. {
  247. NE2000State *s = opaque;
  248. int offset, page, index;
  249. addr &= 0xf;
  250. #ifdef DEBUG_NE2000
  251. printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
  252. #endif
  253. if (addr == E8390_CMD) {
  254. /* control register */
  255. s->cmd = val;
  256. if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
  257. s->isr &= ~ENISR_RESET;
  258. /* test specific case: zero length transfer */
  259. if ((val & (E8390_RREAD | E8390_RWRITE)) &&
  260. s->rcnt == 0) {
  261. s->isr |= ENISR_RDC;
  262. ne2000_update_irq(s);
  263. }
  264. if (val & E8390_TRANS) {
  265. index = (s->tpsr << 8);
  266. /* XXX: next 2 lines are a hack to make netware 3.11 work */
  267. if (index >= NE2000_PMEM_END)
  268. index -= NE2000_PMEM_SIZE;
  269. /* fail safe: check range on the transmitted length */
  270. if (index + s->tcnt <= NE2000_PMEM_END) {
  271. qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
  272. s->tcnt);
  273. }
  274. /* signal end of transfer */
  275. s->tsr = ENTSR_PTX;
  276. s->isr |= ENISR_TX;
  277. s->cmd &= ~E8390_TRANS;
  278. ne2000_update_irq(s);
  279. }
  280. }
  281. } else {
  282. page = s->cmd >> 6;
  283. offset = addr | (page << 4);
  284. switch(offset) {
  285. case EN0_STARTPG:
  286. s->start = val << 8;
  287. break;
  288. case EN0_STOPPG:
  289. s->stop = val << 8;
  290. break;
  291. case EN0_BOUNDARY:
  292. s->boundary = val;
  293. break;
  294. case EN0_IMR:
  295. s->imr = val;
  296. ne2000_update_irq(s);
  297. break;
  298. case EN0_TPSR:
  299. s->tpsr = val;
  300. break;
  301. case EN0_TCNTLO:
  302. s->tcnt = (s->tcnt & 0xff00) | val;
  303. break;
  304. case EN0_TCNTHI:
  305. s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
  306. break;
  307. case EN0_RSARLO:
  308. s->rsar = (s->rsar & 0xff00) | val;
  309. break;
  310. case EN0_RSARHI:
  311. s->rsar = (s->rsar & 0x00ff) | (val << 8);
  312. break;
  313. case EN0_RCNTLO:
  314. s->rcnt = (s->rcnt & 0xff00) | val;
  315. break;
  316. case EN0_RCNTHI:
  317. s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
  318. break;
  319. case EN0_RXCR:
  320. s->rxcr = val;
  321. break;
  322. case EN0_DCFG:
  323. s->dcfg = val;
  324. break;
  325. case EN0_ISR:
  326. s->isr &= ~(val & 0x7f);
  327. ne2000_update_irq(s);
  328. break;
  329. case EN1_PHYS ... EN1_PHYS + 5:
  330. s->phys[offset - EN1_PHYS] = val;
  331. break;
  332. case EN1_CURPAG:
  333. s->curpag = val;
  334. break;
  335. case EN1_MULT ... EN1_MULT + 7:
  336. s->mult[offset - EN1_MULT] = val;
  337. break;
  338. }
  339. }
  340. }
  341. static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
  342. {
  343. NE2000State *s = opaque;
  344. int offset, page, ret;
  345. addr &= 0xf;
  346. if (addr == E8390_CMD) {
  347. ret = s->cmd;
  348. } else {
  349. page = s->cmd >> 6;
  350. offset = addr | (page << 4);
  351. switch(offset) {
  352. case EN0_TSR:
  353. ret = s->tsr;
  354. break;
  355. case EN0_BOUNDARY:
  356. ret = s->boundary;
  357. break;
  358. case EN0_ISR:
  359. ret = s->isr;
  360. break;
  361. case EN0_RSARLO:
  362. ret = s->rsar & 0x00ff;
  363. break;
  364. case EN0_RSARHI:
  365. ret = s->rsar >> 8;
  366. break;
  367. case EN1_PHYS ... EN1_PHYS + 5:
  368. ret = s->phys[offset - EN1_PHYS];
  369. break;
  370. case EN1_CURPAG:
  371. ret = s->curpag;
  372. break;
  373. case EN1_MULT ... EN1_MULT + 7:
  374. ret = s->mult[offset - EN1_MULT];
  375. break;
  376. case EN0_RSR:
  377. ret = s->rsr;
  378. break;
  379. case EN2_STARTPG:
  380. ret = s->start >> 8;
  381. break;
  382. case EN2_STOPPG:
  383. ret = s->stop >> 8;
  384. break;
  385. case EN0_RTL8029ID0:
  386. ret = 0x50;
  387. break;
  388. case EN0_RTL8029ID1:
  389. ret = 0x43;
  390. break;
  391. case EN3_CONFIG0:
  392. ret = 0; /* 10baseT media */
  393. break;
  394. case EN3_CONFIG2:
  395. ret = 0x40; /* 10baseT active */
  396. break;
  397. case EN3_CONFIG3:
  398. ret = 0x40; /* Full duplex */
  399. break;
  400. default:
  401. ret = 0x00;
  402. break;
  403. }
  404. }
  405. #ifdef DEBUG_NE2000
  406. printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
  407. #endif
  408. return ret;
  409. }
  410. static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
  411. uint32_t val)
  412. {
  413. if (addr < 32 ||
  414. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  415. s->mem[addr] = val;
  416. }
  417. }
  418. static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
  419. uint32_t val)
  420. {
  421. addr &= ~1; /* XXX: check exact behaviour if not even */
  422. if (addr < 32 ||
  423. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  424. *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
  425. }
  426. }
  427. static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
  428. uint32_t val)
  429. {
  430. addr &= ~1; /* XXX: check exact behaviour if not even */
  431. if (addr < 32 ||
  432. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  433. stl_le_p(s->mem + addr, val);
  434. }
  435. }
  436. static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
  437. {
  438. if (addr < 32 ||
  439. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  440. return s->mem[addr];
  441. } else {
  442. return 0xff;
  443. }
  444. }
  445. static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
  446. {
  447. addr &= ~1; /* XXX: check exact behaviour if not even */
  448. if (addr < 32 ||
  449. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  450. return le16_to_cpu(*(uint16_t *)(s->mem + addr));
  451. } else {
  452. return 0xffff;
  453. }
  454. }
  455. static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
  456. {
  457. addr &= ~1; /* XXX: check exact behaviour if not even */
  458. if (addr < 32 ||
  459. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  460. return ldl_le_p(s->mem + addr);
  461. } else {
  462. return 0xffffffff;
  463. }
  464. }
  465. static inline void ne2000_dma_update(NE2000State *s, int len)
  466. {
  467. s->rsar += len;
  468. /* wrap */
  469. /* XXX: check what to do if rsar > stop */
  470. if (s->rsar == s->stop)
  471. s->rsar = s->start;
  472. if (s->rcnt <= len) {
  473. s->rcnt = 0;
  474. /* signal end of transfer */
  475. s->isr |= ENISR_RDC;
  476. ne2000_update_irq(s);
  477. } else {
  478. s->rcnt -= len;
  479. }
  480. }
  481. static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
  482. {
  483. NE2000State *s = opaque;
  484. #ifdef DEBUG_NE2000
  485. printf("NE2000: asic write val=0x%04x\n", val);
  486. #endif
  487. if (s->rcnt == 0)
  488. return;
  489. if (s->dcfg & 0x01) {
  490. /* 16 bit access */
  491. ne2000_mem_writew(s, s->rsar, val);
  492. ne2000_dma_update(s, 2);
  493. } else {
  494. /* 8 bit access */
  495. ne2000_mem_writeb(s, s->rsar, val);
  496. ne2000_dma_update(s, 1);
  497. }
  498. }
  499. static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
  500. {
  501. NE2000State *s = opaque;
  502. int ret;
  503. if (s->dcfg & 0x01) {
  504. /* 16 bit access */
  505. ret = ne2000_mem_readw(s, s->rsar);
  506. ne2000_dma_update(s, 2);
  507. } else {
  508. /* 8 bit access */
  509. ret = ne2000_mem_readb(s, s->rsar);
  510. ne2000_dma_update(s, 1);
  511. }
  512. #ifdef DEBUG_NE2000
  513. printf("NE2000: asic read val=0x%04x\n", ret);
  514. #endif
  515. return ret;
  516. }
  517. static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
  518. {
  519. NE2000State *s = opaque;
  520. #ifdef DEBUG_NE2000
  521. printf("NE2000: asic writel val=0x%04x\n", val);
  522. #endif
  523. if (s->rcnt == 0)
  524. return;
  525. /* 32 bit access */
  526. ne2000_mem_writel(s, s->rsar, val);
  527. ne2000_dma_update(s, 4);
  528. }
  529. static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
  530. {
  531. NE2000State *s = opaque;
  532. int ret;
  533. /* 32 bit access */
  534. ret = ne2000_mem_readl(s, s->rsar);
  535. ne2000_dma_update(s, 4);
  536. #ifdef DEBUG_NE2000
  537. printf("NE2000: asic readl val=0x%04x\n", ret);
  538. #endif
  539. return ret;
  540. }
  541. static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
  542. {
  543. /* nothing to do (end of reset pulse) */
  544. }
  545. static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
  546. {
  547. NE2000State *s = opaque;
  548. ne2000_reset(s);
  549. return 0;
  550. }
  551. static int ne2000_post_load(void* opaque, int version_id)
  552. {
  553. NE2000State* s = opaque;
  554. if (version_id < 2) {
  555. s->rxcr = 0x0c;
  556. }
  557. return 0;
  558. }
  559. const VMStateDescription vmstate_ne2000 = {
  560. .name = "ne2000",
  561. .version_id = 2,
  562. .minimum_version_id = 0,
  563. .minimum_version_id_old = 0,
  564. .post_load = ne2000_post_load,
  565. .fields = (VMStateField []) {
  566. VMSTATE_UINT8_V(rxcr, NE2000State, 2),
  567. VMSTATE_UINT8(cmd, NE2000State),
  568. VMSTATE_UINT32(start, NE2000State),
  569. VMSTATE_UINT32(stop, NE2000State),
  570. VMSTATE_UINT8(boundary, NE2000State),
  571. VMSTATE_UINT8(tsr, NE2000State),
  572. VMSTATE_UINT8(tpsr, NE2000State),
  573. VMSTATE_UINT16(tcnt, NE2000State),
  574. VMSTATE_UINT16(rcnt, NE2000State),
  575. VMSTATE_UINT32(rsar, NE2000State),
  576. VMSTATE_UINT8(rsr, NE2000State),
  577. VMSTATE_UINT8(isr, NE2000State),
  578. VMSTATE_UINT8(dcfg, NE2000State),
  579. VMSTATE_UINT8(imr, NE2000State),
  580. VMSTATE_BUFFER(phys, NE2000State),
  581. VMSTATE_UINT8(curpag, NE2000State),
  582. VMSTATE_BUFFER(mult, NE2000State),
  583. VMSTATE_UNUSED(4), /* was irq */
  584. VMSTATE_BUFFER(mem, NE2000State),
  585. VMSTATE_END_OF_LIST()
  586. }
  587. };
  588. static const VMStateDescription vmstate_pci_ne2000 = {
  589. .name = "ne2000",
  590. .version_id = 3,
  591. .minimum_version_id = 3,
  592. .minimum_version_id_old = 3,
  593. .fields = (VMStateField []) {
  594. VMSTATE_PCI_DEVICE(dev, PCINE2000State),
  595. VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
  596. VMSTATE_END_OF_LIST()
  597. }
  598. };
  599. static uint64_t ne2000_read(void *opaque, hwaddr addr,
  600. unsigned size)
  601. {
  602. NE2000State *s = opaque;
  603. if (addr < 0x10 && size == 1) {
  604. return ne2000_ioport_read(s, addr);
  605. } else if (addr == 0x10) {
  606. if (size <= 2) {
  607. return ne2000_asic_ioport_read(s, addr);
  608. } else {
  609. return ne2000_asic_ioport_readl(s, addr);
  610. }
  611. } else if (addr == 0x1f && size == 1) {
  612. return ne2000_reset_ioport_read(s, addr);
  613. }
  614. return ((uint64_t)1 << (size * 8)) - 1;
  615. }
  616. static void ne2000_write(void *opaque, hwaddr addr,
  617. uint64_t data, unsigned size)
  618. {
  619. NE2000State *s = opaque;
  620. if (addr < 0x10 && size == 1) {
  621. ne2000_ioport_write(s, addr, data);
  622. } else if (addr == 0x10) {
  623. if (size <= 2) {
  624. ne2000_asic_ioport_write(s, addr, data);
  625. } else {
  626. ne2000_asic_ioport_writel(s, addr, data);
  627. }
  628. } else if (addr == 0x1f && size == 1) {
  629. ne2000_reset_ioport_write(s, addr, data);
  630. }
  631. }
  632. static const MemoryRegionOps ne2000_ops = {
  633. .read = ne2000_read,
  634. .write = ne2000_write,
  635. .endianness = DEVICE_LITTLE_ENDIAN,
  636. };
  637. /***********************************************************/
  638. /* PCI NE2000 definitions */
  639. void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
  640. {
  641. memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
  642. }
  643. static void ne2000_cleanup(NetClientState *nc)
  644. {
  645. NE2000State *s = qemu_get_nic_opaque(nc);
  646. s->nic = NULL;
  647. }
  648. static NetClientInfo net_ne2000_info = {
  649. .type = NET_CLIENT_OPTIONS_KIND_NIC,
  650. .size = sizeof(NICState),
  651. .can_receive = ne2000_can_receive,
  652. .receive = ne2000_receive,
  653. .cleanup = ne2000_cleanup,
  654. };
  655. static int pci_ne2000_init(PCIDevice *pci_dev)
  656. {
  657. PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
  658. NE2000State *s;
  659. uint8_t *pci_conf;
  660. pci_conf = d->dev.config;
  661. pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
  662. s = &d->ne2000;
  663. ne2000_setup_io(s, DEVICE(pci_dev), 0x100);
  664. pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
  665. s->irq = pci_allocate_irq(&d->dev);
  666. qemu_macaddr_default_if_unset(&s->c.macaddr);
  667. ne2000_reset(s);
  668. s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
  669. object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
  670. qemu_format_nic_info_str(qemu_get_queue(s->nic), s->c.macaddr.a);
  671. add_boot_device_path(s->c.bootindex, &pci_dev->qdev, "/ethernet-phy@0");
  672. return 0;
  673. }
  674. static void pci_ne2000_exit(PCIDevice *pci_dev)
  675. {
  676. PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
  677. NE2000State *s = &d->ne2000;
  678. memory_region_destroy(&s->io);
  679. qemu_del_nic(s->nic);
  680. qemu_free_irq(s->irq);
  681. }
  682. static Property ne2000_properties[] = {
  683. DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
  684. DEFINE_PROP_END_OF_LIST(),
  685. };
  686. static void ne2000_class_init(ObjectClass *klass, void *data)
  687. {
  688. DeviceClass *dc = DEVICE_CLASS(klass);
  689. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  690. k->init = pci_ne2000_init;
  691. k->exit = pci_ne2000_exit;
  692. k->romfile = "efi-ne2k_pci.rom",
  693. k->vendor_id = PCI_VENDOR_ID_REALTEK;
  694. k->device_id = PCI_DEVICE_ID_REALTEK_8029;
  695. k->class_id = PCI_CLASS_NETWORK_ETHERNET;
  696. dc->vmsd = &vmstate_pci_ne2000;
  697. dc->props = ne2000_properties;
  698. set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
  699. }
  700. static const TypeInfo ne2000_info = {
  701. .name = "ne2k_pci",
  702. .parent = TYPE_PCI_DEVICE,
  703. .instance_size = sizeof(PCINE2000State),
  704. .class_init = ne2000_class_init,
  705. };
  706. static void ne2000_register_types(void)
  707. {
  708. type_register_static(&ne2000_info);
  709. }
  710. type_init(ne2000_register_types)