eepro100.c 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116
  1. /*
  2. * QEMU i8255x (PRO100) emulation
  3. *
  4. * Copyright (C) 2006-2011 Stefan Weil
  5. *
  6. * Portions of the code are copies from grub / etherboot eepro100.c
  7. * and linux e100.c.
  8. *
  9. * This program is free software: you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation, either version 2 of the License, or
  12. * (at your option) version 3 or any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  21. *
  22. * Tested features (i82559):
  23. * PXE boot (i386 guest, i386 / mips / mipsel / ppc host) ok
  24. * Linux networking (i386) ok
  25. *
  26. * Untested:
  27. * Windows networking
  28. *
  29. * References:
  30. *
  31. * Intel 8255x 10/100 Mbps Ethernet Controller Family
  32. * Open Source Software Developer Manual
  33. *
  34. * TODO:
  35. * * PHY emulation should be separated from nic emulation.
  36. * Most nic emulations could share the same phy code.
  37. * * i82550 is untested. It is programmed like the i82559.
  38. * * i82562 is untested. It is programmed like the i82559.
  39. * * Power management (i82558 and later) is not implemented.
  40. * * Wake-on-LAN is not implemented.
  41. */
  42. #include <stddef.h> /* offsetof */
  43. #include "hw/hw.h"
  44. #include "hw/pci/pci.h"
  45. #include "net/net.h"
  46. #include "hw/nvram/eeprom93xx.h"
  47. #include "sysemu/sysemu.h"
  48. #include "sysemu/dma.h"
  49. #include "qemu/bitops.h"
  50. /* QEMU sends frames smaller than 60 bytes to ethernet nics.
  51. * Such frames are rejected by real nics and their emulations.
  52. * To avoid this behaviour, other nic emulations pad received
  53. * frames. The following definition enables this padding for
  54. * eepro100, too. We keep the define around in case it might
  55. * become useful the future if the core networking is ever
  56. * changed to pad short packets itself. */
  57. #define CONFIG_PAD_RECEIVED_FRAMES
  58. #define KiB 1024
  59. /* Debug EEPRO100 card. */
  60. #if 0
  61. # define DEBUG_EEPRO100
  62. #endif
  63. #ifdef DEBUG_EEPRO100
  64. #define logout(fmt, ...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ## __VA_ARGS__)
  65. #else
  66. #define logout(fmt, ...) ((void)0)
  67. #endif
  68. /* Set flags to 0 to disable debug output. */
  69. #define INT 1 /* interrupt related actions */
  70. #define MDI 1 /* mdi related actions */
  71. #define OTHER 1
  72. #define RXTX 1
  73. #define EEPROM 1 /* eeprom related actions */
  74. #define TRACE(flag, command) ((flag) ? (command) : (void)0)
  75. #define missing(text) fprintf(stderr, "eepro100: feature is missing in this emulation: " text "\n")
  76. #define MAX_ETH_FRAME_SIZE 1514
  77. /* This driver supports several different devices which are declared here. */
  78. #define i82550 0x82550
  79. #define i82551 0x82551
  80. #define i82557A 0x82557a
  81. #define i82557B 0x82557b
  82. #define i82557C 0x82557c
  83. #define i82558A 0x82558a
  84. #define i82558B 0x82558b
  85. #define i82559A 0x82559a
  86. #define i82559B 0x82559b
  87. #define i82559C 0x82559c
  88. #define i82559ER 0x82559e
  89. #define i82562 0x82562
  90. #define i82801 0x82801
  91. /* Use 64 word EEPROM. TODO: could be a runtime option. */
  92. #define EEPROM_SIZE 64
  93. #define PCI_MEM_SIZE (4 * KiB)
  94. #define PCI_IO_SIZE 64
  95. #define PCI_FLASH_SIZE (128 * KiB)
  96. #define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m)
  97. /* The SCB accepts the following controls for the Tx and Rx units: */
  98. #define CU_NOP 0x0000 /* No operation. */
  99. #define CU_START 0x0010 /* CU start. */
  100. #define CU_RESUME 0x0020 /* CU resume. */
  101. #define CU_STATSADDR 0x0040 /* Load dump counters address. */
  102. #define CU_SHOWSTATS 0x0050 /* Dump statistical counters. */
  103. #define CU_CMD_BASE 0x0060 /* Load CU base address. */
  104. #define CU_DUMPSTATS 0x0070 /* Dump and reset statistical counters. */
  105. #define CU_SRESUME 0x00a0 /* CU static resume. */
  106. #define RU_NOP 0x0000
  107. #define RX_START 0x0001
  108. #define RX_RESUME 0x0002
  109. #define RU_ABORT 0x0004
  110. #define RX_ADDR_LOAD 0x0006
  111. #define RX_RESUMENR 0x0007
  112. #define INT_MASK 0x0100
  113. #define DRVR_INT 0x0200 /* Driver generated interrupt. */
  114. typedef struct {
  115. const char *name;
  116. const char *desc;
  117. uint16_t device_id;
  118. uint8_t revision;
  119. uint16_t subsystem_vendor_id;
  120. uint16_t subsystem_id;
  121. uint32_t device;
  122. uint8_t stats_size;
  123. bool has_extended_tcb_support;
  124. bool power_management;
  125. } E100PCIDeviceInfo;
  126. /* Offsets to the various registers.
  127. All accesses need not be longword aligned. */
  128. typedef enum {
  129. SCBStatus = 0, /* Status Word. */
  130. SCBAck = 1,
  131. SCBCmd = 2, /* Rx/Command Unit command and status. */
  132. SCBIntmask = 3,
  133. SCBPointer = 4, /* General purpose pointer. */
  134. SCBPort = 8, /* Misc. commands and operands. */
  135. SCBflash = 12, /* Flash memory control. */
  136. SCBeeprom = 14, /* EEPROM control. */
  137. SCBCtrlMDI = 16, /* MDI interface control. */
  138. SCBEarlyRx = 20, /* Early receive byte count. */
  139. SCBFlow = 24, /* Flow Control. */
  140. SCBpmdr = 27, /* Power Management Driver. */
  141. SCBgctrl = 28, /* General Control. */
  142. SCBgstat = 29, /* General Status. */
  143. } E100RegisterOffset;
  144. /* A speedo3 transmit buffer descriptor with two buffers... */
  145. typedef struct {
  146. uint16_t status;
  147. uint16_t command;
  148. uint32_t link; /* void * */
  149. uint32_t tbd_array_addr; /* transmit buffer descriptor array address. */
  150. uint16_t tcb_bytes; /* transmit command block byte count (in lower 14 bits */
  151. uint8_t tx_threshold; /* transmit threshold */
  152. uint8_t tbd_count; /* TBD number */
  153. #if 0
  154. /* This constitutes two "TBD" entries: hdr and data */
  155. uint32_t tx_buf_addr0; /* void *, header of frame to be transmitted. */
  156. int32_t tx_buf_size0; /* Length of Tx hdr. */
  157. uint32_t tx_buf_addr1; /* void *, data to be transmitted. */
  158. int32_t tx_buf_size1; /* Length of Tx data. */
  159. #endif
  160. } eepro100_tx_t;
  161. /* Receive frame descriptor. */
  162. typedef struct {
  163. int16_t status;
  164. uint16_t command;
  165. uint32_t link; /* struct RxFD * */
  166. uint32_t rx_buf_addr; /* void * */
  167. uint16_t count;
  168. uint16_t size;
  169. /* Ethernet frame data follows. */
  170. } eepro100_rx_t;
  171. typedef enum {
  172. COMMAND_EL = BIT(15),
  173. COMMAND_S = BIT(14),
  174. COMMAND_I = BIT(13),
  175. COMMAND_NC = BIT(4),
  176. COMMAND_SF = BIT(3),
  177. COMMAND_CMD = BITS(2, 0),
  178. } scb_command_bit;
  179. typedef enum {
  180. STATUS_C = BIT(15),
  181. STATUS_OK = BIT(13),
  182. } scb_status_bit;
  183. typedef struct {
  184. uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions,
  185. tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
  186. tx_multiple_collisions, tx_total_collisions;
  187. uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors,
  188. rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
  189. rx_short_frame_errors;
  190. uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
  191. uint16_t xmt_tco_frames, rcv_tco_frames;
  192. /* TODO: i82559 has six reserved statistics but a total of 24 dwords. */
  193. uint32_t reserved[4];
  194. } eepro100_stats_t;
  195. typedef enum {
  196. cu_idle = 0,
  197. cu_suspended = 1,
  198. cu_active = 2,
  199. cu_lpq_active = 2,
  200. cu_hqp_active = 3
  201. } cu_state_t;
  202. typedef enum {
  203. ru_idle = 0,
  204. ru_suspended = 1,
  205. ru_no_resources = 2,
  206. ru_ready = 4
  207. } ru_state_t;
  208. typedef struct {
  209. PCIDevice dev;
  210. /* Hash register (multicast mask array, multiple individual addresses). */
  211. uint8_t mult[8];
  212. MemoryRegion mmio_bar;
  213. MemoryRegion io_bar;
  214. MemoryRegion flash_bar;
  215. NICState *nic;
  216. NICConf conf;
  217. uint8_t scb_stat; /* SCB stat/ack byte */
  218. uint8_t int_stat; /* PCI interrupt status */
  219. /* region must not be saved by nic_save. */
  220. uint16_t mdimem[32];
  221. eeprom_t *eeprom;
  222. uint32_t device; /* device variant */
  223. /* (cu_base + cu_offset) address the next command block in the command block list. */
  224. uint32_t cu_base; /* CU base address */
  225. uint32_t cu_offset; /* CU address offset */
  226. /* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */
  227. uint32_t ru_base; /* RU base address */
  228. uint32_t ru_offset; /* RU address offset */
  229. uint32_t statsaddr; /* pointer to eepro100_stats_t */
  230. /* Temporary status information (no need to save these values),
  231. * used while processing CU commands. */
  232. eepro100_tx_t tx; /* transmit buffer descriptor */
  233. uint32_t cb_address; /* = cu_base + cu_offset */
  234. /* Statistical counters. Also used for wake-up packet (i82559). */
  235. eepro100_stats_t statistics;
  236. /* Data in mem is always in the byte order of the controller (le).
  237. * It must be dword aligned to allow direct access to 32 bit values. */
  238. uint8_t mem[PCI_MEM_SIZE] __attribute__((aligned(8)));
  239. /* Configuration bytes. */
  240. uint8_t configuration[22];
  241. /* vmstate for each particular nic */
  242. VMStateDescription *vmstate;
  243. /* Quasi static device properties (no need to save them). */
  244. uint16_t stats_size;
  245. bool has_extended_tcb_support;
  246. } EEPRO100State;
  247. /* Word indices in EEPROM. */
  248. typedef enum {
  249. EEPROM_CNFG_MDIX = 0x03,
  250. EEPROM_ID = 0x05,
  251. EEPROM_PHY_ID = 0x06,
  252. EEPROM_VENDOR_ID = 0x0c,
  253. EEPROM_CONFIG_ASF = 0x0d,
  254. EEPROM_DEVICE_ID = 0x23,
  255. EEPROM_SMBUS_ADDR = 0x90,
  256. } EEPROMOffset;
  257. /* Bit values for EEPROM ID word. */
  258. typedef enum {
  259. EEPROM_ID_MDM = BIT(0), /* Modem */
  260. EEPROM_ID_STB = BIT(1), /* Standby Enable */
  261. EEPROM_ID_WMR = BIT(2), /* ??? */
  262. EEPROM_ID_WOL = BIT(5), /* Wake on LAN */
  263. EEPROM_ID_DPD = BIT(6), /* Deep Power Down */
  264. EEPROM_ID_ALT = BIT(7), /* */
  265. /* BITS(10, 8) device revision */
  266. EEPROM_ID_BD = BIT(11), /* boot disable */
  267. EEPROM_ID_ID = BIT(13), /* id bit */
  268. /* BITS(15, 14) signature */
  269. EEPROM_ID_VALID = BIT(14), /* signature for valid eeprom */
  270. } eeprom_id_bit;
  271. /* Default values for MDI (PHY) registers */
  272. static const uint16_t eepro100_mdi_default[] = {
  273. /* MDI Registers 0 - 6, 7 */
  274. 0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000,
  275. /* MDI Registers 8 - 15 */
  276. 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
  277. /* MDI Registers 16 - 31 */
  278. 0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
  279. 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
  280. };
  281. /* Readonly mask for MDI (PHY) registers */
  282. static const uint16_t eepro100_mdi_mask[] = {
  283. 0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000,
  284. 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
  285. 0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
  286. 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
  287. };
  288. #define POLYNOMIAL 0x04c11db6
  289. static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s);
  290. /* From FreeBSD (locally modified). */
  291. static unsigned e100_compute_mcast_idx(const uint8_t *ep)
  292. {
  293. uint32_t crc;
  294. int carry, i, j;
  295. uint8_t b;
  296. crc = 0xffffffff;
  297. for (i = 0; i < 6; i++) {
  298. b = *ep++;
  299. for (j = 0; j < 8; j++) {
  300. carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
  301. crc <<= 1;
  302. b >>= 1;
  303. if (carry) {
  304. crc = ((crc ^ POLYNOMIAL) | carry);
  305. }
  306. }
  307. }
  308. return (crc & BITS(7, 2)) >> 2;
  309. }
  310. /* Read a 16 bit control/status (CSR) register. */
  311. static uint16_t e100_read_reg2(EEPRO100State *s, E100RegisterOffset addr)
  312. {
  313. assert(!((uintptr_t)&s->mem[addr] & 1));
  314. return le16_to_cpup((uint16_t *)&s->mem[addr]);
  315. }
  316. /* Read a 32 bit control/status (CSR) register. */
  317. static uint32_t e100_read_reg4(EEPRO100State *s, E100RegisterOffset addr)
  318. {
  319. assert(!((uintptr_t)&s->mem[addr] & 3));
  320. return le32_to_cpup((uint32_t *)&s->mem[addr]);
  321. }
  322. /* Write a 16 bit control/status (CSR) register. */
  323. static void e100_write_reg2(EEPRO100State *s, E100RegisterOffset addr,
  324. uint16_t val)
  325. {
  326. assert(!((uintptr_t)&s->mem[addr] & 1));
  327. cpu_to_le16w((uint16_t *)&s->mem[addr], val);
  328. }
  329. /* Read a 32 bit control/status (CSR) register. */
  330. static void e100_write_reg4(EEPRO100State *s, E100RegisterOffset addr,
  331. uint32_t val)
  332. {
  333. assert(!((uintptr_t)&s->mem[addr] & 3));
  334. cpu_to_le32w((uint32_t *)&s->mem[addr], val);
  335. }
  336. #if defined(DEBUG_EEPRO100)
  337. static const char *nic_dump(const uint8_t * buf, unsigned size)
  338. {
  339. static char dump[3 * 16 + 1];
  340. char *p = &dump[0];
  341. if (size > 16) {
  342. size = 16;
  343. }
  344. while (size-- > 0) {
  345. p += sprintf(p, " %02x", *buf++);
  346. }
  347. return dump;
  348. }
  349. #endif /* DEBUG_EEPRO100 */
  350. enum scb_stat_ack {
  351. stat_ack_not_ours = 0x00,
  352. stat_ack_sw_gen = 0x04,
  353. stat_ack_rnr = 0x10,
  354. stat_ack_cu_idle = 0x20,
  355. stat_ack_frame_rx = 0x40,
  356. stat_ack_cu_cmd_done = 0x80,
  357. stat_ack_not_present = 0xFF,
  358. stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
  359. stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
  360. };
  361. static void disable_interrupt(EEPRO100State * s)
  362. {
  363. if (s->int_stat) {
  364. TRACE(INT, logout("interrupt disabled\n"));
  365. pci_irq_deassert(&s->dev);
  366. s->int_stat = 0;
  367. }
  368. }
  369. static void enable_interrupt(EEPRO100State * s)
  370. {
  371. if (!s->int_stat) {
  372. TRACE(INT, logout("interrupt enabled\n"));
  373. pci_irq_assert(&s->dev);
  374. s->int_stat = 1;
  375. }
  376. }
  377. static void eepro100_acknowledge(EEPRO100State * s)
  378. {
  379. s->scb_stat &= ~s->mem[SCBAck];
  380. s->mem[SCBAck] = s->scb_stat;
  381. if (s->scb_stat == 0) {
  382. disable_interrupt(s);
  383. }
  384. }
  385. static void eepro100_interrupt(EEPRO100State * s, uint8_t status)
  386. {
  387. uint8_t mask = ~s->mem[SCBIntmask];
  388. s->mem[SCBAck] |= status;
  389. status = s->scb_stat = s->mem[SCBAck];
  390. status &= (mask | 0x0f);
  391. #if 0
  392. status &= (~s->mem[SCBIntmask] | 0x0xf);
  393. #endif
  394. if (status && (mask & 0x01)) {
  395. /* SCB mask and SCB Bit M do not disable interrupt. */
  396. enable_interrupt(s);
  397. } else if (s->int_stat) {
  398. disable_interrupt(s);
  399. }
  400. }
  401. static void eepro100_cx_interrupt(EEPRO100State * s)
  402. {
  403. /* CU completed action command. */
  404. /* Transmit not ok (82557 only, not in emulation). */
  405. eepro100_interrupt(s, 0x80);
  406. }
  407. static void eepro100_cna_interrupt(EEPRO100State * s)
  408. {
  409. /* CU left the active state. */
  410. eepro100_interrupt(s, 0x20);
  411. }
  412. static void eepro100_fr_interrupt(EEPRO100State * s)
  413. {
  414. /* RU received a complete frame. */
  415. eepro100_interrupt(s, 0x40);
  416. }
  417. static void eepro100_rnr_interrupt(EEPRO100State * s)
  418. {
  419. /* RU is not ready. */
  420. eepro100_interrupt(s, 0x10);
  421. }
  422. static void eepro100_mdi_interrupt(EEPRO100State * s)
  423. {
  424. /* MDI completed read or write cycle. */
  425. eepro100_interrupt(s, 0x08);
  426. }
  427. static void eepro100_swi_interrupt(EEPRO100State * s)
  428. {
  429. /* Software has requested an interrupt. */
  430. eepro100_interrupt(s, 0x04);
  431. }
  432. #if 0
  433. static void eepro100_fcp_interrupt(EEPRO100State * s)
  434. {
  435. /* Flow control pause interrupt (82558 and later). */
  436. eepro100_interrupt(s, 0x01);
  437. }
  438. #endif
  439. static void e100_pci_reset(EEPRO100State * s)
  440. {
  441. E100PCIDeviceInfo *info = eepro100_get_class(s);
  442. uint32_t device = s->device;
  443. uint8_t *pci_conf = s->dev.config;
  444. TRACE(OTHER, logout("%p\n", s));
  445. /* PCI Status */
  446. pci_set_word(pci_conf + PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
  447. PCI_STATUS_FAST_BACK);
  448. /* PCI Latency Timer */
  449. pci_set_byte(pci_conf + PCI_LATENCY_TIMER, 0x20); /* latency timer = 32 clocks */
  450. /* Capability Pointer is set by PCI framework. */
  451. /* Interrupt Line */
  452. /* Interrupt Pin */
  453. pci_set_byte(pci_conf + PCI_INTERRUPT_PIN, 1); /* interrupt pin A */
  454. /* Minimum Grant */
  455. pci_set_byte(pci_conf + PCI_MIN_GNT, 0x08);
  456. /* Maximum Latency */
  457. pci_set_byte(pci_conf + PCI_MAX_LAT, 0x18);
  458. s->stats_size = info->stats_size;
  459. s->has_extended_tcb_support = info->has_extended_tcb_support;
  460. switch (device) {
  461. case i82550:
  462. case i82551:
  463. case i82557A:
  464. case i82557B:
  465. case i82557C:
  466. case i82558A:
  467. case i82558B:
  468. case i82559A:
  469. case i82559B:
  470. case i82559ER:
  471. case i82562:
  472. case i82801:
  473. case i82559C:
  474. break;
  475. default:
  476. logout("Device %X is undefined!\n", device);
  477. }
  478. /* Standard TxCB. */
  479. s->configuration[6] |= BIT(4);
  480. /* Standard statistical counters. */
  481. s->configuration[6] |= BIT(5);
  482. if (s->stats_size == 80) {
  483. /* TODO: check TCO Statistical Counters bit. Documentation not clear. */
  484. if (s->configuration[6] & BIT(2)) {
  485. /* TCO statistical counters. */
  486. assert(s->configuration[6] & BIT(5));
  487. } else {
  488. if (s->configuration[6] & BIT(5)) {
  489. /* No extended statistical counters, i82557 compatible. */
  490. s->stats_size = 64;
  491. } else {
  492. /* i82558 compatible. */
  493. s->stats_size = 76;
  494. }
  495. }
  496. } else {
  497. if (s->configuration[6] & BIT(5)) {
  498. /* No extended statistical counters. */
  499. s->stats_size = 64;
  500. }
  501. }
  502. assert(s->stats_size > 0 && s->stats_size <= sizeof(s->statistics));
  503. if (info->power_management) {
  504. /* Power Management Capabilities */
  505. int cfg_offset = 0xdc;
  506. int r = pci_add_capability(&s->dev, PCI_CAP_ID_PM,
  507. cfg_offset, PCI_PM_SIZEOF);
  508. assert(r >= 0);
  509. pci_set_word(pci_conf + cfg_offset + PCI_PM_PMC, 0x7e21);
  510. #if 0 /* TODO: replace dummy code for power management emulation. */
  511. /* TODO: Power Management Control / Status. */
  512. pci_set_word(pci_conf + cfg_offset + PCI_PM_CTRL, 0x0000);
  513. /* TODO: Ethernet Power Consumption Registers (i82559 and later). */
  514. pci_set_byte(pci_conf + cfg_offset + PCI_PM_PPB_EXTENSIONS, 0x0000);
  515. #endif
  516. }
  517. #if EEPROM_SIZE > 0
  518. if (device == i82557C || device == i82558B || device == i82559C) {
  519. /*
  520. TODO: get vendor id from EEPROM for i82557C or later.
  521. TODO: get device id from EEPROM for i82557C or later.
  522. TODO: status bit 4 can be disabled by EEPROM for i82558, i82559.
  523. TODO: header type is determined by EEPROM for i82559.
  524. TODO: get subsystem id from EEPROM for i82557C or later.
  525. TODO: get subsystem vendor id from EEPROM for i82557C or later.
  526. TODO: exp. rom baddr depends on a bit in EEPROM for i82558 or later.
  527. TODO: capability pointer depends on EEPROM for i82558.
  528. */
  529. logout("Get device id and revision from EEPROM!!!\n");
  530. }
  531. #endif /* EEPROM_SIZE > 0 */
  532. }
  533. static void nic_selective_reset(EEPRO100State * s)
  534. {
  535. size_t i;
  536. uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom);
  537. #if 0
  538. eeprom93xx_reset(s->eeprom);
  539. #endif
  540. memcpy(eeprom_contents, s->conf.macaddr.a, 6);
  541. eeprom_contents[EEPROM_ID] = EEPROM_ID_VALID;
  542. if (s->device == i82557B || s->device == i82557C)
  543. eeprom_contents[5] = 0x0100;
  544. eeprom_contents[EEPROM_PHY_ID] = 1;
  545. uint16_t sum = 0;
  546. for (i = 0; i < EEPROM_SIZE - 1; i++) {
  547. sum += eeprom_contents[i];
  548. }
  549. eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum;
  550. TRACE(EEPROM, logout("checksum=0x%04x\n", eeprom_contents[EEPROM_SIZE - 1]));
  551. memset(s->mem, 0, sizeof(s->mem));
  552. e100_write_reg4(s, SCBCtrlMDI, BIT(21));
  553. assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default));
  554. memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem));
  555. }
  556. static void nic_reset(void *opaque)
  557. {
  558. EEPRO100State *s = opaque;
  559. TRACE(OTHER, logout("%p\n", s));
  560. /* TODO: Clearing of hash register for selective reset, too? */
  561. memset(&s->mult[0], 0, sizeof(s->mult));
  562. nic_selective_reset(s);
  563. }
  564. #if defined(DEBUG_EEPRO100)
  565. static const char * const e100_reg[PCI_IO_SIZE / 4] = {
  566. "Command/Status",
  567. "General Pointer",
  568. "Port",
  569. "EEPROM/Flash Control",
  570. "MDI Control",
  571. "Receive DMA Byte Count",
  572. "Flow Control",
  573. "General Status/Control"
  574. };
  575. static char *regname(uint32_t addr)
  576. {
  577. static char buf[32];
  578. if (addr < PCI_IO_SIZE) {
  579. const char *r = e100_reg[addr / 4];
  580. if (r != 0) {
  581. snprintf(buf, sizeof(buf), "%s+%u", r, addr % 4);
  582. } else {
  583. snprintf(buf, sizeof(buf), "0x%02x", addr);
  584. }
  585. } else {
  586. snprintf(buf, sizeof(buf), "??? 0x%08x", addr);
  587. }
  588. return buf;
  589. }
  590. #endif /* DEBUG_EEPRO100 */
  591. /*****************************************************************************
  592. *
  593. * Command emulation.
  594. *
  595. ****************************************************************************/
  596. #if 0
  597. static uint16_t eepro100_read_command(EEPRO100State * s)
  598. {
  599. uint16_t val = 0xffff;
  600. TRACE(OTHER, logout("val=0x%04x\n", val));
  601. return val;
  602. }
  603. #endif
  604. /* Commands that can be put in a command list entry. */
  605. enum commands {
  606. CmdNOp = 0,
  607. CmdIASetup = 1,
  608. CmdConfigure = 2,
  609. CmdMulticastList = 3,
  610. CmdTx = 4,
  611. CmdTDR = 5, /* load microcode */
  612. CmdDump = 6,
  613. CmdDiagnose = 7,
  614. /* And some extra flags: */
  615. CmdSuspend = 0x4000, /* Suspend after completion. */
  616. CmdIntr = 0x2000, /* Interrupt after completion. */
  617. CmdTxFlex = 0x0008, /* Use "Flexible mode" for CmdTx command. */
  618. };
  619. static cu_state_t get_cu_state(EEPRO100State * s)
  620. {
  621. return ((s->mem[SCBStatus] & BITS(7, 6)) >> 6);
  622. }
  623. static void set_cu_state(EEPRO100State * s, cu_state_t state)
  624. {
  625. s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(7, 6)) + (state << 6);
  626. }
  627. static ru_state_t get_ru_state(EEPRO100State * s)
  628. {
  629. return ((s->mem[SCBStatus] & BITS(5, 2)) >> 2);
  630. }
  631. static void set_ru_state(EEPRO100State * s, ru_state_t state)
  632. {
  633. s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(5, 2)) + (state << 2);
  634. }
  635. static void dump_statistics(EEPRO100State * s)
  636. {
  637. /* Dump statistical data. Most data is never changed by the emulation
  638. * and always 0, so we first just copy the whole block and then those
  639. * values which really matter.
  640. * Number of data should check configuration!!!
  641. */
  642. pci_dma_write(&s->dev, s->statsaddr, &s->statistics, s->stats_size);
  643. stl_le_pci_dma(&s->dev, s->statsaddr + 0,
  644. s->statistics.tx_good_frames);
  645. stl_le_pci_dma(&s->dev, s->statsaddr + 36,
  646. s->statistics.rx_good_frames);
  647. stl_le_pci_dma(&s->dev, s->statsaddr + 48,
  648. s->statistics.rx_resource_errors);
  649. stl_le_pci_dma(&s->dev, s->statsaddr + 60,
  650. s->statistics.rx_short_frame_errors);
  651. #if 0
  652. stw_le_pci_dma(&s->dev, s->statsaddr + 76, s->statistics.xmt_tco_frames);
  653. stw_le_pci_dma(&s->dev, s->statsaddr + 78, s->statistics.rcv_tco_frames);
  654. missing("CU dump statistical counters");
  655. #endif
  656. }
  657. static void read_cb(EEPRO100State *s)
  658. {
  659. pci_dma_read(&s->dev, s->cb_address, &s->tx, sizeof(s->tx));
  660. s->tx.status = le16_to_cpu(s->tx.status);
  661. s->tx.command = le16_to_cpu(s->tx.command);
  662. s->tx.link = le32_to_cpu(s->tx.link);
  663. s->tx.tbd_array_addr = le32_to_cpu(s->tx.tbd_array_addr);
  664. s->tx.tcb_bytes = le16_to_cpu(s->tx.tcb_bytes);
  665. }
  666. static void tx_command(EEPRO100State *s)
  667. {
  668. uint32_t tbd_array = le32_to_cpu(s->tx.tbd_array_addr);
  669. uint16_t tcb_bytes = (le16_to_cpu(s->tx.tcb_bytes) & 0x3fff);
  670. /* Sends larger than MAX_ETH_FRAME_SIZE are allowed, up to 2600 bytes. */
  671. uint8_t buf[2600];
  672. uint16_t size = 0;
  673. uint32_t tbd_address = s->cb_address + 0x10;
  674. TRACE(RXTX, logout
  675. ("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n",
  676. tbd_array, tcb_bytes, s->tx.tbd_count));
  677. if (tcb_bytes > 2600) {
  678. logout("TCB byte count too large, using 2600\n");
  679. tcb_bytes = 2600;
  680. }
  681. if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) {
  682. logout
  683. ("illegal values of TBD array address and TCB byte count!\n");
  684. }
  685. assert(tcb_bytes <= sizeof(buf));
  686. while (size < tcb_bytes) {
  687. uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev, tbd_address);
  688. uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev, tbd_address + 4);
  689. #if 0
  690. uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev, tbd_address + 6);
  691. #endif
  692. tbd_address += 8;
  693. TRACE(RXTX, logout
  694. ("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n",
  695. tx_buffer_address, tx_buffer_size));
  696. tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
  697. pci_dma_read(&s->dev, tx_buffer_address, &buf[size], tx_buffer_size);
  698. size += tx_buffer_size;
  699. }
  700. if (tbd_array == 0xffffffff) {
  701. /* Simplified mode. Was already handled by code above. */
  702. } else {
  703. /* Flexible mode. */
  704. uint8_t tbd_count = 0;
  705. if (s->has_extended_tcb_support && !(s->configuration[6] & BIT(4))) {
  706. /* Extended Flexible TCB. */
  707. for (; tbd_count < 2; tbd_count++) {
  708. uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev,
  709. tbd_address);
  710. uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev,
  711. tbd_address + 4);
  712. uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev,
  713. tbd_address + 6);
  714. tbd_address += 8;
  715. TRACE(RXTX, logout
  716. ("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n",
  717. tx_buffer_address, tx_buffer_size));
  718. tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
  719. pci_dma_read(&s->dev, tx_buffer_address,
  720. &buf[size], tx_buffer_size);
  721. size += tx_buffer_size;
  722. if (tx_buffer_el & 1) {
  723. break;
  724. }
  725. }
  726. }
  727. tbd_address = tbd_array;
  728. for (; tbd_count < s->tx.tbd_count; tbd_count++) {
  729. uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev, tbd_address);
  730. uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev, tbd_address + 4);
  731. uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev, tbd_address + 6);
  732. tbd_address += 8;
  733. TRACE(RXTX, logout
  734. ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n",
  735. tx_buffer_address, tx_buffer_size));
  736. tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
  737. pci_dma_read(&s->dev, tx_buffer_address,
  738. &buf[size], tx_buffer_size);
  739. size += tx_buffer_size;
  740. if (tx_buffer_el & 1) {
  741. break;
  742. }
  743. }
  744. }
  745. TRACE(RXTX, logout("%p sending frame, len=%d,%s\n", s, size, nic_dump(buf, size)));
  746. qemu_send_packet(qemu_get_queue(s->nic), buf, size);
  747. s->statistics.tx_good_frames++;
  748. /* Transmit with bad status would raise an CX/TNO interrupt.
  749. * (82557 only). Emulation never has bad status. */
  750. #if 0
  751. eepro100_cx_interrupt(s);
  752. #endif
  753. }
  754. static void set_multicast_list(EEPRO100State *s)
  755. {
  756. uint16_t multicast_count = s->tx.tbd_array_addr & BITS(13, 0);
  757. uint16_t i;
  758. memset(&s->mult[0], 0, sizeof(s->mult));
  759. TRACE(OTHER, logout("multicast list, multicast count = %u\n", multicast_count));
  760. for (i = 0; i < multicast_count; i += 6) {
  761. uint8_t multicast_addr[6];
  762. pci_dma_read(&s->dev, s->cb_address + 10 + i, multicast_addr, 6);
  763. TRACE(OTHER, logout("multicast entry %s\n", nic_dump(multicast_addr, 6)));
  764. unsigned mcast_idx = e100_compute_mcast_idx(multicast_addr);
  765. assert(mcast_idx < 64);
  766. s->mult[mcast_idx >> 3] |= (1 << (mcast_idx & 7));
  767. }
  768. }
  769. static void action_command(EEPRO100State *s)
  770. {
  771. for (;;) {
  772. bool bit_el;
  773. bool bit_s;
  774. bool bit_i;
  775. bool bit_nc;
  776. uint16_t ok_status = STATUS_OK;
  777. s->cb_address = s->cu_base + s->cu_offset;
  778. read_cb(s);
  779. bit_el = ((s->tx.command & COMMAND_EL) != 0);
  780. bit_s = ((s->tx.command & COMMAND_S) != 0);
  781. bit_i = ((s->tx.command & COMMAND_I) != 0);
  782. bit_nc = ((s->tx.command & COMMAND_NC) != 0);
  783. #if 0
  784. bool bit_sf = ((s->tx.command & COMMAND_SF) != 0);
  785. #endif
  786. s->cu_offset = s->tx.link;
  787. TRACE(OTHER,
  788. logout("val=(cu start), status=0x%04x, command=0x%04x, link=0x%08x\n",
  789. s->tx.status, s->tx.command, s->tx.link));
  790. switch (s->tx.command & COMMAND_CMD) {
  791. case CmdNOp:
  792. /* Do nothing. */
  793. break;
  794. case CmdIASetup:
  795. pci_dma_read(&s->dev, s->cb_address + 8, &s->conf.macaddr.a[0], 6);
  796. TRACE(OTHER, logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6)));
  797. break;
  798. case CmdConfigure:
  799. pci_dma_read(&s->dev, s->cb_address + 8,
  800. &s->configuration[0], sizeof(s->configuration));
  801. TRACE(OTHER, logout("configuration: %s\n",
  802. nic_dump(&s->configuration[0], 16)));
  803. TRACE(OTHER, logout("configuration: %s\n",
  804. nic_dump(&s->configuration[16],
  805. ARRAY_SIZE(s->configuration) - 16)));
  806. if (s->configuration[20] & BIT(6)) {
  807. TRACE(OTHER, logout("Multiple IA bit\n"));
  808. }
  809. break;
  810. case CmdMulticastList:
  811. set_multicast_list(s);
  812. break;
  813. case CmdTx:
  814. if (bit_nc) {
  815. missing("CmdTx: NC = 0");
  816. ok_status = 0;
  817. break;
  818. }
  819. tx_command(s);
  820. break;
  821. case CmdTDR:
  822. TRACE(OTHER, logout("load microcode\n"));
  823. /* Starting with offset 8, the command contains
  824. * 64 dwords microcode which we just ignore here. */
  825. break;
  826. case CmdDiagnose:
  827. TRACE(OTHER, logout("diagnose\n"));
  828. /* Make sure error flag is not set. */
  829. s->tx.status = 0;
  830. break;
  831. default:
  832. missing("undefined command");
  833. ok_status = 0;
  834. break;
  835. }
  836. /* Write new status. */
  837. stw_le_pci_dma(&s->dev, s->cb_address,
  838. s->tx.status | ok_status | STATUS_C);
  839. if (bit_i) {
  840. /* CU completed action. */
  841. eepro100_cx_interrupt(s);
  842. }
  843. if (bit_el) {
  844. /* CU becomes idle. Terminate command loop. */
  845. set_cu_state(s, cu_idle);
  846. eepro100_cna_interrupt(s);
  847. break;
  848. } else if (bit_s) {
  849. /* CU becomes suspended. Terminate command loop. */
  850. set_cu_state(s, cu_suspended);
  851. eepro100_cna_interrupt(s);
  852. break;
  853. } else {
  854. /* More entries in list. */
  855. TRACE(OTHER, logout("CU list with at least one more entry\n"));
  856. }
  857. }
  858. TRACE(OTHER, logout("CU list empty\n"));
  859. /* List is empty. Now CU is idle or suspended. */
  860. }
  861. static void eepro100_cu_command(EEPRO100State * s, uint8_t val)
  862. {
  863. cu_state_t cu_state;
  864. switch (val) {
  865. case CU_NOP:
  866. /* No operation. */
  867. break;
  868. case CU_START:
  869. cu_state = get_cu_state(s);
  870. if (cu_state != cu_idle && cu_state != cu_suspended) {
  871. /* Intel documentation says that CU must be idle or suspended
  872. * for the CU start command. */
  873. logout("unexpected CU state is %u\n", cu_state);
  874. }
  875. set_cu_state(s, cu_active);
  876. s->cu_offset = e100_read_reg4(s, SCBPointer);
  877. action_command(s);
  878. break;
  879. case CU_RESUME:
  880. if (get_cu_state(s) != cu_suspended) {
  881. logout("bad CU resume from CU state %u\n", get_cu_state(s));
  882. /* Workaround for bad Linux eepro100 driver which resumes
  883. * from idle state. */
  884. #if 0
  885. missing("cu resume");
  886. #endif
  887. set_cu_state(s, cu_suspended);
  888. }
  889. if (get_cu_state(s) == cu_suspended) {
  890. TRACE(OTHER, logout("CU resuming\n"));
  891. set_cu_state(s, cu_active);
  892. action_command(s);
  893. }
  894. break;
  895. case CU_STATSADDR:
  896. /* Load dump counters address. */
  897. s->statsaddr = e100_read_reg4(s, SCBPointer);
  898. TRACE(OTHER, logout("val=0x%02x (dump counters address)\n", val));
  899. if (s->statsaddr & 3) {
  900. /* Memory must be Dword aligned. */
  901. logout("unaligned dump counters address\n");
  902. /* Handling of misaligned addresses is undefined.
  903. * Here we align the address by ignoring the lower bits. */
  904. /* TODO: Test unaligned dump counter address on real hardware. */
  905. s->statsaddr &= ~3;
  906. }
  907. break;
  908. case CU_SHOWSTATS:
  909. /* Dump statistical counters. */
  910. TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val));
  911. dump_statistics(s);
  912. stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa005);
  913. break;
  914. case CU_CMD_BASE:
  915. /* Load CU base. */
  916. TRACE(OTHER, logout("val=0x%02x (CU base address)\n", val));
  917. s->cu_base = e100_read_reg4(s, SCBPointer);
  918. break;
  919. case CU_DUMPSTATS:
  920. /* Dump and reset statistical counters. */
  921. TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val));
  922. dump_statistics(s);
  923. stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa007);
  924. memset(&s->statistics, 0, sizeof(s->statistics));
  925. break;
  926. case CU_SRESUME:
  927. /* CU static resume. */
  928. missing("CU static resume");
  929. break;
  930. default:
  931. missing("Undefined CU command");
  932. }
  933. }
  934. static void eepro100_ru_command(EEPRO100State * s, uint8_t val)
  935. {
  936. switch (val) {
  937. case RU_NOP:
  938. /* No operation. */
  939. break;
  940. case RX_START:
  941. /* RU start. */
  942. if (get_ru_state(s) != ru_idle) {
  943. logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle);
  944. #if 0
  945. assert(!"wrong RU state");
  946. #endif
  947. }
  948. set_ru_state(s, ru_ready);
  949. s->ru_offset = e100_read_reg4(s, SCBPointer);
  950. qemu_flush_queued_packets(qemu_get_queue(s->nic));
  951. TRACE(OTHER, logout("val=0x%02x (rx start)\n", val));
  952. break;
  953. case RX_RESUME:
  954. /* Restart RU. */
  955. if (get_ru_state(s) != ru_suspended) {
  956. logout("RU state is %u, should be %u\n", get_ru_state(s),
  957. ru_suspended);
  958. #if 0
  959. assert(!"wrong RU state");
  960. #endif
  961. }
  962. set_ru_state(s, ru_ready);
  963. break;
  964. case RU_ABORT:
  965. /* RU abort. */
  966. if (get_ru_state(s) == ru_ready) {
  967. eepro100_rnr_interrupt(s);
  968. }
  969. set_ru_state(s, ru_idle);
  970. break;
  971. case RX_ADDR_LOAD:
  972. /* Load RU base. */
  973. TRACE(OTHER, logout("val=0x%02x (RU base address)\n", val));
  974. s->ru_base = e100_read_reg4(s, SCBPointer);
  975. break;
  976. default:
  977. logout("val=0x%02x (undefined RU command)\n", val);
  978. missing("Undefined SU command");
  979. }
  980. }
  981. static void eepro100_write_command(EEPRO100State * s, uint8_t val)
  982. {
  983. eepro100_ru_command(s, val & 0x0f);
  984. eepro100_cu_command(s, val & 0xf0);
  985. if ((val) == 0) {
  986. TRACE(OTHER, logout("val=0x%02x\n", val));
  987. }
  988. /* Clear command byte after command was accepted. */
  989. s->mem[SCBCmd] = 0;
  990. }
  991. /*****************************************************************************
  992. *
  993. * EEPROM emulation.
  994. *
  995. ****************************************************************************/
  996. #define EEPROM_CS 0x02
  997. #define EEPROM_SK 0x01
  998. #define EEPROM_DI 0x04
  999. #define EEPROM_DO 0x08
  1000. static uint16_t eepro100_read_eeprom(EEPRO100State * s)
  1001. {
  1002. uint16_t val = e100_read_reg2(s, SCBeeprom);
  1003. if (eeprom93xx_read(s->eeprom)) {
  1004. val |= EEPROM_DO;
  1005. } else {
  1006. val &= ~EEPROM_DO;
  1007. }
  1008. TRACE(EEPROM, logout("val=0x%04x\n", val));
  1009. return val;
  1010. }
  1011. static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val)
  1012. {
  1013. TRACE(EEPROM, logout("val=0x%02x\n", val));
  1014. /* mask unwritable bits */
  1015. #if 0
  1016. val = SET_MASKED(val, 0x31, eeprom->value);
  1017. #endif
  1018. int eecs = ((val & EEPROM_CS) != 0);
  1019. int eesk = ((val & EEPROM_SK) != 0);
  1020. int eedi = ((val & EEPROM_DI) != 0);
  1021. eeprom93xx_write(eeprom, eecs, eesk, eedi);
  1022. }
  1023. /*****************************************************************************
  1024. *
  1025. * MDI emulation.
  1026. *
  1027. ****************************************************************************/
  1028. #if defined(DEBUG_EEPRO100)
  1029. static const char * const mdi_op_name[] = {
  1030. "opcode 0",
  1031. "write",
  1032. "read",
  1033. "opcode 3"
  1034. };
  1035. static const char * const mdi_reg_name[] = {
  1036. "Control",
  1037. "Status",
  1038. "PHY Identification (Word 1)",
  1039. "PHY Identification (Word 2)",
  1040. "Auto-Negotiation Advertisement",
  1041. "Auto-Negotiation Link Partner Ability",
  1042. "Auto-Negotiation Expansion"
  1043. };
  1044. static const char *reg2name(uint8_t reg)
  1045. {
  1046. static char buffer[10];
  1047. const char *p = buffer;
  1048. if (reg < ARRAY_SIZE(mdi_reg_name)) {
  1049. p = mdi_reg_name[reg];
  1050. } else {
  1051. snprintf(buffer, sizeof(buffer), "reg=0x%02x", reg);
  1052. }
  1053. return p;
  1054. }
  1055. #endif /* DEBUG_EEPRO100 */
  1056. static uint32_t eepro100_read_mdi(EEPRO100State * s)
  1057. {
  1058. uint32_t val = e100_read_reg4(s, SCBCtrlMDI);
  1059. #ifdef DEBUG_EEPRO100
  1060. uint8_t raiseint = (val & BIT(29)) >> 29;
  1061. uint8_t opcode = (val & BITS(27, 26)) >> 26;
  1062. uint8_t phy = (val & BITS(25, 21)) >> 21;
  1063. uint8_t reg = (val & BITS(20, 16)) >> 16;
  1064. uint16_t data = (val & BITS(15, 0));
  1065. #endif
  1066. /* Emulation takes no time to finish MDI transaction. */
  1067. val |= BIT(28);
  1068. TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
  1069. val, raiseint, mdi_op_name[opcode], phy,
  1070. reg2name(reg), data));
  1071. return val;
  1072. }
  1073. static void eepro100_write_mdi(EEPRO100State *s)
  1074. {
  1075. uint32_t val = e100_read_reg4(s, SCBCtrlMDI);
  1076. uint8_t raiseint = (val & BIT(29)) >> 29;
  1077. uint8_t opcode = (val & BITS(27, 26)) >> 26;
  1078. uint8_t phy = (val & BITS(25, 21)) >> 21;
  1079. uint8_t reg = (val & BITS(20, 16)) >> 16;
  1080. uint16_t data = (val & BITS(15, 0));
  1081. TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
  1082. val, raiseint, mdi_op_name[opcode], phy, reg2name(reg), data));
  1083. if (phy != 1) {
  1084. /* Unsupported PHY address. */
  1085. #if 0
  1086. logout("phy must be 1 but is %u\n", phy);
  1087. #endif
  1088. data = 0;
  1089. } else if (opcode != 1 && opcode != 2) {
  1090. /* Unsupported opcode. */
  1091. logout("opcode must be 1 or 2 but is %u\n", opcode);
  1092. data = 0;
  1093. } else if (reg > 6) {
  1094. /* Unsupported register. */
  1095. logout("register must be 0...6 but is %u\n", reg);
  1096. data = 0;
  1097. } else {
  1098. TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
  1099. val, raiseint, mdi_op_name[opcode], phy,
  1100. reg2name(reg), data));
  1101. if (opcode == 1) {
  1102. /* MDI write */
  1103. switch (reg) {
  1104. case 0: /* Control Register */
  1105. if (data & 0x8000) {
  1106. /* Reset status and control registers to default. */
  1107. s->mdimem[0] = eepro100_mdi_default[0];
  1108. s->mdimem[1] = eepro100_mdi_default[1];
  1109. data = s->mdimem[reg];
  1110. } else {
  1111. /* Restart Auto Configuration = Normal Operation */
  1112. data &= ~0x0200;
  1113. }
  1114. break;
  1115. case 1: /* Status Register */
  1116. missing("not writable");
  1117. data = s->mdimem[reg];
  1118. break;
  1119. case 2: /* PHY Identification Register (Word 1) */
  1120. case 3: /* PHY Identification Register (Word 2) */
  1121. missing("not implemented");
  1122. break;
  1123. case 4: /* Auto-Negotiation Advertisement Register */
  1124. case 5: /* Auto-Negotiation Link Partner Ability Register */
  1125. break;
  1126. case 6: /* Auto-Negotiation Expansion Register */
  1127. default:
  1128. missing("not implemented");
  1129. }
  1130. s->mdimem[reg] = data;
  1131. } else if (opcode == 2) {
  1132. /* MDI read */
  1133. switch (reg) {
  1134. case 0: /* Control Register */
  1135. if (data & 0x8000) {
  1136. /* Reset status and control registers to default. */
  1137. s->mdimem[0] = eepro100_mdi_default[0];
  1138. s->mdimem[1] = eepro100_mdi_default[1];
  1139. }
  1140. break;
  1141. case 1: /* Status Register */
  1142. s->mdimem[reg] |= 0x0020;
  1143. break;
  1144. case 2: /* PHY Identification Register (Word 1) */
  1145. case 3: /* PHY Identification Register (Word 2) */
  1146. case 4: /* Auto-Negotiation Advertisement Register */
  1147. break;
  1148. case 5: /* Auto-Negotiation Link Partner Ability Register */
  1149. s->mdimem[reg] = 0x41fe;
  1150. break;
  1151. case 6: /* Auto-Negotiation Expansion Register */
  1152. s->mdimem[reg] = 0x0001;
  1153. break;
  1154. }
  1155. data = s->mdimem[reg];
  1156. }
  1157. /* Emulation takes no time to finish MDI transaction.
  1158. * Set MDI bit in SCB status register. */
  1159. s->mem[SCBAck] |= 0x08;
  1160. val |= BIT(28);
  1161. if (raiseint) {
  1162. eepro100_mdi_interrupt(s);
  1163. }
  1164. }
  1165. val = (val & 0xffff0000) + data;
  1166. e100_write_reg4(s, SCBCtrlMDI, val);
  1167. }
  1168. /*****************************************************************************
  1169. *
  1170. * Port emulation.
  1171. *
  1172. ****************************************************************************/
  1173. #define PORT_SOFTWARE_RESET 0
  1174. #define PORT_SELFTEST 1
  1175. #define PORT_SELECTIVE_RESET 2
  1176. #define PORT_DUMP 3
  1177. #define PORT_SELECTION_MASK 3
  1178. typedef struct {
  1179. uint32_t st_sign; /* Self Test Signature */
  1180. uint32_t st_result; /* Self Test Results */
  1181. } eepro100_selftest_t;
  1182. static uint32_t eepro100_read_port(EEPRO100State * s)
  1183. {
  1184. return 0;
  1185. }
  1186. static void eepro100_write_port(EEPRO100State *s)
  1187. {
  1188. uint32_t val = e100_read_reg4(s, SCBPort);
  1189. uint32_t address = (val & ~PORT_SELECTION_MASK);
  1190. uint8_t selection = (val & PORT_SELECTION_MASK);
  1191. switch (selection) {
  1192. case PORT_SOFTWARE_RESET:
  1193. nic_reset(s);
  1194. break;
  1195. case PORT_SELFTEST:
  1196. TRACE(OTHER, logout("selftest address=0x%08x\n", address));
  1197. eepro100_selftest_t data;
  1198. pci_dma_read(&s->dev, address, (uint8_t *) &data, sizeof(data));
  1199. data.st_sign = 0xffffffff;
  1200. data.st_result = 0;
  1201. pci_dma_write(&s->dev, address, (uint8_t *) &data, sizeof(data));
  1202. break;
  1203. case PORT_SELECTIVE_RESET:
  1204. TRACE(OTHER, logout("selective reset, selftest address=0x%08x\n", address));
  1205. nic_selective_reset(s);
  1206. break;
  1207. default:
  1208. logout("val=0x%08x\n", val);
  1209. missing("unknown port selection");
  1210. }
  1211. }
  1212. /*****************************************************************************
  1213. *
  1214. * General hardware emulation.
  1215. *
  1216. ****************************************************************************/
  1217. static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr)
  1218. {
  1219. uint8_t val = 0;
  1220. if (addr <= sizeof(s->mem) - sizeof(val)) {
  1221. val = s->mem[addr];
  1222. }
  1223. switch (addr) {
  1224. case SCBStatus:
  1225. case SCBAck:
  1226. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1227. break;
  1228. case SCBCmd:
  1229. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1230. #if 0
  1231. val = eepro100_read_command(s);
  1232. #endif
  1233. break;
  1234. case SCBIntmask:
  1235. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1236. break;
  1237. case SCBPort + 3:
  1238. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1239. break;
  1240. case SCBeeprom:
  1241. val = eepro100_read_eeprom(s);
  1242. break;
  1243. case SCBCtrlMDI:
  1244. case SCBCtrlMDI + 1:
  1245. case SCBCtrlMDI + 2:
  1246. case SCBCtrlMDI + 3:
  1247. val = (uint8_t)(eepro100_read_mdi(s) >> (8 * (addr & 3)));
  1248. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1249. break;
  1250. case SCBpmdr: /* Power Management Driver Register */
  1251. val = 0;
  1252. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1253. break;
  1254. case SCBgctrl: /* General Control Register */
  1255. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1256. break;
  1257. case SCBgstat: /* General Status Register */
  1258. /* 100 Mbps full duplex, valid link */
  1259. val = 0x07;
  1260. TRACE(OTHER, logout("addr=General Status val=%02x\n", val));
  1261. break;
  1262. default:
  1263. logout("addr=%s val=0x%02x\n", regname(addr), val);
  1264. missing("unknown byte read");
  1265. }
  1266. return val;
  1267. }
  1268. static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr)
  1269. {
  1270. uint16_t val = 0;
  1271. if (addr <= sizeof(s->mem) - sizeof(val)) {
  1272. val = e100_read_reg2(s, addr);
  1273. }
  1274. switch (addr) {
  1275. case SCBStatus:
  1276. case SCBCmd:
  1277. TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
  1278. break;
  1279. case SCBeeprom:
  1280. val = eepro100_read_eeprom(s);
  1281. TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
  1282. break;
  1283. case SCBCtrlMDI:
  1284. case SCBCtrlMDI + 2:
  1285. val = (uint16_t)(eepro100_read_mdi(s) >> (8 * (addr & 3)));
  1286. TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
  1287. break;
  1288. default:
  1289. logout("addr=%s val=0x%04x\n", regname(addr), val);
  1290. missing("unknown word read");
  1291. }
  1292. return val;
  1293. }
  1294. static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr)
  1295. {
  1296. uint32_t val = 0;
  1297. if (addr <= sizeof(s->mem) - sizeof(val)) {
  1298. val = e100_read_reg4(s, addr);
  1299. }
  1300. switch (addr) {
  1301. case SCBStatus:
  1302. TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
  1303. break;
  1304. case SCBPointer:
  1305. TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
  1306. break;
  1307. case SCBPort:
  1308. val = eepro100_read_port(s);
  1309. TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
  1310. break;
  1311. case SCBflash:
  1312. val = eepro100_read_eeprom(s);
  1313. TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
  1314. break;
  1315. case SCBCtrlMDI:
  1316. val = eepro100_read_mdi(s);
  1317. break;
  1318. default:
  1319. logout("addr=%s val=0x%08x\n", regname(addr), val);
  1320. missing("unknown longword read");
  1321. }
  1322. return val;
  1323. }
  1324. static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val)
  1325. {
  1326. /* SCBStatus is readonly. */
  1327. if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) {
  1328. s->mem[addr] = val;
  1329. }
  1330. switch (addr) {
  1331. case SCBStatus:
  1332. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1333. break;
  1334. case SCBAck:
  1335. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1336. eepro100_acknowledge(s);
  1337. break;
  1338. case SCBCmd:
  1339. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1340. eepro100_write_command(s, val);
  1341. break;
  1342. case SCBIntmask:
  1343. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1344. if (val & BIT(1)) {
  1345. eepro100_swi_interrupt(s);
  1346. }
  1347. eepro100_interrupt(s, 0);
  1348. break;
  1349. case SCBPointer:
  1350. case SCBPointer + 1:
  1351. case SCBPointer + 2:
  1352. case SCBPointer + 3:
  1353. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1354. break;
  1355. case SCBPort:
  1356. case SCBPort + 1:
  1357. case SCBPort + 2:
  1358. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1359. break;
  1360. case SCBPort + 3:
  1361. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1362. eepro100_write_port(s);
  1363. break;
  1364. case SCBFlow: /* does not exist on 82557 */
  1365. case SCBFlow + 1:
  1366. case SCBFlow + 2:
  1367. case SCBpmdr: /* does not exist on 82557 */
  1368. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1369. break;
  1370. case SCBeeprom:
  1371. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1372. eepro100_write_eeprom(s->eeprom, val);
  1373. break;
  1374. case SCBCtrlMDI:
  1375. case SCBCtrlMDI + 1:
  1376. case SCBCtrlMDI + 2:
  1377. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1378. break;
  1379. case SCBCtrlMDI + 3:
  1380. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1381. eepro100_write_mdi(s);
  1382. break;
  1383. default:
  1384. logout("addr=%s val=0x%02x\n", regname(addr), val);
  1385. missing("unknown byte write");
  1386. }
  1387. }
  1388. static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val)
  1389. {
  1390. /* SCBStatus is readonly. */
  1391. if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) {
  1392. e100_write_reg2(s, addr, val);
  1393. }
  1394. switch (addr) {
  1395. case SCBStatus:
  1396. TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
  1397. s->mem[SCBAck] = (val >> 8);
  1398. eepro100_acknowledge(s);
  1399. break;
  1400. case SCBCmd:
  1401. TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
  1402. eepro100_write_command(s, val);
  1403. eepro100_write1(s, SCBIntmask, val >> 8);
  1404. break;
  1405. case SCBPointer:
  1406. case SCBPointer + 2:
  1407. TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
  1408. break;
  1409. case SCBPort:
  1410. TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
  1411. break;
  1412. case SCBPort + 2:
  1413. TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
  1414. eepro100_write_port(s);
  1415. break;
  1416. case SCBeeprom:
  1417. TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
  1418. eepro100_write_eeprom(s->eeprom, val);
  1419. break;
  1420. case SCBCtrlMDI:
  1421. TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
  1422. break;
  1423. case SCBCtrlMDI + 2:
  1424. TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
  1425. eepro100_write_mdi(s);
  1426. break;
  1427. default:
  1428. logout("addr=%s val=0x%04x\n", regname(addr), val);
  1429. missing("unknown word write");
  1430. }
  1431. }
  1432. static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val)
  1433. {
  1434. if (addr <= sizeof(s->mem) - sizeof(val)) {
  1435. e100_write_reg4(s, addr, val);
  1436. }
  1437. switch (addr) {
  1438. case SCBPointer:
  1439. TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
  1440. break;
  1441. case SCBPort:
  1442. TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
  1443. eepro100_write_port(s);
  1444. break;
  1445. case SCBflash:
  1446. TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
  1447. val = val >> 16;
  1448. eepro100_write_eeprom(s->eeprom, val);
  1449. break;
  1450. case SCBCtrlMDI:
  1451. TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
  1452. eepro100_write_mdi(s);
  1453. break;
  1454. default:
  1455. logout("addr=%s val=0x%08x\n", regname(addr), val);
  1456. missing("unknown longword write");
  1457. }
  1458. }
  1459. static uint64_t eepro100_read(void *opaque, hwaddr addr,
  1460. unsigned size)
  1461. {
  1462. EEPRO100State *s = opaque;
  1463. switch (size) {
  1464. case 1: return eepro100_read1(s, addr);
  1465. case 2: return eepro100_read2(s, addr);
  1466. case 4: return eepro100_read4(s, addr);
  1467. default: abort();
  1468. }
  1469. }
  1470. static void eepro100_write(void *opaque, hwaddr addr,
  1471. uint64_t data, unsigned size)
  1472. {
  1473. EEPRO100State *s = opaque;
  1474. switch (size) {
  1475. case 1:
  1476. eepro100_write1(s, addr, data);
  1477. break;
  1478. case 2:
  1479. eepro100_write2(s, addr, data);
  1480. break;
  1481. case 4:
  1482. eepro100_write4(s, addr, data);
  1483. break;
  1484. default:
  1485. abort();
  1486. }
  1487. }
  1488. static const MemoryRegionOps eepro100_ops = {
  1489. .read = eepro100_read,
  1490. .write = eepro100_write,
  1491. .endianness = DEVICE_LITTLE_ENDIAN,
  1492. };
  1493. static int nic_can_receive(NetClientState *nc)
  1494. {
  1495. EEPRO100State *s = qemu_get_nic_opaque(nc);
  1496. TRACE(RXTX, logout("%p\n", s));
  1497. return get_ru_state(s) == ru_ready;
  1498. #if 0
  1499. return !eepro100_buffer_full(s);
  1500. #endif
  1501. }
  1502. static ssize_t nic_receive(NetClientState *nc, const uint8_t * buf, size_t size)
  1503. {
  1504. /* TODO:
  1505. * - Magic packets should set bit 30 in power management driver register.
  1506. * - Interesting packets should set bit 29 in power management driver register.
  1507. */
  1508. EEPRO100State *s = qemu_get_nic_opaque(nc);
  1509. uint16_t rfd_status = 0xa000;
  1510. #if defined(CONFIG_PAD_RECEIVED_FRAMES)
  1511. uint8_t min_buf[60];
  1512. #endif
  1513. static const uint8_t broadcast_macaddr[6] =
  1514. { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
  1515. #if defined(CONFIG_PAD_RECEIVED_FRAMES)
  1516. /* Pad to minimum Ethernet frame length */
  1517. if (size < sizeof(min_buf)) {
  1518. memcpy(min_buf, buf, size);
  1519. memset(&min_buf[size], 0, sizeof(min_buf) - size);
  1520. buf = min_buf;
  1521. size = sizeof(min_buf);
  1522. }
  1523. #endif
  1524. if (s->configuration[8] & 0x80) {
  1525. /* CSMA is disabled. */
  1526. logout("%p received while CSMA is disabled\n", s);
  1527. return -1;
  1528. #if !defined(CONFIG_PAD_RECEIVED_FRAMES)
  1529. } else if (size < 64 && (s->configuration[7] & BIT(0))) {
  1530. /* Short frame and configuration byte 7/0 (discard short receive) set:
  1531. * Short frame is discarded */
  1532. logout("%p received short frame (%zu byte)\n", s, size);
  1533. s->statistics.rx_short_frame_errors++;
  1534. return -1;
  1535. #endif
  1536. } else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & BIT(3))) {
  1537. /* Long frame and configuration byte 18/3 (long receive ok) not set:
  1538. * Long frames are discarded. */
  1539. logout("%p received long frame (%zu byte), ignored\n", s, size);
  1540. return -1;
  1541. } else if (memcmp(buf, s->conf.macaddr.a, 6) == 0) { /* !!! */
  1542. /* Frame matches individual address. */
  1543. /* TODO: check configuration byte 15/4 (ignore U/L). */
  1544. TRACE(RXTX, logout("%p received frame for me, len=%zu\n", s, size));
  1545. } else if (memcmp(buf, broadcast_macaddr, 6) == 0) {
  1546. /* Broadcast frame. */
  1547. TRACE(RXTX, logout("%p received broadcast, len=%zu\n", s, size));
  1548. rfd_status |= 0x0002;
  1549. } else if (buf[0] & 0x01) {
  1550. /* Multicast frame. */
  1551. TRACE(RXTX, logout("%p received multicast, len=%zu,%s\n", s, size, nic_dump(buf, size)));
  1552. if (s->configuration[21] & BIT(3)) {
  1553. /* Multicast all bit is set, receive all multicast frames. */
  1554. } else {
  1555. unsigned mcast_idx = e100_compute_mcast_idx(buf);
  1556. assert(mcast_idx < 64);
  1557. if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) {
  1558. /* Multicast frame is allowed in hash table. */
  1559. } else if (s->configuration[15] & BIT(0)) {
  1560. /* Promiscuous: receive all. */
  1561. rfd_status |= 0x0004;
  1562. } else {
  1563. TRACE(RXTX, logout("%p multicast ignored\n", s));
  1564. return -1;
  1565. }
  1566. }
  1567. /* TODO: Next not for promiscuous mode? */
  1568. rfd_status |= 0x0002;
  1569. } else if (s->configuration[15] & BIT(0)) {
  1570. /* Promiscuous: receive all. */
  1571. TRACE(RXTX, logout("%p received frame in promiscuous mode, len=%zu\n", s, size));
  1572. rfd_status |= 0x0004;
  1573. } else if (s->configuration[20] & BIT(6)) {
  1574. /* Multiple IA bit set. */
  1575. unsigned mcast_idx = compute_mcast_idx(buf);
  1576. assert(mcast_idx < 64);
  1577. if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) {
  1578. TRACE(RXTX, logout("%p accepted, multiple IA bit set\n", s));
  1579. } else {
  1580. TRACE(RXTX, logout("%p frame ignored, multiple IA bit set\n", s));
  1581. return -1;
  1582. }
  1583. } else {
  1584. TRACE(RXTX, logout("%p received frame, ignored, len=%zu,%s\n", s, size,
  1585. nic_dump(buf, size)));
  1586. return size;
  1587. }
  1588. if (get_ru_state(s) != ru_ready) {
  1589. /* No resources available. */
  1590. logout("no resources, state=%u\n", get_ru_state(s));
  1591. /* TODO: RNR interrupt only at first failed frame? */
  1592. eepro100_rnr_interrupt(s);
  1593. s->statistics.rx_resource_errors++;
  1594. #if 0
  1595. assert(!"no resources");
  1596. #endif
  1597. return -1;
  1598. }
  1599. /* !!! */
  1600. eepro100_rx_t rx;
  1601. pci_dma_read(&s->dev, s->ru_base + s->ru_offset,
  1602. &rx, sizeof(eepro100_rx_t));
  1603. uint16_t rfd_command = le16_to_cpu(rx.command);
  1604. uint16_t rfd_size = le16_to_cpu(rx.size);
  1605. if (size > rfd_size) {
  1606. logout("Receive buffer (%" PRId16 " bytes) too small for data "
  1607. "(%zu bytes); data truncated\n", rfd_size, size);
  1608. size = rfd_size;
  1609. }
  1610. #if !defined(CONFIG_PAD_RECEIVED_FRAMES)
  1611. if (size < 64) {
  1612. rfd_status |= 0x0080;
  1613. }
  1614. #endif
  1615. TRACE(OTHER, logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n",
  1616. rfd_command, rx.link, rx.rx_buf_addr, rfd_size));
  1617. stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset +
  1618. offsetof(eepro100_rx_t, status), rfd_status);
  1619. stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset +
  1620. offsetof(eepro100_rx_t, count), size);
  1621. /* Early receive interrupt not supported. */
  1622. #if 0
  1623. eepro100_er_interrupt(s);
  1624. #endif
  1625. /* Receive CRC Transfer not supported. */
  1626. if (s->configuration[18] & BIT(2)) {
  1627. missing("Receive CRC Transfer");
  1628. return -1;
  1629. }
  1630. /* TODO: check stripping enable bit. */
  1631. #if 0
  1632. assert(!(s->configuration[17] & BIT(0)));
  1633. #endif
  1634. pci_dma_write(&s->dev, s->ru_base + s->ru_offset +
  1635. sizeof(eepro100_rx_t), buf, size);
  1636. s->statistics.rx_good_frames++;
  1637. eepro100_fr_interrupt(s);
  1638. s->ru_offset = le32_to_cpu(rx.link);
  1639. if (rfd_command & COMMAND_EL) {
  1640. /* EL bit is set, so this was the last frame. */
  1641. logout("receive: Running out of frames\n");
  1642. set_ru_state(s, ru_no_resources);
  1643. eepro100_rnr_interrupt(s);
  1644. }
  1645. if (rfd_command & COMMAND_S) {
  1646. /* S bit is set. */
  1647. set_ru_state(s, ru_suspended);
  1648. }
  1649. return size;
  1650. }
  1651. static const VMStateDescription vmstate_eepro100 = {
  1652. .version_id = 3,
  1653. .minimum_version_id = 2,
  1654. .minimum_version_id_old = 2,
  1655. .fields = (VMStateField []) {
  1656. VMSTATE_PCI_DEVICE(dev, EEPRO100State),
  1657. VMSTATE_UNUSED(32),
  1658. VMSTATE_BUFFER(mult, EEPRO100State),
  1659. VMSTATE_BUFFER(mem, EEPRO100State),
  1660. /* Save all members of struct between scb_stat and mem. */
  1661. VMSTATE_UINT8(scb_stat, EEPRO100State),
  1662. VMSTATE_UINT8(int_stat, EEPRO100State),
  1663. VMSTATE_UNUSED(3*4),
  1664. VMSTATE_MACADDR(conf.macaddr, EEPRO100State),
  1665. VMSTATE_UNUSED(19*4),
  1666. VMSTATE_UINT16_ARRAY(mdimem, EEPRO100State, 32),
  1667. /* The eeprom should be saved and restored by its own routines. */
  1668. VMSTATE_UINT32(device, EEPRO100State),
  1669. /* TODO check device. */
  1670. VMSTATE_UINT32(cu_base, EEPRO100State),
  1671. VMSTATE_UINT32(cu_offset, EEPRO100State),
  1672. VMSTATE_UINT32(ru_base, EEPRO100State),
  1673. VMSTATE_UINT32(ru_offset, EEPRO100State),
  1674. VMSTATE_UINT32(statsaddr, EEPRO100State),
  1675. /* Save eepro100_stats_t statistics. */
  1676. VMSTATE_UINT32(statistics.tx_good_frames, EEPRO100State),
  1677. VMSTATE_UINT32(statistics.tx_max_collisions, EEPRO100State),
  1678. VMSTATE_UINT32(statistics.tx_late_collisions, EEPRO100State),
  1679. VMSTATE_UINT32(statistics.tx_underruns, EEPRO100State),
  1680. VMSTATE_UINT32(statistics.tx_lost_crs, EEPRO100State),
  1681. VMSTATE_UINT32(statistics.tx_deferred, EEPRO100State),
  1682. VMSTATE_UINT32(statistics.tx_single_collisions, EEPRO100State),
  1683. VMSTATE_UINT32(statistics.tx_multiple_collisions, EEPRO100State),
  1684. VMSTATE_UINT32(statistics.tx_total_collisions, EEPRO100State),
  1685. VMSTATE_UINT32(statistics.rx_good_frames, EEPRO100State),
  1686. VMSTATE_UINT32(statistics.rx_crc_errors, EEPRO100State),
  1687. VMSTATE_UINT32(statistics.rx_alignment_errors, EEPRO100State),
  1688. VMSTATE_UINT32(statistics.rx_resource_errors, EEPRO100State),
  1689. VMSTATE_UINT32(statistics.rx_overrun_errors, EEPRO100State),
  1690. VMSTATE_UINT32(statistics.rx_cdt_errors, EEPRO100State),
  1691. VMSTATE_UINT32(statistics.rx_short_frame_errors, EEPRO100State),
  1692. VMSTATE_UINT32(statistics.fc_xmt_pause, EEPRO100State),
  1693. VMSTATE_UINT32(statistics.fc_rcv_pause, EEPRO100State),
  1694. VMSTATE_UINT32(statistics.fc_rcv_unsupported, EEPRO100State),
  1695. VMSTATE_UINT16(statistics.xmt_tco_frames, EEPRO100State),
  1696. VMSTATE_UINT16(statistics.rcv_tco_frames, EEPRO100State),
  1697. /* Configuration bytes. */
  1698. VMSTATE_BUFFER(configuration, EEPRO100State),
  1699. VMSTATE_END_OF_LIST()
  1700. }
  1701. };
  1702. static void nic_cleanup(NetClientState *nc)
  1703. {
  1704. EEPRO100State *s = qemu_get_nic_opaque(nc);
  1705. s->nic = NULL;
  1706. }
  1707. static void pci_nic_uninit(PCIDevice *pci_dev)
  1708. {
  1709. EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
  1710. memory_region_destroy(&s->mmio_bar);
  1711. memory_region_destroy(&s->io_bar);
  1712. memory_region_destroy(&s->flash_bar);
  1713. vmstate_unregister(&pci_dev->qdev, s->vmstate, s);
  1714. eeprom93xx_free(&pci_dev->qdev, s->eeprom);
  1715. qemu_del_nic(s->nic);
  1716. }
  1717. static NetClientInfo net_eepro100_info = {
  1718. .type = NET_CLIENT_OPTIONS_KIND_NIC,
  1719. .size = sizeof(NICState),
  1720. .can_receive = nic_can_receive,
  1721. .receive = nic_receive,
  1722. .cleanup = nic_cleanup,
  1723. };
  1724. static int e100_nic_init(PCIDevice *pci_dev)
  1725. {
  1726. EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
  1727. E100PCIDeviceInfo *info = eepro100_get_class(s);
  1728. TRACE(OTHER, logout("\n"));
  1729. s->device = info->device;
  1730. e100_pci_reset(s);
  1731. /* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM,
  1732. * i82559 and later support 64 or 256 word EEPROM. */
  1733. s->eeprom = eeprom93xx_new(&pci_dev->qdev, EEPROM_SIZE);
  1734. /* Handler for memory-mapped I/O */
  1735. memory_region_init_io(&s->mmio_bar, OBJECT(s), &eepro100_ops, s,
  1736. "eepro100-mmio", PCI_MEM_SIZE);
  1737. pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_MEM_PREFETCH, &s->mmio_bar);
  1738. memory_region_init_io(&s->io_bar, OBJECT(s), &eepro100_ops, s,
  1739. "eepro100-io", PCI_IO_SIZE);
  1740. pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->io_bar);
  1741. /* FIXME: flash aliases to mmio?! */
  1742. memory_region_init_io(&s->flash_bar, OBJECT(s), &eepro100_ops, s,
  1743. "eepro100-flash", PCI_FLASH_SIZE);
  1744. pci_register_bar(&s->dev, 2, 0, &s->flash_bar);
  1745. qemu_macaddr_default_if_unset(&s->conf.macaddr);
  1746. logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6));
  1747. nic_reset(s);
  1748. s->nic = qemu_new_nic(&net_eepro100_info, &s->conf,
  1749. object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
  1750. qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
  1751. TRACE(OTHER, logout("%s\n", qemu_get_queue(s->nic)->info_str));
  1752. qemu_register_reset(nic_reset, s);
  1753. s->vmstate = g_malloc(sizeof(vmstate_eepro100));
  1754. memcpy(s->vmstate, &vmstate_eepro100, sizeof(vmstate_eepro100));
  1755. s->vmstate->name = qemu_get_queue(s->nic)->model;
  1756. vmstate_register(&pci_dev->qdev, -1, s->vmstate, s);
  1757. add_boot_device_path(s->conf.bootindex, &pci_dev->qdev, "/ethernet-phy@0");
  1758. return 0;
  1759. }
  1760. static E100PCIDeviceInfo e100_devices[] = {
  1761. {
  1762. .name = "i82550",
  1763. .desc = "Intel i82550 Ethernet",
  1764. .device = i82550,
  1765. /* TODO: check device id. */
  1766. .device_id = PCI_DEVICE_ID_INTEL_82551IT,
  1767. /* Revision ID: 0x0c, 0x0d, 0x0e. */
  1768. .revision = 0x0e,
  1769. /* TODO: check size of statistical counters. */
  1770. .stats_size = 80,
  1771. /* TODO: check extended tcb support. */
  1772. .has_extended_tcb_support = true,
  1773. .power_management = true,
  1774. },{
  1775. .name = "i82551",
  1776. .desc = "Intel i82551 Ethernet",
  1777. .device = i82551,
  1778. .device_id = PCI_DEVICE_ID_INTEL_82551IT,
  1779. /* Revision ID: 0x0f, 0x10. */
  1780. .revision = 0x0f,
  1781. /* TODO: check size of statistical counters. */
  1782. .stats_size = 80,
  1783. .has_extended_tcb_support = true,
  1784. .power_management = true,
  1785. },{
  1786. .name = "i82557a",
  1787. .desc = "Intel i82557A Ethernet",
  1788. .device = i82557A,
  1789. .device_id = PCI_DEVICE_ID_INTEL_82557,
  1790. .revision = 0x01,
  1791. .power_management = false,
  1792. },{
  1793. .name = "i82557b",
  1794. .desc = "Intel i82557B Ethernet",
  1795. .device = i82557B,
  1796. .device_id = PCI_DEVICE_ID_INTEL_82557,
  1797. .revision = 0x02,
  1798. .power_management = false,
  1799. },{
  1800. .name = "i82557c",
  1801. .desc = "Intel i82557C Ethernet",
  1802. .device = i82557C,
  1803. .device_id = PCI_DEVICE_ID_INTEL_82557,
  1804. .revision = 0x03,
  1805. .power_management = false,
  1806. },{
  1807. .name = "i82558a",
  1808. .desc = "Intel i82558A Ethernet",
  1809. .device = i82558A,
  1810. .device_id = PCI_DEVICE_ID_INTEL_82557,
  1811. .revision = 0x04,
  1812. .stats_size = 76,
  1813. .has_extended_tcb_support = true,
  1814. .power_management = true,
  1815. },{
  1816. .name = "i82558b",
  1817. .desc = "Intel i82558B Ethernet",
  1818. .device = i82558B,
  1819. .device_id = PCI_DEVICE_ID_INTEL_82557,
  1820. .revision = 0x05,
  1821. .stats_size = 76,
  1822. .has_extended_tcb_support = true,
  1823. .power_management = true,
  1824. },{
  1825. .name = "i82559a",
  1826. .desc = "Intel i82559A Ethernet",
  1827. .device = i82559A,
  1828. .device_id = PCI_DEVICE_ID_INTEL_82557,
  1829. .revision = 0x06,
  1830. .stats_size = 80,
  1831. .has_extended_tcb_support = true,
  1832. .power_management = true,
  1833. },{
  1834. .name = "i82559b",
  1835. .desc = "Intel i82559B Ethernet",
  1836. .device = i82559B,
  1837. .device_id = PCI_DEVICE_ID_INTEL_82557,
  1838. .revision = 0x07,
  1839. .stats_size = 80,
  1840. .has_extended_tcb_support = true,
  1841. .power_management = true,
  1842. },{
  1843. .name = "i82559c",
  1844. .desc = "Intel i82559C Ethernet",
  1845. .device = i82559C,
  1846. .device_id = PCI_DEVICE_ID_INTEL_82557,
  1847. #if 0
  1848. .revision = 0x08,
  1849. #endif
  1850. /* TODO: Windows wants revision id 0x0c. */
  1851. .revision = 0x0c,
  1852. #if EEPROM_SIZE > 0
  1853. .subsystem_vendor_id = PCI_VENDOR_ID_INTEL,
  1854. .subsystem_id = 0x0040,
  1855. #endif
  1856. .stats_size = 80,
  1857. .has_extended_tcb_support = true,
  1858. .power_management = true,
  1859. },{
  1860. .name = "i82559er",
  1861. .desc = "Intel i82559ER Ethernet",
  1862. .device = i82559ER,
  1863. .device_id = PCI_DEVICE_ID_INTEL_82551IT,
  1864. .revision = 0x09,
  1865. .stats_size = 80,
  1866. .has_extended_tcb_support = true,
  1867. .power_management = true,
  1868. },{
  1869. .name = "i82562",
  1870. .desc = "Intel i82562 Ethernet",
  1871. .device = i82562,
  1872. /* TODO: check device id. */
  1873. .device_id = PCI_DEVICE_ID_INTEL_82551IT,
  1874. /* TODO: wrong revision id. */
  1875. .revision = 0x0e,
  1876. .stats_size = 80,
  1877. .has_extended_tcb_support = true,
  1878. .power_management = true,
  1879. },{
  1880. /* Toshiba Tecra 8200. */
  1881. .name = "i82801",
  1882. .desc = "Intel i82801 Ethernet",
  1883. .device = i82801,
  1884. .device_id = 0x2449,
  1885. .revision = 0x03,
  1886. .stats_size = 80,
  1887. .has_extended_tcb_support = true,
  1888. .power_management = true,
  1889. }
  1890. };
  1891. static E100PCIDeviceInfo *eepro100_get_class_by_name(const char *typename)
  1892. {
  1893. E100PCIDeviceInfo *info = NULL;
  1894. int i;
  1895. /* This is admittedly awkward but also temporary. QOM allows for
  1896. * parameterized typing and for subclassing both of which would suitable
  1897. * handle what's going on here. But class_data is already being used as
  1898. * a stop-gap hack to allow incremental qdev conversion so we cannot use it
  1899. * right now. Once we merge the final QOM series, we can come back here and
  1900. * do this in a much more elegant fashion.
  1901. */
  1902. for (i = 0; i < ARRAY_SIZE(e100_devices); i++) {
  1903. if (strcmp(e100_devices[i].name, typename) == 0) {
  1904. info = &e100_devices[i];
  1905. break;
  1906. }
  1907. }
  1908. assert(info != NULL);
  1909. return info;
  1910. }
  1911. static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s)
  1912. {
  1913. return eepro100_get_class_by_name(object_get_typename(OBJECT(s)));
  1914. }
  1915. static Property e100_properties[] = {
  1916. DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
  1917. DEFINE_PROP_END_OF_LIST(),
  1918. };
  1919. static void eepro100_class_init(ObjectClass *klass, void *data)
  1920. {
  1921. DeviceClass *dc = DEVICE_CLASS(klass);
  1922. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  1923. E100PCIDeviceInfo *info;
  1924. info = eepro100_get_class_by_name(object_class_get_name(klass));
  1925. set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
  1926. dc->props = e100_properties;
  1927. dc->desc = info->desc;
  1928. k->vendor_id = PCI_VENDOR_ID_INTEL;
  1929. k->class_id = PCI_CLASS_NETWORK_ETHERNET;
  1930. k->romfile = "pxe-eepro100.rom";
  1931. k->init = e100_nic_init;
  1932. k->exit = pci_nic_uninit;
  1933. k->device_id = info->device_id;
  1934. k->revision = info->revision;
  1935. k->subsystem_vendor_id = info->subsystem_vendor_id;
  1936. k->subsystem_id = info->subsystem_id;
  1937. }
  1938. static void eepro100_register_types(void)
  1939. {
  1940. size_t i;
  1941. for (i = 0; i < ARRAY_SIZE(e100_devices); i++) {
  1942. TypeInfo type_info = {};
  1943. E100PCIDeviceInfo *info = &e100_devices[i];
  1944. type_info.name = info->name;
  1945. type_info.parent = TYPE_PCI_DEVICE;
  1946. type_info.class_init = eepro100_class_init;
  1947. type_info.instance_size = sizeof(EEPRO100State);
  1948. type_register(&type_info);
  1949. }
  1950. }
  1951. type_init(eepro100_register_types)