disas.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528
  1. /* General "disassemble this chunk" code. Used for debugging. */
  2. #include "config.h"
  3. #include "disas/bfd.h"
  4. #include "elf.h"
  5. #include <errno.h>
  6. #include "cpu.h"
  7. #include "disas/disas.h"
  8. typedef struct CPUDebug {
  9. struct disassemble_info info;
  10. CPUArchState *env;
  11. } CPUDebug;
  12. /* Filled in by elfload.c. Simplistic, but will do for now. */
  13. struct syminfo *syminfos = NULL;
  14. /* Get LENGTH bytes from info's buffer, at target address memaddr.
  15. Transfer them to myaddr. */
  16. int
  17. buffer_read_memory(bfd_vma memaddr, bfd_byte *myaddr, int length,
  18. struct disassemble_info *info)
  19. {
  20. if (memaddr < info->buffer_vma
  21. || memaddr + length > info->buffer_vma + info->buffer_length)
  22. /* Out of bounds. Use EIO because GDB uses it. */
  23. return EIO;
  24. memcpy (myaddr, info->buffer + (memaddr - info->buffer_vma), length);
  25. return 0;
  26. }
  27. /* Get LENGTH bytes from info's buffer, at target address memaddr.
  28. Transfer them to myaddr. */
  29. static int
  30. target_read_memory (bfd_vma memaddr,
  31. bfd_byte *myaddr,
  32. int length,
  33. struct disassemble_info *info)
  34. {
  35. CPUDebug *s = container_of(info, CPUDebug, info);
  36. cpu_memory_rw_debug(ENV_GET_CPU(s->env), memaddr, myaddr, length, 0);
  37. return 0;
  38. }
  39. /* Print an error message. We can assume that this is in response to
  40. an error return from buffer_read_memory. */
  41. void
  42. perror_memory (int status, bfd_vma memaddr, struct disassemble_info *info)
  43. {
  44. if (status != EIO)
  45. /* Can't happen. */
  46. (*info->fprintf_func) (info->stream, "Unknown error %d\n", status);
  47. else
  48. /* Actually, address between memaddr and memaddr + len was
  49. out of bounds. */
  50. (*info->fprintf_func) (info->stream,
  51. "Address 0x%" PRIx64 " is out of bounds.\n", memaddr);
  52. }
  53. /* This could be in a separate file, to save minuscule amounts of space
  54. in statically linked executables. */
  55. /* Just print the address is hex. This is included for completeness even
  56. though both GDB and objdump provide their own (to print symbolic
  57. addresses). */
  58. void
  59. generic_print_address (bfd_vma addr, struct disassemble_info *info)
  60. {
  61. (*info->fprintf_func) (info->stream, "0x%" PRIx64, addr);
  62. }
  63. /* Print address in hex, truncated to the width of a target virtual address. */
  64. static void
  65. generic_print_target_address(bfd_vma addr, struct disassemble_info *info)
  66. {
  67. uint64_t mask = ~0ULL >> (64 - TARGET_VIRT_ADDR_SPACE_BITS);
  68. generic_print_address(addr & mask, info);
  69. }
  70. /* Print address in hex, truncated to the width of a host virtual address. */
  71. static void
  72. generic_print_host_address(bfd_vma addr, struct disassemble_info *info)
  73. {
  74. uint64_t mask = ~0ULL >> (64 - (sizeof(void *) * 8));
  75. generic_print_address(addr & mask, info);
  76. }
  77. /* Just return the given address. */
  78. int
  79. generic_symbol_at_address (bfd_vma addr, struct disassemble_info *info)
  80. {
  81. return 1;
  82. }
  83. bfd_vma bfd_getl64 (const bfd_byte *addr)
  84. {
  85. unsigned long long v;
  86. v = (unsigned long long) addr[0];
  87. v |= (unsigned long long) addr[1] << 8;
  88. v |= (unsigned long long) addr[2] << 16;
  89. v |= (unsigned long long) addr[3] << 24;
  90. v |= (unsigned long long) addr[4] << 32;
  91. v |= (unsigned long long) addr[5] << 40;
  92. v |= (unsigned long long) addr[6] << 48;
  93. v |= (unsigned long long) addr[7] << 56;
  94. return (bfd_vma) v;
  95. }
  96. bfd_vma bfd_getl32 (const bfd_byte *addr)
  97. {
  98. unsigned long v;
  99. v = (unsigned long) addr[0];
  100. v |= (unsigned long) addr[1] << 8;
  101. v |= (unsigned long) addr[2] << 16;
  102. v |= (unsigned long) addr[3] << 24;
  103. return (bfd_vma) v;
  104. }
  105. bfd_vma bfd_getb32 (const bfd_byte *addr)
  106. {
  107. unsigned long v;
  108. v = (unsigned long) addr[0] << 24;
  109. v |= (unsigned long) addr[1] << 16;
  110. v |= (unsigned long) addr[2] << 8;
  111. v |= (unsigned long) addr[3];
  112. return (bfd_vma) v;
  113. }
  114. bfd_vma bfd_getl16 (const bfd_byte *addr)
  115. {
  116. unsigned long v;
  117. v = (unsigned long) addr[0];
  118. v |= (unsigned long) addr[1] << 8;
  119. return (bfd_vma) v;
  120. }
  121. bfd_vma bfd_getb16 (const bfd_byte *addr)
  122. {
  123. unsigned long v;
  124. v = (unsigned long) addr[0] << 24;
  125. v |= (unsigned long) addr[1] << 16;
  126. return (bfd_vma) v;
  127. }
  128. #ifdef TARGET_ARM
  129. static int
  130. print_insn_thumb1(bfd_vma pc, disassemble_info *info)
  131. {
  132. return print_insn_arm(pc | 1, info);
  133. }
  134. #endif
  135. static int print_insn_objdump(bfd_vma pc, disassemble_info *info,
  136. const char *prefix)
  137. {
  138. int i, n = info->buffer_length;
  139. uint8_t *buf = g_malloc(n);
  140. info->read_memory_func(pc, buf, n, info);
  141. for (i = 0; i < n; ++i) {
  142. if (i % 32 == 0) {
  143. info->fprintf_func(info->stream, "\n%s: ", prefix);
  144. }
  145. info->fprintf_func(info->stream, "%02x", buf[i]);
  146. }
  147. g_free(buf);
  148. return n;
  149. }
  150. static int print_insn_od_host(bfd_vma pc, disassemble_info *info)
  151. {
  152. return print_insn_objdump(pc, info, "OBJD-H");
  153. }
  154. static int print_insn_od_target(bfd_vma pc, disassemble_info *info)
  155. {
  156. return print_insn_objdump(pc, info, "OBJD-T");
  157. }
  158. /* Disassemble this for me please... (debugging). 'flags' has the following
  159. values:
  160. i386 - 1 means 16 bit code, 2 means 64 bit code
  161. arm - bit 0 = thumb, bit 1 = reverse endian, bit 2 = A64
  162. ppc - nonzero means little endian
  163. other targets - unused
  164. */
  165. void target_disas(FILE *out, CPUArchState *env, target_ulong code,
  166. target_ulong size, int flags)
  167. {
  168. target_ulong pc;
  169. int count;
  170. CPUDebug s;
  171. int (*print_insn)(bfd_vma pc, disassemble_info *info) = NULL;
  172. INIT_DISASSEMBLE_INFO(s.info, out, fprintf);
  173. s.env = env;
  174. s.info.read_memory_func = target_read_memory;
  175. s.info.buffer_vma = code;
  176. s.info.buffer_length = size;
  177. s.info.print_address_func = generic_print_target_address;
  178. #ifdef TARGET_WORDS_BIGENDIAN
  179. s.info.endian = BFD_ENDIAN_BIG;
  180. #else
  181. s.info.endian = BFD_ENDIAN_LITTLE;
  182. #endif
  183. #if defined(TARGET_I386)
  184. if (flags == 2) {
  185. s.info.mach = bfd_mach_x86_64;
  186. } else if (flags == 1) {
  187. s.info.mach = bfd_mach_i386_i8086;
  188. } else {
  189. s.info.mach = bfd_mach_i386_i386;
  190. }
  191. print_insn = print_insn_i386;
  192. #elif defined(TARGET_ARM)
  193. if (flags & 4) {
  194. /* We might not be compiled with the A64 disassembler
  195. * because it needs a C++ compiler; in that case we will
  196. * fall through to the default print_insn_od case.
  197. */
  198. #if defined(CONFIG_ARM_A64_DIS)
  199. print_insn = print_insn_arm_a64;
  200. #endif
  201. } else if (flags & 1) {
  202. print_insn = print_insn_thumb1;
  203. } else {
  204. print_insn = print_insn_arm;
  205. }
  206. if (flags & 2) {
  207. #ifdef TARGET_WORDS_BIGENDIAN
  208. s.info.endian = BFD_ENDIAN_LITTLE;
  209. #else
  210. s.info.endian = BFD_ENDIAN_BIG;
  211. #endif
  212. }
  213. #elif defined(TARGET_SPARC)
  214. print_insn = print_insn_sparc;
  215. #ifdef TARGET_SPARC64
  216. s.info.mach = bfd_mach_sparc_v9b;
  217. #endif
  218. #elif defined(TARGET_PPC)
  219. if (flags >> 16) {
  220. s.info.endian = BFD_ENDIAN_LITTLE;
  221. }
  222. if (flags & 0xFFFF) {
  223. /* If we have a precise definitions of the instructions set, use it */
  224. s.info.mach = flags & 0xFFFF;
  225. } else {
  226. #ifdef TARGET_PPC64
  227. s.info.mach = bfd_mach_ppc64;
  228. #else
  229. s.info.mach = bfd_mach_ppc;
  230. #endif
  231. }
  232. s.info.disassembler_options = (char *)"any";
  233. print_insn = print_insn_ppc;
  234. #elif defined(TARGET_M68K)
  235. print_insn = print_insn_m68k;
  236. #elif defined(TARGET_MIPS)
  237. #ifdef TARGET_WORDS_BIGENDIAN
  238. print_insn = print_insn_big_mips;
  239. #else
  240. print_insn = print_insn_little_mips;
  241. #endif
  242. #elif defined(TARGET_SH4)
  243. s.info.mach = bfd_mach_sh4;
  244. print_insn = print_insn_sh;
  245. #elif defined(TARGET_ALPHA)
  246. s.info.mach = bfd_mach_alpha_ev6;
  247. print_insn = print_insn_alpha;
  248. #elif defined(TARGET_CRIS)
  249. if (flags != 32) {
  250. s.info.mach = bfd_mach_cris_v0_v10;
  251. print_insn = print_insn_crisv10;
  252. } else {
  253. s.info.mach = bfd_mach_cris_v32;
  254. print_insn = print_insn_crisv32;
  255. }
  256. #elif defined(TARGET_S390X)
  257. s.info.mach = bfd_mach_s390_64;
  258. print_insn = print_insn_s390;
  259. #elif defined(TARGET_MICROBLAZE)
  260. s.info.mach = bfd_arch_microblaze;
  261. print_insn = print_insn_microblaze;
  262. #elif defined(TARGET_MOXIE)
  263. s.info.mach = bfd_arch_moxie;
  264. print_insn = print_insn_moxie;
  265. #elif defined(TARGET_LM32)
  266. s.info.mach = bfd_mach_lm32;
  267. print_insn = print_insn_lm32;
  268. #endif
  269. if (print_insn == NULL) {
  270. print_insn = print_insn_od_target;
  271. }
  272. for (pc = code; size > 0; pc += count, size -= count) {
  273. fprintf(out, "0x" TARGET_FMT_lx ": ", pc);
  274. count = print_insn(pc, &s.info);
  275. #if 0
  276. {
  277. int i;
  278. uint8_t b;
  279. fprintf(out, " {");
  280. for(i = 0; i < count; i++) {
  281. target_read_memory(pc + i, &b, 1, &s.info);
  282. fprintf(out, " %02x", b);
  283. }
  284. fprintf(out, " }");
  285. }
  286. #endif
  287. fprintf(out, "\n");
  288. if (count < 0)
  289. break;
  290. if (size < count) {
  291. fprintf(out,
  292. "Disassembler disagrees with translator over instruction "
  293. "decoding\n"
  294. "Please report this to qemu-devel@nongnu.org\n");
  295. break;
  296. }
  297. }
  298. }
  299. /* Disassemble this for me please... (debugging). */
  300. void disas(FILE *out, void *code, unsigned long size)
  301. {
  302. uintptr_t pc;
  303. int count;
  304. CPUDebug s;
  305. int (*print_insn)(bfd_vma pc, disassemble_info *info) = NULL;
  306. INIT_DISASSEMBLE_INFO(s.info, out, fprintf);
  307. s.info.print_address_func = generic_print_host_address;
  308. s.info.buffer = code;
  309. s.info.buffer_vma = (uintptr_t)code;
  310. s.info.buffer_length = size;
  311. #ifdef HOST_WORDS_BIGENDIAN
  312. s.info.endian = BFD_ENDIAN_BIG;
  313. #else
  314. s.info.endian = BFD_ENDIAN_LITTLE;
  315. #endif
  316. #if defined(CONFIG_TCG_INTERPRETER)
  317. print_insn = print_insn_tci;
  318. #elif defined(__i386__)
  319. s.info.mach = bfd_mach_i386_i386;
  320. print_insn = print_insn_i386;
  321. #elif defined(__x86_64__)
  322. s.info.mach = bfd_mach_x86_64;
  323. print_insn = print_insn_i386;
  324. #elif defined(_ARCH_PPC)
  325. s.info.disassembler_options = (char *)"any";
  326. print_insn = print_insn_ppc;
  327. #elif defined(__aarch64__) && defined(CONFIG_ARM_A64_DIS)
  328. print_insn = print_insn_arm_a64;
  329. #elif defined(__alpha__)
  330. print_insn = print_insn_alpha;
  331. #elif defined(__sparc__)
  332. print_insn = print_insn_sparc;
  333. s.info.mach = bfd_mach_sparc_v9b;
  334. #elif defined(__arm__)
  335. print_insn = print_insn_arm;
  336. #elif defined(__MIPSEB__)
  337. print_insn = print_insn_big_mips;
  338. #elif defined(__MIPSEL__)
  339. print_insn = print_insn_little_mips;
  340. #elif defined(__m68k__)
  341. print_insn = print_insn_m68k;
  342. #elif defined(__s390__)
  343. print_insn = print_insn_s390;
  344. #elif defined(__hppa__)
  345. print_insn = print_insn_hppa;
  346. #elif defined(__ia64__)
  347. print_insn = print_insn_ia64;
  348. #endif
  349. if (print_insn == NULL) {
  350. print_insn = print_insn_od_host;
  351. }
  352. for (pc = (uintptr_t)code; size > 0; pc += count, size -= count) {
  353. fprintf(out, "0x%08" PRIxPTR ": ", pc);
  354. count = print_insn(pc, &s.info);
  355. fprintf(out, "\n");
  356. if (count < 0)
  357. break;
  358. }
  359. }
  360. /* Look up symbol for debugging purpose. Returns "" if unknown. */
  361. const char *lookup_symbol(target_ulong orig_addr)
  362. {
  363. const char *symbol = "";
  364. struct syminfo *s;
  365. for (s = syminfos; s; s = s->next) {
  366. symbol = s->lookup_symbol(s, orig_addr);
  367. if (symbol[0] != '\0') {
  368. break;
  369. }
  370. }
  371. return symbol;
  372. }
  373. #if !defined(CONFIG_USER_ONLY)
  374. #include "monitor/monitor.h"
  375. static int monitor_disas_is_physical;
  376. static int
  377. monitor_read_memory (bfd_vma memaddr, bfd_byte *myaddr, int length,
  378. struct disassemble_info *info)
  379. {
  380. CPUDebug *s = container_of(info, CPUDebug, info);
  381. if (monitor_disas_is_physical) {
  382. cpu_physical_memory_read(memaddr, myaddr, length);
  383. } else {
  384. cpu_memory_rw_debug(ENV_GET_CPU(s->env), memaddr, myaddr, length, 0);
  385. }
  386. return 0;
  387. }
  388. static int GCC_FMT_ATTR(2, 3)
  389. monitor_fprintf(FILE *stream, const char *fmt, ...)
  390. {
  391. va_list ap;
  392. va_start(ap, fmt);
  393. monitor_vprintf((Monitor *)stream, fmt, ap);
  394. va_end(ap);
  395. return 0;
  396. }
  397. void monitor_disas(Monitor *mon, CPUArchState *env,
  398. target_ulong pc, int nb_insn, int is_physical, int flags)
  399. {
  400. int count, i;
  401. CPUDebug s;
  402. int (*print_insn)(bfd_vma pc, disassemble_info *info);
  403. INIT_DISASSEMBLE_INFO(s.info, (FILE *)mon, monitor_fprintf);
  404. s.env = env;
  405. monitor_disas_is_physical = is_physical;
  406. s.info.read_memory_func = monitor_read_memory;
  407. s.info.print_address_func = generic_print_target_address;
  408. s.info.buffer_vma = pc;
  409. #ifdef TARGET_WORDS_BIGENDIAN
  410. s.info.endian = BFD_ENDIAN_BIG;
  411. #else
  412. s.info.endian = BFD_ENDIAN_LITTLE;
  413. #endif
  414. #if defined(TARGET_I386)
  415. if (flags == 2) {
  416. s.info.mach = bfd_mach_x86_64;
  417. } else if (flags == 1) {
  418. s.info.mach = bfd_mach_i386_i8086;
  419. } else {
  420. s.info.mach = bfd_mach_i386_i386;
  421. }
  422. print_insn = print_insn_i386;
  423. #elif defined(TARGET_ARM)
  424. print_insn = print_insn_arm;
  425. #elif defined(TARGET_ALPHA)
  426. print_insn = print_insn_alpha;
  427. #elif defined(TARGET_SPARC)
  428. print_insn = print_insn_sparc;
  429. #ifdef TARGET_SPARC64
  430. s.info.mach = bfd_mach_sparc_v9b;
  431. #endif
  432. #elif defined(TARGET_PPC)
  433. #ifdef TARGET_PPC64
  434. s.info.mach = bfd_mach_ppc64;
  435. #else
  436. s.info.mach = bfd_mach_ppc;
  437. #endif
  438. print_insn = print_insn_ppc;
  439. #elif defined(TARGET_M68K)
  440. print_insn = print_insn_m68k;
  441. #elif defined(TARGET_MIPS)
  442. #ifdef TARGET_WORDS_BIGENDIAN
  443. print_insn = print_insn_big_mips;
  444. #else
  445. print_insn = print_insn_little_mips;
  446. #endif
  447. #elif defined(TARGET_SH4)
  448. s.info.mach = bfd_mach_sh4;
  449. print_insn = print_insn_sh;
  450. #elif defined(TARGET_S390X)
  451. s.info.mach = bfd_mach_s390_64;
  452. print_insn = print_insn_s390;
  453. #elif defined(TARGET_MOXIE)
  454. s.info.mach = bfd_arch_moxie;
  455. print_insn = print_insn_moxie;
  456. #elif defined(TARGET_LM32)
  457. s.info.mach = bfd_mach_lm32;
  458. print_insn = print_insn_lm32;
  459. #else
  460. monitor_printf(mon, "0x" TARGET_FMT_lx
  461. ": Asm output not supported on this arch\n", pc);
  462. return;
  463. #endif
  464. for(i = 0; i < nb_insn; i++) {
  465. monitor_printf(mon, "0x" TARGET_FMT_lx ": ", pc);
  466. count = print_insn(pc, &s.info);
  467. monitor_printf(mon, "\n");
  468. if (count < 0)
  469. break;
  470. pc += count;
  471. }
  472. }
  473. #endif