xilinx_spi.c 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385
  1. /*
  2. * QEMU model of the Xilinx SPI Controller
  3. *
  4. * Copyright (C) 2010 Edgar E. Iglesias.
  5. * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
  6. * Copyright (C) 2012 PetaLogix
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in
  16. * all copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24. * THE SOFTWARE.
  25. */
  26. #include "sysbus.h"
  27. #include "sysemu/sysemu.h"
  28. #include "qemu/log.h"
  29. #include "fifo.h"
  30. #include "ssi.h"
  31. #ifdef XILINX_SPI_ERR_DEBUG
  32. #define DB_PRINT(...) do { \
  33. fprintf(stderr, ": %s: ", __func__); \
  34. fprintf(stderr, ## __VA_ARGS__); \
  35. } while (0);
  36. #else
  37. #define DB_PRINT(...)
  38. #endif
  39. #define R_DGIER (0x1c / 4)
  40. #define R_DGIER_IE (1 << 31)
  41. #define R_IPISR (0x20 / 4)
  42. #define IRQ_DRR_NOT_EMPTY (1 << (31 - 23))
  43. #define IRQ_DRR_OVERRUN (1 << (31 - 26))
  44. #define IRQ_DRR_FULL (1 << (31 - 27))
  45. #define IRQ_TX_FF_HALF_EMPTY (1 << 6)
  46. #define IRQ_DTR_UNDERRUN (1 << 3)
  47. #define IRQ_DTR_EMPTY (1 << (31 - 29))
  48. #define R_IPIER (0x28 / 4)
  49. #define R_SRR (0x40 / 4)
  50. #define R_SPICR (0x60 / 4)
  51. #define R_SPICR_TXFF_RST (1 << 5)
  52. #define R_SPICR_RXFF_RST (1 << 6)
  53. #define R_SPICR_MTI (1 << 8)
  54. #define R_SPISR (0x64 / 4)
  55. #define SR_TX_FULL (1 << 3)
  56. #define SR_TX_EMPTY (1 << 2)
  57. #define SR_RX_FULL (1 << 1)
  58. #define SR_RX_EMPTY (1 << 0)
  59. #define R_SPIDTR (0x68 / 4)
  60. #define R_SPIDRR (0x6C / 4)
  61. #define R_SPISSR (0x70 / 4)
  62. #define R_TX_FF_OCY (0x74 / 4)
  63. #define R_RX_FF_OCY (0x78 / 4)
  64. #define R_MAX (0x7C / 4)
  65. #define FIFO_CAPACITY 256
  66. typedef struct XilinxSPI {
  67. SysBusDevice busdev;
  68. MemoryRegion mmio;
  69. qemu_irq irq;
  70. int irqline;
  71. uint8_t num_cs;
  72. qemu_irq *cs_lines;
  73. SSIBus *spi;
  74. Fifo8 rx_fifo;
  75. Fifo8 tx_fifo;
  76. uint32_t regs[R_MAX];
  77. } XilinxSPI;
  78. static void txfifo_reset(XilinxSPI *s)
  79. {
  80. fifo8_reset(&s->tx_fifo);
  81. s->regs[R_SPISR] &= ~SR_TX_FULL;
  82. s->regs[R_SPISR] |= SR_TX_EMPTY;
  83. }
  84. static void rxfifo_reset(XilinxSPI *s)
  85. {
  86. fifo8_reset(&s->rx_fifo);
  87. s->regs[R_SPISR] |= SR_RX_EMPTY;
  88. s->regs[R_SPISR] &= ~SR_RX_FULL;
  89. }
  90. static void xlx_spi_update_cs(XilinxSPI *s)
  91. {
  92. int i;
  93. for (i = 0; i < s->num_cs; ++i) {
  94. qemu_set_irq(s->cs_lines[i], !(~s->regs[R_SPISSR] & 1 << i));
  95. }
  96. }
  97. static void xlx_spi_update_irq(XilinxSPI *s)
  98. {
  99. uint32_t pending;
  100. s->regs[R_IPISR] |=
  101. (!fifo8_is_empty(&s->rx_fifo) ? IRQ_DRR_NOT_EMPTY : 0) |
  102. (fifo8_is_full(&s->rx_fifo) ? IRQ_DRR_FULL : 0);
  103. pending = s->regs[R_IPISR] & s->regs[R_IPIER];
  104. pending = pending && (s->regs[R_DGIER] & R_DGIER_IE);
  105. pending = !!pending;
  106. /* This call lies right in the data paths so don't call the
  107. irq chain unless things really changed. */
  108. if (pending != s->irqline) {
  109. s->irqline = pending;
  110. DB_PRINT("irq_change of state %d ISR:%x IER:%X\n",
  111. pending, s->regs[R_IPISR], s->regs[R_IPIER]);
  112. qemu_set_irq(s->irq, pending);
  113. }
  114. }
  115. static void xlx_spi_do_reset(XilinxSPI *s)
  116. {
  117. memset(s->regs, 0, sizeof s->regs);
  118. rxfifo_reset(s);
  119. txfifo_reset(s);
  120. s->regs[R_SPISSR] = ~0;
  121. xlx_spi_update_irq(s);
  122. xlx_spi_update_cs(s);
  123. }
  124. static void xlx_spi_reset(DeviceState *d)
  125. {
  126. xlx_spi_do_reset(DO_UPCAST(XilinxSPI, busdev.qdev, d));
  127. }
  128. static inline int spi_master_enabled(XilinxSPI *s)
  129. {
  130. return !(s->regs[R_SPICR] & R_SPICR_MTI);
  131. }
  132. static void spi_flush_txfifo(XilinxSPI *s)
  133. {
  134. uint32_t tx;
  135. uint32_t rx;
  136. while (!fifo8_is_empty(&s->tx_fifo)) {
  137. tx = (uint32_t)fifo8_pop(&s->tx_fifo);
  138. DB_PRINT("data tx:%x\n", tx);
  139. rx = ssi_transfer(s->spi, tx);
  140. DB_PRINT("data rx:%x\n", rx);
  141. if (fifo8_is_full(&s->rx_fifo)) {
  142. s->regs[R_IPISR] |= IRQ_DRR_OVERRUN;
  143. } else {
  144. fifo8_push(&s->rx_fifo, (uint8_t)rx);
  145. if (fifo8_is_full(&s->rx_fifo)) {
  146. s->regs[R_SPISR] |= SR_RX_FULL;
  147. s->regs[R_IPISR] |= IRQ_DRR_FULL;
  148. }
  149. }
  150. s->regs[R_SPISR] &= ~SR_RX_EMPTY;
  151. s->regs[R_SPISR] &= ~SR_TX_FULL;
  152. s->regs[R_SPISR] |= SR_TX_EMPTY;
  153. s->regs[R_IPISR] |= IRQ_DTR_EMPTY;
  154. s->regs[R_IPISR] |= IRQ_DRR_NOT_EMPTY;
  155. }
  156. }
  157. static uint64_t
  158. spi_read(void *opaque, hwaddr addr, unsigned int size)
  159. {
  160. XilinxSPI *s = opaque;
  161. uint32_t r = 0;
  162. addr >>= 2;
  163. switch (addr) {
  164. case R_SPIDRR:
  165. if (fifo8_is_empty(&s->rx_fifo)) {
  166. DB_PRINT("Read from empty FIFO!\n");
  167. return 0xdeadbeef;
  168. }
  169. s->regs[R_SPISR] &= ~SR_RX_FULL;
  170. r = fifo8_pop(&s->rx_fifo);
  171. if (fifo8_is_empty(&s->rx_fifo)) {
  172. s->regs[R_SPISR] |= SR_RX_EMPTY;
  173. }
  174. break;
  175. case R_SPISR:
  176. r = s->regs[addr];
  177. break;
  178. default:
  179. if (addr < ARRAY_SIZE(s->regs)) {
  180. r = s->regs[addr];
  181. }
  182. break;
  183. }
  184. DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr * 4, r);
  185. xlx_spi_update_irq(s);
  186. return r;
  187. }
  188. static void
  189. spi_write(void *opaque, hwaddr addr,
  190. uint64_t val64, unsigned int size)
  191. {
  192. XilinxSPI *s = opaque;
  193. uint32_t value = val64;
  194. DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr, value);
  195. addr >>= 2;
  196. switch (addr) {
  197. case R_SRR:
  198. if (value != 0xa) {
  199. DB_PRINT("Invalid write to SRR %x\n", value);
  200. } else {
  201. xlx_spi_do_reset(s);
  202. }
  203. break;
  204. case R_SPIDTR:
  205. s->regs[R_SPISR] &= ~SR_TX_EMPTY;
  206. fifo8_push(&s->tx_fifo, (uint8_t)value);
  207. if (fifo8_is_full(&s->tx_fifo)) {
  208. s->regs[R_SPISR] |= SR_TX_FULL;
  209. }
  210. if (!spi_master_enabled(s)) {
  211. goto done;
  212. } else {
  213. DB_PRINT("DTR and master enabled\n");
  214. }
  215. spi_flush_txfifo(s);
  216. break;
  217. case R_SPISR:
  218. DB_PRINT("Invalid write to SPISR %x\n", value);
  219. break;
  220. case R_IPISR:
  221. /* Toggle the bits. */
  222. s->regs[addr] ^= value;
  223. break;
  224. /* Slave Select Register. */
  225. case R_SPISSR:
  226. s->regs[addr] = value;
  227. xlx_spi_update_cs(s);
  228. break;
  229. case R_SPICR:
  230. /* FIXME: reset irq and sr state to empty queues. */
  231. if (value & R_SPICR_RXFF_RST) {
  232. rxfifo_reset(s);
  233. }
  234. if (value & R_SPICR_TXFF_RST) {
  235. txfifo_reset(s);
  236. }
  237. value &= ~(R_SPICR_RXFF_RST | R_SPICR_TXFF_RST);
  238. s->regs[addr] = value;
  239. if (!(value & R_SPICR_MTI)) {
  240. spi_flush_txfifo(s);
  241. }
  242. break;
  243. default:
  244. if (addr < ARRAY_SIZE(s->regs)) {
  245. s->regs[addr] = value;
  246. }
  247. break;
  248. }
  249. done:
  250. xlx_spi_update_irq(s);
  251. }
  252. static const MemoryRegionOps spi_ops = {
  253. .read = spi_read,
  254. .write = spi_write,
  255. .endianness = DEVICE_NATIVE_ENDIAN,
  256. .valid = {
  257. .min_access_size = 4,
  258. .max_access_size = 4
  259. }
  260. };
  261. static int xilinx_spi_init(SysBusDevice *dev)
  262. {
  263. int i;
  264. XilinxSPI *s = FROM_SYSBUS(typeof(*s), dev);
  265. DB_PRINT("\n");
  266. s->spi = ssi_create_bus(&dev->qdev, "spi");
  267. sysbus_init_irq(dev, &s->irq);
  268. s->cs_lines = g_new(qemu_irq, s->num_cs);
  269. ssi_auto_connect_slaves(DEVICE(s), s->cs_lines, s->spi);
  270. for (i = 0; i < s->num_cs; ++i) {
  271. sysbus_init_irq(dev, &s->cs_lines[i]);
  272. }
  273. memory_region_init_io(&s->mmio, &spi_ops, s, "xilinx-spi", R_MAX * 4);
  274. sysbus_init_mmio(dev, &s->mmio);
  275. s->irqline = -1;
  276. fifo8_create(&s->tx_fifo, FIFO_CAPACITY);
  277. fifo8_create(&s->rx_fifo, FIFO_CAPACITY);
  278. return 0;
  279. }
  280. static const VMStateDescription vmstate_xilinx_spi = {
  281. .name = "xilinx_spi",
  282. .version_id = 1,
  283. .minimum_version_id = 1,
  284. .minimum_version_id_old = 1,
  285. .fields = (VMStateField[]) {
  286. VMSTATE_FIFO8(tx_fifo, XilinxSPI),
  287. VMSTATE_FIFO8(rx_fifo, XilinxSPI),
  288. VMSTATE_UINT32_ARRAY(regs, XilinxSPI, R_MAX),
  289. VMSTATE_END_OF_LIST()
  290. }
  291. };
  292. static Property xilinx_spi_properties[] = {
  293. DEFINE_PROP_UINT8("num-ss-bits", XilinxSPI, num_cs, 1),
  294. DEFINE_PROP_END_OF_LIST(),
  295. };
  296. static void xilinx_spi_class_init(ObjectClass *klass, void *data)
  297. {
  298. DeviceClass *dc = DEVICE_CLASS(klass);
  299. SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
  300. k->init = xilinx_spi_init;
  301. dc->reset = xlx_spi_reset;
  302. dc->props = xilinx_spi_properties;
  303. dc->vmsd = &vmstate_xilinx_spi;
  304. }
  305. static const TypeInfo xilinx_spi_info = {
  306. .name = "xlnx.xps-spi",
  307. .parent = TYPE_SYS_BUS_DEVICE,
  308. .instance_size = sizeof(XilinxSPI),
  309. .class_init = xilinx_spi_class_init,
  310. };
  311. static void xilinx_spi_register_types(void)
  312. {
  313. type_register_static(&xilinx_spi_info);
  314. }
  315. type_init(xilinx_spi_register_types)