vhost.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027
  1. /*
  2. * vhost support
  3. *
  4. * Copyright Red Hat, Inc. 2010
  5. *
  6. * Authors:
  7. * Michael S. Tsirkin <mst@redhat.com>
  8. *
  9. * This work is licensed under the terms of the GNU GPL, version 2. See
  10. * the COPYING file in the top-level directory.
  11. *
  12. * Contributions after 2012-01-13 are licensed under the terms of the
  13. * GNU GPL, version 2 or (at your option) any later version.
  14. */
  15. #include <sys/ioctl.h>
  16. #include "vhost.h"
  17. #include "hw/hw.h"
  18. #include "qemu/range.h"
  19. #include <linux/vhost.h>
  20. #include "exec/address-spaces.h"
  21. static void vhost_dev_sync_region(struct vhost_dev *dev,
  22. MemoryRegionSection *section,
  23. uint64_t mfirst, uint64_t mlast,
  24. uint64_t rfirst, uint64_t rlast)
  25. {
  26. uint64_t start = MAX(mfirst, rfirst);
  27. uint64_t end = MIN(mlast, rlast);
  28. vhost_log_chunk_t *from = dev->log + start / VHOST_LOG_CHUNK;
  29. vhost_log_chunk_t *to = dev->log + end / VHOST_LOG_CHUNK + 1;
  30. uint64_t addr = (start / VHOST_LOG_CHUNK) * VHOST_LOG_CHUNK;
  31. if (end < start) {
  32. return;
  33. }
  34. assert(end / VHOST_LOG_CHUNK < dev->log_size);
  35. assert(start / VHOST_LOG_CHUNK < dev->log_size);
  36. for (;from < to; ++from) {
  37. vhost_log_chunk_t log;
  38. int bit;
  39. /* We first check with non-atomic: much cheaper,
  40. * and we expect non-dirty to be the common case. */
  41. if (!*from) {
  42. addr += VHOST_LOG_CHUNK;
  43. continue;
  44. }
  45. /* Data must be read atomically. We don't really
  46. * need the barrier semantics of __sync
  47. * builtins, but it's easier to use them than
  48. * roll our own. */
  49. log = __sync_fetch_and_and(from, 0);
  50. while ((bit = sizeof(log) > sizeof(int) ?
  51. ffsll(log) : ffs(log))) {
  52. ram_addr_t ram_addr;
  53. bit -= 1;
  54. ram_addr = section->offset_within_region + bit * VHOST_LOG_PAGE;
  55. memory_region_set_dirty(section->mr, ram_addr, VHOST_LOG_PAGE);
  56. log &= ~(0x1ull << bit);
  57. }
  58. addr += VHOST_LOG_CHUNK;
  59. }
  60. }
  61. static int vhost_sync_dirty_bitmap(struct vhost_dev *dev,
  62. MemoryRegionSection *section,
  63. hwaddr start_addr,
  64. hwaddr end_addr)
  65. {
  66. int i;
  67. if (!dev->log_enabled || !dev->started) {
  68. return 0;
  69. }
  70. for (i = 0; i < dev->mem->nregions; ++i) {
  71. struct vhost_memory_region *reg = dev->mem->regions + i;
  72. vhost_dev_sync_region(dev, section, start_addr, end_addr,
  73. reg->guest_phys_addr,
  74. range_get_last(reg->guest_phys_addr,
  75. reg->memory_size));
  76. }
  77. for (i = 0; i < dev->nvqs; ++i) {
  78. struct vhost_virtqueue *vq = dev->vqs + i;
  79. vhost_dev_sync_region(dev, section, start_addr, end_addr, vq->used_phys,
  80. range_get_last(vq->used_phys, vq->used_size));
  81. }
  82. return 0;
  83. }
  84. static void vhost_log_sync(MemoryListener *listener,
  85. MemoryRegionSection *section)
  86. {
  87. struct vhost_dev *dev = container_of(listener, struct vhost_dev,
  88. memory_listener);
  89. hwaddr start_addr = section->offset_within_address_space;
  90. hwaddr end_addr = start_addr + section->size;
  91. vhost_sync_dirty_bitmap(dev, section, start_addr, end_addr);
  92. }
  93. /* Assign/unassign. Keep an unsorted array of non-overlapping
  94. * memory regions in dev->mem. */
  95. static void vhost_dev_unassign_memory(struct vhost_dev *dev,
  96. uint64_t start_addr,
  97. uint64_t size)
  98. {
  99. int from, to, n = dev->mem->nregions;
  100. /* Track overlapping/split regions for sanity checking. */
  101. int overlap_start = 0, overlap_end = 0, overlap_middle = 0, split = 0;
  102. for (from = 0, to = 0; from < n; ++from, ++to) {
  103. struct vhost_memory_region *reg = dev->mem->regions + to;
  104. uint64_t reglast;
  105. uint64_t memlast;
  106. uint64_t change;
  107. /* clone old region */
  108. if (to != from) {
  109. memcpy(reg, dev->mem->regions + from, sizeof *reg);
  110. }
  111. /* No overlap is simple */
  112. if (!ranges_overlap(reg->guest_phys_addr, reg->memory_size,
  113. start_addr, size)) {
  114. continue;
  115. }
  116. /* Split only happens if supplied region
  117. * is in the middle of an existing one. Thus it can not
  118. * overlap with any other existing region. */
  119. assert(!split);
  120. reglast = range_get_last(reg->guest_phys_addr, reg->memory_size);
  121. memlast = range_get_last(start_addr, size);
  122. /* Remove whole region */
  123. if (start_addr <= reg->guest_phys_addr && memlast >= reglast) {
  124. --dev->mem->nregions;
  125. --to;
  126. ++overlap_middle;
  127. continue;
  128. }
  129. /* Shrink region */
  130. if (memlast >= reglast) {
  131. reg->memory_size = start_addr - reg->guest_phys_addr;
  132. assert(reg->memory_size);
  133. assert(!overlap_end);
  134. ++overlap_end;
  135. continue;
  136. }
  137. /* Shift region */
  138. if (start_addr <= reg->guest_phys_addr) {
  139. change = memlast + 1 - reg->guest_phys_addr;
  140. reg->memory_size -= change;
  141. reg->guest_phys_addr += change;
  142. reg->userspace_addr += change;
  143. assert(reg->memory_size);
  144. assert(!overlap_start);
  145. ++overlap_start;
  146. continue;
  147. }
  148. /* This only happens if supplied region
  149. * is in the middle of an existing one. Thus it can not
  150. * overlap with any other existing region. */
  151. assert(!overlap_start);
  152. assert(!overlap_end);
  153. assert(!overlap_middle);
  154. /* Split region: shrink first part, shift second part. */
  155. memcpy(dev->mem->regions + n, reg, sizeof *reg);
  156. reg->memory_size = start_addr - reg->guest_phys_addr;
  157. assert(reg->memory_size);
  158. change = memlast + 1 - reg->guest_phys_addr;
  159. reg = dev->mem->regions + n;
  160. reg->memory_size -= change;
  161. assert(reg->memory_size);
  162. reg->guest_phys_addr += change;
  163. reg->userspace_addr += change;
  164. /* Never add more than 1 region */
  165. assert(dev->mem->nregions == n);
  166. ++dev->mem->nregions;
  167. ++split;
  168. }
  169. }
  170. /* Called after unassign, so no regions overlap the given range. */
  171. static void vhost_dev_assign_memory(struct vhost_dev *dev,
  172. uint64_t start_addr,
  173. uint64_t size,
  174. uint64_t uaddr)
  175. {
  176. int from, to;
  177. struct vhost_memory_region *merged = NULL;
  178. for (from = 0, to = 0; from < dev->mem->nregions; ++from, ++to) {
  179. struct vhost_memory_region *reg = dev->mem->regions + to;
  180. uint64_t prlast, urlast;
  181. uint64_t pmlast, umlast;
  182. uint64_t s, e, u;
  183. /* clone old region */
  184. if (to != from) {
  185. memcpy(reg, dev->mem->regions + from, sizeof *reg);
  186. }
  187. prlast = range_get_last(reg->guest_phys_addr, reg->memory_size);
  188. pmlast = range_get_last(start_addr, size);
  189. urlast = range_get_last(reg->userspace_addr, reg->memory_size);
  190. umlast = range_get_last(uaddr, size);
  191. /* check for overlapping regions: should never happen. */
  192. assert(prlast < start_addr || pmlast < reg->guest_phys_addr);
  193. /* Not an adjacent or overlapping region - do not merge. */
  194. if ((prlast + 1 != start_addr || urlast + 1 != uaddr) &&
  195. (pmlast + 1 != reg->guest_phys_addr ||
  196. umlast + 1 != reg->userspace_addr)) {
  197. continue;
  198. }
  199. if (merged) {
  200. --to;
  201. assert(to >= 0);
  202. } else {
  203. merged = reg;
  204. }
  205. u = MIN(uaddr, reg->userspace_addr);
  206. s = MIN(start_addr, reg->guest_phys_addr);
  207. e = MAX(pmlast, prlast);
  208. uaddr = merged->userspace_addr = u;
  209. start_addr = merged->guest_phys_addr = s;
  210. size = merged->memory_size = e - s + 1;
  211. assert(merged->memory_size);
  212. }
  213. if (!merged) {
  214. struct vhost_memory_region *reg = dev->mem->regions + to;
  215. memset(reg, 0, sizeof *reg);
  216. reg->memory_size = size;
  217. assert(reg->memory_size);
  218. reg->guest_phys_addr = start_addr;
  219. reg->userspace_addr = uaddr;
  220. ++to;
  221. }
  222. assert(to <= dev->mem->nregions + 1);
  223. dev->mem->nregions = to;
  224. }
  225. static uint64_t vhost_get_log_size(struct vhost_dev *dev)
  226. {
  227. uint64_t log_size = 0;
  228. int i;
  229. for (i = 0; i < dev->mem->nregions; ++i) {
  230. struct vhost_memory_region *reg = dev->mem->regions + i;
  231. uint64_t last = range_get_last(reg->guest_phys_addr,
  232. reg->memory_size);
  233. log_size = MAX(log_size, last / VHOST_LOG_CHUNK + 1);
  234. }
  235. for (i = 0; i < dev->nvqs; ++i) {
  236. struct vhost_virtqueue *vq = dev->vqs + i;
  237. uint64_t last = vq->used_phys + vq->used_size - 1;
  238. log_size = MAX(log_size, last / VHOST_LOG_CHUNK + 1);
  239. }
  240. return log_size;
  241. }
  242. static inline void vhost_dev_log_resize(struct vhost_dev* dev, uint64_t size)
  243. {
  244. vhost_log_chunk_t *log;
  245. uint64_t log_base;
  246. int r, i;
  247. log = g_malloc0(size * sizeof *log);
  248. log_base = (uint64_t)(unsigned long)log;
  249. r = ioctl(dev->control, VHOST_SET_LOG_BASE, &log_base);
  250. assert(r >= 0);
  251. for (i = 0; i < dev->n_mem_sections; ++i) {
  252. /* Sync only the range covered by the old log */
  253. vhost_sync_dirty_bitmap(dev, &dev->mem_sections[i], 0,
  254. dev->log_size * VHOST_LOG_CHUNK - 1);
  255. }
  256. if (dev->log) {
  257. g_free(dev->log);
  258. }
  259. dev->log = log;
  260. dev->log_size = size;
  261. }
  262. static int vhost_verify_ring_mappings(struct vhost_dev *dev,
  263. uint64_t start_addr,
  264. uint64_t size)
  265. {
  266. int i;
  267. for (i = 0; i < dev->nvqs; ++i) {
  268. struct vhost_virtqueue *vq = dev->vqs + i;
  269. hwaddr l;
  270. void *p;
  271. if (!ranges_overlap(start_addr, size, vq->ring_phys, vq->ring_size)) {
  272. continue;
  273. }
  274. l = vq->ring_size;
  275. p = cpu_physical_memory_map(vq->ring_phys, &l, 1);
  276. if (!p || l != vq->ring_size) {
  277. fprintf(stderr, "Unable to map ring buffer for ring %d\n", i);
  278. return -ENOMEM;
  279. }
  280. if (p != vq->ring) {
  281. fprintf(stderr, "Ring buffer relocated for ring %d\n", i);
  282. return -EBUSY;
  283. }
  284. cpu_physical_memory_unmap(p, l, 0, 0);
  285. }
  286. return 0;
  287. }
  288. static struct vhost_memory_region *vhost_dev_find_reg(struct vhost_dev *dev,
  289. uint64_t start_addr,
  290. uint64_t size)
  291. {
  292. int i, n = dev->mem->nregions;
  293. for (i = 0; i < n; ++i) {
  294. struct vhost_memory_region *reg = dev->mem->regions + i;
  295. if (ranges_overlap(reg->guest_phys_addr, reg->memory_size,
  296. start_addr, size)) {
  297. return reg;
  298. }
  299. }
  300. return NULL;
  301. }
  302. static bool vhost_dev_cmp_memory(struct vhost_dev *dev,
  303. uint64_t start_addr,
  304. uint64_t size,
  305. uint64_t uaddr)
  306. {
  307. struct vhost_memory_region *reg = vhost_dev_find_reg(dev, start_addr, size);
  308. uint64_t reglast;
  309. uint64_t memlast;
  310. if (!reg) {
  311. return true;
  312. }
  313. reglast = range_get_last(reg->guest_phys_addr, reg->memory_size);
  314. memlast = range_get_last(start_addr, size);
  315. /* Need to extend region? */
  316. if (start_addr < reg->guest_phys_addr || memlast > reglast) {
  317. return true;
  318. }
  319. /* userspace_addr changed? */
  320. return uaddr != reg->userspace_addr + start_addr - reg->guest_phys_addr;
  321. }
  322. static void vhost_set_memory(MemoryListener *listener,
  323. MemoryRegionSection *section,
  324. bool add)
  325. {
  326. struct vhost_dev *dev = container_of(listener, struct vhost_dev,
  327. memory_listener);
  328. hwaddr start_addr = section->offset_within_address_space;
  329. ram_addr_t size = section->size;
  330. bool log_dirty = memory_region_is_logging(section->mr);
  331. int s = offsetof(struct vhost_memory, regions) +
  332. (dev->mem->nregions + 1) * sizeof dev->mem->regions[0];
  333. uint64_t log_size;
  334. int r;
  335. void *ram;
  336. dev->mem = g_realloc(dev->mem, s);
  337. if (log_dirty) {
  338. add = false;
  339. }
  340. assert(size);
  341. /* Optimize no-change case. At least cirrus_vga does this a lot at this time. */
  342. ram = memory_region_get_ram_ptr(section->mr) + section->offset_within_region;
  343. if (add) {
  344. if (!vhost_dev_cmp_memory(dev, start_addr, size, (uintptr_t)ram)) {
  345. /* Region exists with same address. Nothing to do. */
  346. return;
  347. }
  348. } else {
  349. if (!vhost_dev_find_reg(dev, start_addr, size)) {
  350. /* Removing region that we don't access. Nothing to do. */
  351. return;
  352. }
  353. }
  354. vhost_dev_unassign_memory(dev, start_addr, size);
  355. if (add) {
  356. /* Add given mapping, merging adjacent regions if any */
  357. vhost_dev_assign_memory(dev, start_addr, size, (uintptr_t)ram);
  358. } else {
  359. /* Remove old mapping for this memory, if any. */
  360. vhost_dev_unassign_memory(dev, start_addr, size);
  361. }
  362. if (!dev->started) {
  363. return;
  364. }
  365. if (dev->started) {
  366. r = vhost_verify_ring_mappings(dev, start_addr, size);
  367. assert(r >= 0);
  368. }
  369. if (!dev->log_enabled) {
  370. r = ioctl(dev->control, VHOST_SET_MEM_TABLE, dev->mem);
  371. assert(r >= 0);
  372. return;
  373. }
  374. log_size = vhost_get_log_size(dev);
  375. /* We allocate an extra 4K bytes to log,
  376. * to reduce the * number of reallocations. */
  377. #define VHOST_LOG_BUFFER (0x1000 / sizeof *dev->log)
  378. /* To log more, must increase log size before table update. */
  379. if (dev->log_size < log_size) {
  380. vhost_dev_log_resize(dev, log_size + VHOST_LOG_BUFFER);
  381. }
  382. r = ioctl(dev->control, VHOST_SET_MEM_TABLE, dev->mem);
  383. assert(r >= 0);
  384. /* To log less, can only decrease log size after table update. */
  385. if (dev->log_size > log_size + VHOST_LOG_BUFFER) {
  386. vhost_dev_log_resize(dev, log_size);
  387. }
  388. }
  389. static bool vhost_section(MemoryRegionSection *section)
  390. {
  391. return memory_region_is_ram(section->mr);
  392. }
  393. static void vhost_begin(MemoryListener *listener)
  394. {
  395. }
  396. static void vhost_commit(MemoryListener *listener)
  397. {
  398. }
  399. static void vhost_region_add(MemoryListener *listener,
  400. MemoryRegionSection *section)
  401. {
  402. struct vhost_dev *dev = container_of(listener, struct vhost_dev,
  403. memory_listener);
  404. if (!vhost_section(section)) {
  405. return;
  406. }
  407. ++dev->n_mem_sections;
  408. dev->mem_sections = g_renew(MemoryRegionSection, dev->mem_sections,
  409. dev->n_mem_sections);
  410. dev->mem_sections[dev->n_mem_sections - 1] = *section;
  411. vhost_set_memory(listener, section, true);
  412. }
  413. static void vhost_region_del(MemoryListener *listener,
  414. MemoryRegionSection *section)
  415. {
  416. struct vhost_dev *dev = container_of(listener, struct vhost_dev,
  417. memory_listener);
  418. int i;
  419. if (!vhost_section(section)) {
  420. return;
  421. }
  422. vhost_set_memory(listener, section, false);
  423. for (i = 0; i < dev->n_mem_sections; ++i) {
  424. if (dev->mem_sections[i].offset_within_address_space
  425. == section->offset_within_address_space) {
  426. --dev->n_mem_sections;
  427. memmove(&dev->mem_sections[i], &dev->mem_sections[i+1],
  428. (dev->n_mem_sections - i) * sizeof(*dev->mem_sections));
  429. break;
  430. }
  431. }
  432. }
  433. static void vhost_region_nop(MemoryListener *listener,
  434. MemoryRegionSection *section)
  435. {
  436. }
  437. static int vhost_virtqueue_set_addr(struct vhost_dev *dev,
  438. struct vhost_virtqueue *vq,
  439. unsigned idx, bool enable_log)
  440. {
  441. struct vhost_vring_addr addr = {
  442. .index = idx,
  443. .desc_user_addr = (uint64_t)(unsigned long)vq->desc,
  444. .avail_user_addr = (uint64_t)(unsigned long)vq->avail,
  445. .used_user_addr = (uint64_t)(unsigned long)vq->used,
  446. .log_guest_addr = vq->used_phys,
  447. .flags = enable_log ? (1 << VHOST_VRING_F_LOG) : 0,
  448. };
  449. int r = ioctl(dev->control, VHOST_SET_VRING_ADDR, &addr);
  450. if (r < 0) {
  451. return -errno;
  452. }
  453. return 0;
  454. }
  455. static int vhost_dev_set_features(struct vhost_dev *dev, bool enable_log)
  456. {
  457. uint64_t features = dev->acked_features;
  458. int r;
  459. if (enable_log) {
  460. features |= 0x1 << VHOST_F_LOG_ALL;
  461. }
  462. r = ioctl(dev->control, VHOST_SET_FEATURES, &features);
  463. return r < 0 ? -errno : 0;
  464. }
  465. static int vhost_dev_set_log(struct vhost_dev *dev, bool enable_log)
  466. {
  467. int r, t, i;
  468. r = vhost_dev_set_features(dev, enable_log);
  469. if (r < 0) {
  470. goto err_features;
  471. }
  472. for (i = 0; i < dev->nvqs; ++i) {
  473. r = vhost_virtqueue_set_addr(dev, dev->vqs + i, i,
  474. enable_log);
  475. if (r < 0) {
  476. goto err_vq;
  477. }
  478. }
  479. return 0;
  480. err_vq:
  481. for (; i >= 0; --i) {
  482. t = vhost_virtqueue_set_addr(dev, dev->vqs + i, i,
  483. dev->log_enabled);
  484. assert(t >= 0);
  485. }
  486. t = vhost_dev_set_features(dev, dev->log_enabled);
  487. assert(t >= 0);
  488. err_features:
  489. return r;
  490. }
  491. static int vhost_migration_log(MemoryListener *listener, int enable)
  492. {
  493. struct vhost_dev *dev = container_of(listener, struct vhost_dev,
  494. memory_listener);
  495. int r;
  496. if (!!enable == dev->log_enabled) {
  497. return 0;
  498. }
  499. if (!dev->started) {
  500. dev->log_enabled = enable;
  501. return 0;
  502. }
  503. if (!enable) {
  504. r = vhost_dev_set_log(dev, false);
  505. if (r < 0) {
  506. return r;
  507. }
  508. if (dev->log) {
  509. g_free(dev->log);
  510. }
  511. dev->log = NULL;
  512. dev->log_size = 0;
  513. } else {
  514. vhost_dev_log_resize(dev, vhost_get_log_size(dev));
  515. r = vhost_dev_set_log(dev, true);
  516. if (r < 0) {
  517. return r;
  518. }
  519. }
  520. dev->log_enabled = enable;
  521. return 0;
  522. }
  523. static void vhost_log_global_start(MemoryListener *listener)
  524. {
  525. int r;
  526. r = vhost_migration_log(listener, true);
  527. if (r < 0) {
  528. abort();
  529. }
  530. }
  531. static void vhost_log_global_stop(MemoryListener *listener)
  532. {
  533. int r;
  534. r = vhost_migration_log(listener, false);
  535. if (r < 0) {
  536. abort();
  537. }
  538. }
  539. static void vhost_log_start(MemoryListener *listener,
  540. MemoryRegionSection *section)
  541. {
  542. /* FIXME: implement */
  543. }
  544. static void vhost_log_stop(MemoryListener *listener,
  545. MemoryRegionSection *section)
  546. {
  547. /* FIXME: implement */
  548. }
  549. static int vhost_virtqueue_start(struct vhost_dev *dev,
  550. struct VirtIODevice *vdev,
  551. struct vhost_virtqueue *vq,
  552. unsigned idx)
  553. {
  554. hwaddr s, l, a;
  555. int r;
  556. int vhost_vq_index = idx - dev->vq_index;
  557. struct vhost_vring_file file = {
  558. .index = vhost_vq_index
  559. };
  560. struct vhost_vring_state state = {
  561. .index = vhost_vq_index
  562. };
  563. struct VirtQueue *vvq = virtio_get_queue(vdev, idx);
  564. assert(idx >= dev->vq_index && idx < dev->vq_index + dev->nvqs);
  565. vq->num = state.num = virtio_queue_get_num(vdev, idx);
  566. r = ioctl(dev->control, VHOST_SET_VRING_NUM, &state);
  567. if (r) {
  568. return -errno;
  569. }
  570. state.num = virtio_queue_get_last_avail_idx(vdev, idx);
  571. r = ioctl(dev->control, VHOST_SET_VRING_BASE, &state);
  572. if (r) {
  573. return -errno;
  574. }
  575. s = l = virtio_queue_get_desc_size(vdev, idx);
  576. a = virtio_queue_get_desc_addr(vdev, idx);
  577. vq->desc = cpu_physical_memory_map(a, &l, 0);
  578. if (!vq->desc || l != s) {
  579. r = -ENOMEM;
  580. goto fail_alloc_desc;
  581. }
  582. s = l = virtio_queue_get_avail_size(vdev, idx);
  583. a = virtio_queue_get_avail_addr(vdev, idx);
  584. vq->avail = cpu_physical_memory_map(a, &l, 0);
  585. if (!vq->avail || l != s) {
  586. r = -ENOMEM;
  587. goto fail_alloc_avail;
  588. }
  589. vq->used_size = s = l = virtio_queue_get_used_size(vdev, idx);
  590. vq->used_phys = a = virtio_queue_get_used_addr(vdev, idx);
  591. vq->used = cpu_physical_memory_map(a, &l, 1);
  592. if (!vq->used || l != s) {
  593. r = -ENOMEM;
  594. goto fail_alloc_used;
  595. }
  596. vq->ring_size = s = l = virtio_queue_get_ring_size(vdev, idx);
  597. vq->ring_phys = a = virtio_queue_get_ring_addr(vdev, idx);
  598. vq->ring = cpu_physical_memory_map(a, &l, 1);
  599. if (!vq->ring || l != s) {
  600. r = -ENOMEM;
  601. goto fail_alloc_ring;
  602. }
  603. r = vhost_virtqueue_set_addr(dev, vq, vhost_vq_index, dev->log_enabled);
  604. if (r < 0) {
  605. r = -errno;
  606. goto fail_alloc;
  607. }
  608. file.fd = event_notifier_get_fd(virtio_queue_get_host_notifier(vvq));
  609. r = ioctl(dev->control, VHOST_SET_VRING_KICK, &file);
  610. if (r) {
  611. r = -errno;
  612. goto fail_kick;
  613. }
  614. /* Clear and discard previous events if any. */
  615. event_notifier_test_and_clear(&vq->masked_notifier);
  616. return 0;
  617. fail_kick:
  618. fail_alloc:
  619. cpu_physical_memory_unmap(vq->ring, virtio_queue_get_ring_size(vdev, idx),
  620. 0, 0);
  621. fail_alloc_ring:
  622. cpu_physical_memory_unmap(vq->used, virtio_queue_get_used_size(vdev, idx),
  623. 0, 0);
  624. fail_alloc_used:
  625. cpu_physical_memory_unmap(vq->avail, virtio_queue_get_avail_size(vdev, idx),
  626. 0, 0);
  627. fail_alloc_avail:
  628. cpu_physical_memory_unmap(vq->desc, virtio_queue_get_desc_size(vdev, idx),
  629. 0, 0);
  630. fail_alloc_desc:
  631. return r;
  632. }
  633. static void vhost_virtqueue_stop(struct vhost_dev *dev,
  634. struct VirtIODevice *vdev,
  635. struct vhost_virtqueue *vq,
  636. unsigned idx)
  637. {
  638. struct vhost_vring_state state = {
  639. .index = idx - dev->vq_index
  640. };
  641. int r;
  642. assert(idx >= dev->vq_index && idx < dev->vq_index + dev->nvqs);
  643. r = ioctl(dev->control, VHOST_GET_VRING_BASE, &state);
  644. if (r < 0) {
  645. fprintf(stderr, "vhost VQ %d ring restore failed: %d\n", idx, r);
  646. fflush(stderr);
  647. }
  648. virtio_queue_set_last_avail_idx(vdev, idx, state.num);
  649. assert (r >= 0);
  650. cpu_physical_memory_unmap(vq->ring, virtio_queue_get_ring_size(vdev, idx),
  651. 0, virtio_queue_get_ring_size(vdev, idx));
  652. cpu_physical_memory_unmap(vq->used, virtio_queue_get_used_size(vdev, idx),
  653. 1, virtio_queue_get_used_size(vdev, idx));
  654. cpu_physical_memory_unmap(vq->avail, virtio_queue_get_avail_size(vdev, idx),
  655. 0, virtio_queue_get_avail_size(vdev, idx));
  656. cpu_physical_memory_unmap(vq->desc, virtio_queue_get_desc_size(vdev, idx),
  657. 0, virtio_queue_get_desc_size(vdev, idx));
  658. }
  659. static void vhost_eventfd_add(MemoryListener *listener,
  660. MemoryRegionSection *section,
  661. bool match_data, uint64_t data, EventNotifier *e)
  662. {
  663. }
  664. static void vhost_eventfd_del(MemoryListener *listener,
  665. MemoryRegionSection *section,
  666. bool match_data, uint64_t data, EventNotifier *e)
  667. {
  668. }
  669. static int vhost_virtqueue_init(struct vhost_dev *dev,
  670. struct vhost_virtqueue *vq, int n)
  671. {
  672. struct vhost_vring_file file = {
  673. .index = n,
  674. };
  675. int r = event_notifier_init(&vq->masked_notifier, 0);
  676. if (r < 0) {
  677. return r;
  678. }
  679. file.fd = event_notifier_get_fd(&vq->masked_notifier);
  680. r = ioctl(dev->control, VHOST_SET_VRING_CALL, &file);
  681. if (r) {
  682. r = -errno;
  683. goto fail_call;
  684. }
  685. return 0;
  686. fail_call:
  687. event_notifier_cleanup(&vq->masked_notifier);
  688. return r;
  689. }
  690. static void vhost_virtqueue_cleanup(struct vhost_virtqueue *vq)
  691. {
  692. event_notifier_cleanup(&vq->masked_notifier);
  693. }
  694. int vhost_dev_init(struct vhost_dev *hdev, int devfd, const char *devpath,
  695. bool force)
  696. {
  697. uint64_t features;
  698. int i, r;
  699. if (devfd >= 0) {
  700. hdev->control = devfd;
  701. } else {
  702. hdev->control = open(devpath, O_RDWR);
  703. if (hdev->control < 0) {
  704. return -errno;
  705. }
  706. }
  707. r = ioctl(hdev->control, VHOST_SET_OWNER, NULL);
  708. if (r < 0) {
  709. goto fail;
  710. }
  711. r = ioctl(hdev->control, VHOST_GET_FEATURES, &features);
  712. if (r < 0) {
  713. goto fail;
  714. }
  715. for (i = 0; i < hdev->nvqs; ++i) {
  716. r = vhost_virtqueue_init(hdev, hdev->vqs + i, i);
  717. if (r < 0) {
  718. goto fail_vq;
  719. }
  720. }
  721. hdev->features = features;
  722. hdev->memory_listener = (MemoryListener) {
  723. .begin = vhost_begin,
  724. .commit = vhost_commit,
  725. .region_add = vhost_region_add,
  726. .region_del = vhost_region_del,
  727. .region_nop = vhost_region_nop,
  728. .log_start = vhost_log_start,
  729. .log_stop = vhost_log_stop,
  730. .log_sync = vhost_log_sync,
  731. .log_global_start = vhost_log_global_start,
  732. .log_global_stop = vhost_log_global_stop,
  733. .eventfd_add = vhost_eventfd_add,
  734. .eventfd_del = vhost_eventfd_del,
  735. .priority = 10
  736. };
  737. hdev->mem = g_malloc0(offsetof(struct vhost_memory, regions));
  738. hdev->n_mem_sections = 0;
  739. hdev->mem_sections = NULL;
  740. hdev->log = NULL;
  741. hdev->log_size = 0;
  742. hdev->log_enabled = false;
  743. hdev->started = false;
  744. memory_listener_register(&hdev->memory_listener, &address_space_memory);
  745. hdev->force = force;
  746. return 0;
  747. fail_vq:
  748. while (--i >= 0) {
  749. vhost_virtqueue_cleanup(hdev->vqs + i);
  750. }
  751. fail:
  752. r = -errno;
  753. close(hdev->control);
  754. return r;
  755. }
  756. void vhost_dev_cleanup(struct vhost_dev *hdev)
  757. {
  758. int i;
  759. for (i = 0; i < hdev->nvqs; ++i) {
  760. vhost_virtqueue_cleanup(hdev->vqs + i);
  761. }
  762. memory_listener_unregister(&hdev->memory_listener);
  763. g_free(hdev->mem);
  764. g_free(hdev->mem_sections);
  765. close(hdev->control);
  766. }
  767. bool vhost_dev_query(struct vhost_dev *hdev, VirtIODevice *vdev)
  768. {
  769. return !vdev->binding->query_guest_notifiers ||
  770. vdev->binding->query_guest_notifiers(vdev->binding_opaque) ||
  771. hdev->force;
  772. }
  773. /* Stop processing guest IO notifications in qemu.
  774. * Start processing them in vhost in kernel.
  775. */
  776. int vhost_dev_enable_notifiers(struct vhost_dev *hdev, VirtIODevice *vdev)
  777. {
  778. int i, r;
  779. if (!vdev->binding->set_host_notifier) {
  780. fprintf(stderr, "binding does not support host notifiers\n");
  781. r = -ENOSYS;
  782. goto fail;
  783. }
  784. for (i = 0; i < hdev->nvqs; ++i) {
  785. r = vdev->binding->set_host_notifier(vdev->binding_opaque,
  786. hdev->vq_index + i,
  787. true);
  788. if (r < 0) {
  789. fprintf(stderr, "vhost VQ %d notifier binding failed: %d\n", i, -r);
  790. goto fail_vq;
  791. }
  792. }
  793. return 0;
  794. fail_vq:
  795. while (--i >= 0) {
  796. r = vdev->binding->set_host_notifier(vdev->binding_opaque,
  797. hdev->vq_index + i,
  798. false);
  799. if (r < 0) {
  800. fprintf(stderr, "vhost VQ %d notifier cleanup error: %d\n", i, -r);
  801. fflush(stderr);
  802. }
  803. assert (r >= 0);
  804. }
  805. fail:
  806. return r;
  807. }
  808. /* Stop processing guest IO notifications in vhost.
  809. * Start processing them in qemu.
  810. * This might actually run the qemu handlers right away,
  811. * so virtio in qemu must be completely setup when this is called.
  812. */
  813. void vhost_dev_disable_notifiers(struct vhost_dev *hdev, VirtIODevice *vdev)
  814. {
  815. int i, r;
  816. for (i = 0; i < hdev->nvqs; ++i) {
  817. r = vdev->binding->set_host_notifier(vdev->binding_opaque,
  818. hdev->vq_index + i,
  819. false);
  820. if (r < 0) {
  821. fprintf(stderr, "vhost VQ %d notifier cleanup failed: %d\n", i, -r);
  822. fflush(stderr);
  823. }
  824. assert (r >= 0);
  825. }
  826. }
  827. /* Test and clear event pending status.
  828. * Should be called after unmask to avoid losing events.
  829. */
  830. bool vhost_virtqueue_pending(struct vhost_dev *hdev, int n)
  831. {
  832. struct vhost_virtqueue *vq = hdev->vqs + n - hdev->vq_index;
  833. assert(hdev->started);
  834. assert(n >= hdev->vq_index && n < hdev->vq_index + hdev->nvqs);
  835. return event_notifier_test_and_clear(&vq->masked_notifier);
  836. }
  837. /* Mask/unmask events from this vq. */
  838. void vhost_virtqueue_mask(struct vhost_dev *hdev, VirtIODevice *vdev, int n,
  839. bool mask)
  840. {
  841. struct VirtQueue *vvq = virtio_get_queue(vdev, n);
  842. int r, index = n - hdev->vq_index;
  843. assert(hdev->started);
  844. assert(n >= hdev->vq_index && n < hdev->vq_index + hdev->nvqs);
  845. struct vhost_vring_file file = {
  846. .index = index
  847. };
  848. if (mask) {
  849. file.fd = event_notifier_get_fd(&hdev->vqs[index].masked_notifier);
  850. } else {
  851. file.fd = event_notifier_get_fd(virtio_queue_get_guest_notifier(vvq));
  852. }
  853. r = ioctl(hdev->control, VHOST_SET_VRING_CALL, &file);
  854. assert(r >= 0);
  855. }
  856. /* Host notifiers must be enabled at this point. */
  857. int vhost_dev_start(struct vhost_dev *hdev, VirtIODevice *vdev)
  858. {
  859. int i, r;
  860. hdev->started = true;
  861. r = vhost_dev_set_features(hdev, hdev->log_enabled);
  862. if (r < 0) {
  863. goto fail_features;
  864. }
  865. r = ioctl(hdev->control, VHOST_SET_MEM_TABLE, hdev->mem);
  866. if (r < 0) {
  867. r = -errno;
  868. goto fail_mem;
  869. }
  870. for (i = 0; i < hdev->nvqs; ++i) {
  871. r = vhost_virtqueue_start(hdev,
  872. vdev,
  873. hdev->vqs + i,
  874. hdev->vq_index + i);
  875. if (r < 0) {
  876. goto fail_vq;
  877. }
  878. }
  879. if (hdev->log_enabled) {
  880. hdev->log_size = vhost_get_log_size(hdev);
  881. hdev->log = hdev->log_size ?
  882. g_malloc0(hdev->log_size * sizeof *hdev->log) : NULL;
  883. r = ioctl(hdev->control, VHOST_SET_LOG_BASE,
  884. (uint64_t)(unsigned long)hdev->log);
  885. if (r < 0) {
  886. r = -errno;
  887. goto fail_log;
  888. }
  889. }
  890. return 0;
  891. fail_log:
  892. fail_vq:
  893. while (--i >= 0) {
  894. vhost_virtqueue_stop(hdev,
  895. vdev,
  896. hdev->vqs + i,
  897. hdev->vq_index + i);
  898. }
  899. i = hdev->nvqs;
  900. fail_mem:
  901. fail_features:
  902. hdev->started = false;
  903. return r;
  904. }
  905. /* Host notifiers must be enabled at this point. */
  906. void vhost_dev_stop(struct vhost_dev *hdev, VirtIODevice *vdev)
  907. {
  908. int i;
  909. for (i = 0; i < hdev->nvqs; ++i) {
  910. vhost_virtqueue_stop(hdev,
  911. vdev,
  912. hdev->vqs + i,
  913. hdev->vq_index + i);
  914. }
  915. for (i = 0; i < hdev->n_mem_sections; ++i) {
  916. vhost_sync_dirty_bitmap(hdev, &hdev->mem_sections[i],
  917. 0, (hwaddr)~0x0ull);
  918. }
  919. hdev->started = false;
  920. g_free(hdev->log);
  921. hdev->log = NULL;
  922. hdev->log_size = 0;
  923. }