2
0

omap1.c 116 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056
  1. /*
  2. * TI OMAP processors emulation.
  3. *
  4. * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 or
  9. * (at your option) version 3 of the License.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along
  17. * with this program; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "hw.h"
  20. #include "arm-misc.h"
  21. #include "omap.h"
  22. #include "sysemu/sysemu.h"
  23. #include "soc_dma.h"
  24. #include "sysemu/blockdev.h"
  25. #include "qemu/range.h"
  26. #include "sysbus.h"
  27. /* Should signal the TCMI/GPMC */
  28. uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
  29. {
  30. uint8_t ret;
  31. OMAP_8B_REG(addr);
  32. cpu_physical_memory_read(addr, (void *) &ret, 1);
  33. return ret;
  34. }
  35. void omap_badwidth_write8(void *opaque, hwaddr addr,
  36. uint32_t value)
  37. {
  38. uint8_t val8 = value;
  39. OMAP_8B_REG(addr);
  40. cpu_physical_memory_write(addr, (void *) &val8, 1);
  41. }
  42. uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
  43. {
  44. uint16_t ret;
  45. OMAP_16B_REG(addr);
  46. cpu_physical_memory_read(addr, (void *) &ret, 2);
  47. return ret;
  48. }
  49. void omap_badwidth_write16(void *opaque, hwaddr addr,
  50. uint32_t value)
  51. {
  52. uint16_t val16 = value;
  53. OMAP_16B_REG(addr);
  54. cpu_physical_memory_write(addr, (void *) &val16, 2);
  55. }
  56. uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
  57. {
  58. uint32_t ret;
  59. OMAP_32B_REG(addr);
  60. cpu_physical_memory_read(addr, (void *) &ret, 4);
  61. return ret;
  62. }
  63. void omap_badwidth_write32(void *opaque, hwaddr addr,
  64. uint32_t value)
  65. {
  66. OMAP_32B_REG(addr);
  67. cpu_physical_memory_write(addr, (void *) &value, 4);
  68. }
  69. /* MPU OS timers */
  70. struct omap_mpu_timer_s {
  71. MemoryRegion iomem;
  72. qemu_irq irq;
  73. omap_clk clk;
  74. uint32_t val;
  75. int64_t time;
  76. QEMUTimer *timer;
  77. QEMUBH *tick;
  78. int64_t rate;
  79. int it_ena;
  80. int enable;
  81. int ptv;
  82. int ar;
  83. int st;
  84. uint32_t reset_val;
  85. };
  86. static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
  87. {
  88. uint64_t distance = qemu_get_clock_ns(vm_clock) - timer->time;
  89. if (timer->st && timer->enable && timer->rate)
  90. return timer->val - muldiv64(distance >> (timer->ptv + 1),
  91. timer->rate, get_ticks_per_sec());
  92. else
  93. return timer->val;
  94. }
  95. static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
  96. {
  97. timer->val = omap_timer_read(timer);
  98. timer->time = qemu_get_clock_ns(vm_clock);
  99. }
  100. static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
  101. {
  102. int64_t expires;
  103. if (timer->enable && timer->st && timer->rate) {
  104. timer->val = timer->reset_val; /* Should skip this on clk enable */
  105. expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
  106. get_ticks_per_sec(), timer->rate);
  107. /* If timer expiry would be sooner than in about 1 ms and
  108. * auto-reload isn't set, then fire immediately. This is a hack
  109. * to make systems like PalmOS run in acceptable time. PalmOS
  110. * sets the interval to a very low value and polls the status bit
  111. * in a busy loop when it wants to sleep just a couple of CPU
  112. * ticks. */
  113. if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
  114. qemu_mod_timer(timer->timer, timer->time + expires);
  115. else
  116. qemu_bh_schedule(timer->tick);
  117. } else
  118. qemu_del_timer(timer->timer);
  119. }
  120. static void omap_timer_fire(void *opaque)
  121. {
  122. struct omap_mpu_timer_s *timer = opaque;
  123. if (!timer->ar) {
  124. timer->val = 0;
  125. timer->st = 0;
  126. }
  127. if (timer->it_ena)
  128. /* Edge-triggered irq */
  129. qemu_irq_pulse(timer->irq);
  130. }
  131. static void omap_timer_tick(void *opaque)
  132. {
  133. struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
  134. omap_timer_sync(timer);
  135. omap_timer_fire(timer);
  136. omap_timer_update(timer);
  137. }
  138. static void omap_timer_clk_update(void *opaque, int line, int on)
  139. {
  140. struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
  141. omap_timer_sync(timer);
  142. timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
  143. omap_timer_update(timer);
  144. }
  145. static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
  146. {
  147. omap_clk_adduser(timer->clk,
  148. qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
  149. timer->rate = omap_clk_getrate(timer->clk);
  150. }
  151. static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
  152. unsigned size)
  153. {
  154. struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
  155. if (size != 4) {
  156. return omap_badwidth_read32(opaque, addr);
  157. }
  158. switch (addr) {
  159. case 0x00: /* CNTL_TIMER */
  160. return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
  161. case 0x04: /* LOAD_TIM */
  162. break;
  163. case 0x08: /* READ_TIM */
  164. return omap_timer_read(s);
  165. }
  166. OMAP_BAD_REG(addr);
  167. return 0;
  168. }
  169. static void omap_mpu_timer_write(void *opaque, hwaddr addr,
  170. uint64_t value, unsigned size)
  171. {
  172. struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
  173. if (size != 4) {
  174. return omap_badwidth_write32(opaque, addr, value);
  175. }
  176. switch (addr) {
  177. case 0x00: /* CNTL_TIMER */
  178. omap_timer_sync(s);
  179. s->enable = (value >> 5) & 1;
  180. s->ptv = (value >> 2) & 7;
  181. s->ar = (value >> 1) & 1;
  182. s->st = value & 1;
  183. omap_timer_update(s);
  184. return;
  185. case 0x04: /* LOAD_TIM */
  186. s->reset_val = value;
  187. return;
  188. case 0x08: /* READ_TIM */
  189. OMAP_RO_REG(addr);
  190. break;
  191. default:
  192. OMAP_BAD_REG(addr);
  193. }
  194. }
  195. static const MemoryRegionOps omap_mpu_timer_ops = {
  196. .read = omap_mpu_timer_read,
  197. .write = omap_mpu_timer_write,
  198. .endianness = DEVICE_LITTLE_ENDIAN,
  199. };
  200. static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
  201. {
  202. qemu_del_timer(s->timer);
  203. s->enable = 0;
  204. s->reset_val = 31337;
  205. s->val = 0;
  206. s->ptv = 0;
  207. s->ar = 0;
  208. s->st = 0;
  209. s->it_ena = 1;
  210. }
  211. static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
  212. hwaddr base,
  213. qemu_irq irq, omap_clk clk)
  214. {
  215. struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
  216. g_malloc0(sizeof(struct omap_mpu_timer_s));
  217. s->irq = irq;
  218. s->clk = clk;
  219. s->timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, s);
  220. s->tick = qemu_bh_new(omap_timer_fire, s);
  221. omap_mpu_timer_reset(s);
  222. omap_timer_clk_setup(s);
  223. memory_region_init_io(&s->iomem, &omap_mpu_timer_ops, s,
  224. "omap-mpu-timer", 0x100);
  225. memory_region_add_subregion(system_memory, base, &s->iomem);
  226. return s;
  227. }
  228. /* Watchdog timer */
  229. struct omap_watchdog_timer_s {
  230. struct omap_mpu_timer_s timer;
  231. MemoryRegion iomem;
  232. uint8_t last_wr;
  233. int mode;
  234. int free;
  235. int reset;
  236. };
  237. static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
  238. unsigned size)
  239. {
  240. struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
  241. if (size != 2) {
  242. return omap_badwidth_read16(opaque, addr);
  243. }
  244. switch (addr) {
  245. case 0x00: /* CNTL_TIMER */
  246. return (s->timer.ptv << 9) | (s->timer.ar << 8) |
  247. (s->timer.st << 7) | (s->free << 1);
  248. case 0x04: /* READ_TIMER */
  249. return omap_timer_read(&s->timer);
  250. case 0x08: /* TIMER_MODE */
  251. return s->mode << 15;
  252. }
  253. OMAP_BAD_REG(addr);
  254. return 0;
  255. }
  256. static void omap_wd_timer_write(void *opaque, hwaddr addr,
  257. uint64_t value, unsigned size)
  258. {
  259. struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
  260. if (size != 2) {
  261. return omap_badwidth_write16(opaque, addr, value);
  262. }
  263. switch (addr) {
  264. case 0x00: /* CNTL_TIMER */
  265. omap_timer_sync(&s->timer);
  266. s->timer.ptv = (value >> 9) & 7;
  267. s->timer.ar = (value >> 8) & 1;
  268. s->timer.st = (value >> 7) & 1;
  269. s->free = (value >> 1) & 1;
  270. omap_timer_update(&s->timer);
  271. break;
  272. case 0x04: /* LOAD_TIMER */
  273. s->timer.reset_val = value & 0xffff;
  274. break;
  275. case 0x08: /* TIMER_MODE */
  276. if (!s->mode && ((value >> 15) & 1))
  277. omap_clk_get(s->timer.clk);
  278. s->mode |= (value >> 15) & 1;
  279. if (s->last_wr == 0xf5) {
  280. if ((value & 0xff) == 0xa0) {
  281. if (s->mode) {
  282. s->mode = 0;
  283. omap_clk_put(s->timer.clk);
  284. }
  285. } else {
  286. /* XXX: on T|E hardware somehow this has no effect,
  287. * on Zire 71 it works as specified. */
  288. s->reset = 1;
  289. qemu_system_reset_request();
  290. }
  291. }
  292. s->last_wr = value & 0xff;
  293. break;
  294. default:
  295. OMAP_BAD_REG(addr);
  296. }
  297. }
  298. static const MemoryRegionOps omap_wd_timer_ops = {
  299. .read = omap_wd_timer_read,
  300. .write = omap_wd_timer_write,
  301. .endianness = DEVICE_NATIVE_ENDIAN,
  302. };
  303. static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
  304. {
  305. qemu_del_timer(s->timer.timer);
  306. if (!s->mode)
  307. omap_clk_get(s->timer.clk);
  308. s->mode = 1;
  309. s->free = 1;
  310. s->reset = 0;
  311. s->timer.enable = 1;
  312. s->timer.it_ena = 1;
  313. s->timer.reset_val = 0xffff;
  314. s->timer.val = 0;
  315. s->timer.st = 0;
  316. s->timer.ptv = 0;
  317. s->timer.ar = 0;
  318. omap_timer_update(&s->timer);
  319. }
  320. static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
  321. hwaddr base,
  322. qemu_irq irq, omap_clk clk)
  323. {
  324. struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
  325. g_malloc0(sizeof(struct omap_watchdog_timer_s));
  326. s->timer.irq = irq;
  327. s->timer.clk = clk;
  328. s->timer.timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, &s->timer);
  329. omap_wd_timer_reset(s);
  330. omap_timer_clk_setup(&s->timer);
  331. memory_region_init_io(&s->iomem, &omap_wd_timer_ops, s,
  332. "omap-wd-timer", 0x100);
  333. memory_region_add_subregion(memory, base, &s->iomem);
  334. return s;
  335. }
  336. /* 32-kHz timer */
  337. struct omap_32khz_timer_s {
  338. struct omap_mpu_timer_s timer;
  339. MemoryRegion iomem;
  340. };
  341. static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
  342. unsigned size)
  343. {
  344. struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
  345. int offset = addr & OMAP_MPUI_REG_MASK;
  346. if (size != 4) {
  347. return omap_badwidth_read32(opaque, addr);
  348. }
  349. switch (offset) {
  350. case 0x00: /* TVR */
  351. return s->timer.reset_val;
  352. case 0x04: /* TCR */
  353. return omap_timer_read(&s->timer);
  354. case 0x08: /* CR */
  355. return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
  356. default:
  357. break;
  358. }
  359. OMAP_BAD_REG(addr);
  360. return 0;
  361. }
  362. static void omap_os_timer_write(void *opaque, hwaddr addr,
  363. uint64_t value, unsigned size)
  364. {
  365. struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
  366. int offset = addr & OMAP_MPUI_REG_MASK;
  367. if (size != 4) {
  368. return omap_badwidth_write32(opaque, addr, value);
  369. }
  370. switch (offset) {
  371. case 0x00: /* TVR */
  372. s->timer.reset_val = value & 0x00ffffff;
  373. break;
  374. case 0x04: /* TCR */
  375. OMAP_RO_REG(addr);
  376. break;
  377. case 0x08: /* CR */
  378. s->timer.ar = (value >> 3) & 1;
  379. s->timer.it_ena = (value >> 2) & 1;
  380. if (s->timer.st != (value & 1) || (value & 2)) {
  381. omap_timer_sync(&s->timer);
  382. s->timer.enable = value & 1;
  383. s->timer.st = value & 1;
  384. omap_timer_update(&s->timer);
  385. }
  386. break;
  387. default:
  388. OMAP_BAD_REG(addr);
  389. }
  390. }
  391. static const MemoryRegionOps omap_os_timer_ops = {
  392. .read = omap_os_timer_read,
  393. .write = omap_os_timer_write,
  394. .endianness = DEVICE_NATIVE_ENDIAN,
  395. };
  396. static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
  397. {
  398. qemu_del_timer(s->timer.timer);
  399. s->timer.enable = 0;
  400. s->timer.it_ena = 0;
  401. s->timer.reset_val = 0x00ffffff;
  402. s->timer.val = 0;
  403. s->timer.st = 0;
  404. s->timer.ptv = 0;
  405. s->timer.ar = 1;
  406. }
  407. static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
  408. hwaddr base,
  409. qemu_irq irq, omap_clk clk)
  410. {
  411. struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
  412. g_malloc0(sizeof(struct omap_32khz_timer_s));
  413. s->timer.irq = irq;
  414. s->timer.clk = clk;
  415. s->timer.timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, &s->timer);
  416. omap_os_timer_reset(s);
  417. omap_timer_clk_setup(&s->timer);
  418. memory_region_init_io(&s->iomem, &omap_os_timer_ops, s,
  419. "omap-os-timer", 0x800);
  420. memory_region_add_subregion(memory, base, &s->iomem);
  421. return s;
  422. }
  423. /* Ultra Low-Power Device Module */
  424. static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
  425. unsigned size)
  426. {
  427. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  428. uint16_t ret;
  429. if (size != 2) {
  430. return omap_badwidth_read16(opaque, addr);
  431. }
  432. switch (addr) {
  433. case 0x14: /* IT_STATUS */
  434. ret = s->ulpd_pm_regs[addr >> 2];
  435. s->ulpd_pm_regs[addr >> 2] = 0;
  436. qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
  437. return ret;
  438. case 0x18: /* Reserved */
  439. case 0x1c: /* Reserved */
  440. case 0x20: /* Reserved */
  441. case 0x28: /* Reserved */
  442. case 0x2c: /* Reserved */
  443. OMAP_BAD_REG(addr);
  444. /* fall through */
  445. case 0x00: /* COUNTER_32_LSB */
  446. case 0x04: /* COUNTER_32_MSB */
  447. case 0x08: /* COUNTER_HIGH_FREQ_LSB */
  448. case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
  449. case 0x10: /* GAUGING_CTRL */
  450. case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
  451. case 0x30: /* CLOCK_CTRL */
  452. case 0x34: /* SOFT_REQ */
  453. case 0x38: /* COUNTER_32_FIQ */
  454. case 0x3c: /* DPLL_CTRL */
  455. case 0x40: /* STATUS_REQ */
  456. /* XXX: check clk::usecount state for every clock */
  457. case 0x48: /* LOCL_TIME */
  458. case 0x4c: /* APLL_CTRL */
  459. case 0x50: /* POWER_CTRL */
  460. return s->ulpd_pm_regs[addr >> 2];
  461. }
  462. OMAP_BAD_REG(addr);
  463. return 0;
  464. }
  465. static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
  466. uint16_t diff, uint16_t value)
  467. {
  468. if (diff & (1 << 4)) /* USB_MCLK_EN */
  469. omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
  470. if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
  471. omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
  472. }
  473. static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
  474. uint16_t diff, uint16_t value)
  475. {
  476. if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
  477. omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
  478. if (diff & (1 << 1)) /* SOFT_COM_REQ */
  479. omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
  480. if (diff & (1 << 2)) /* SOFT_SDW_REQ */
  481. omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
  482. if (diff & (1 << 3)) /* SOFT_USB_REQ */
  483. omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
  484. }
  485. static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
  486. uint64_t value, unsigned size)
  487. {
  488. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  489. int64_t now, ticks;
  490. int div, mult;
  491. static const int bypass_div[4] = { 1, 2, 4, 4 };
  492. uint16_t diff;
  493. if (size != 2) {
  494. return omap_badwidth_write16(opaque, addr, value);
  495. }
  496. switch (addr) {
  497. case 0x00: /* COUNTER_32_LSB */
  498. case 0x04: /* COUNTER_32_MSB */
  499. case 0x08: /* COUNTER_HIGH_FREQ_LSB */
  500. case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
  501. case 0x14: /* IT_STATUS */
  502. case 0x40: /* STATUS_REQ */
  503. OMAP_RO_REG(addr);
  504. break;
  505. case 0x10: /* GAUGING_CTRL */
  506. /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
  507. if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
  508. now = qemu_get_clock_ns(vm_clock);
  509. if (value & 1)
  510. s->ulpd_gauge_start = now;
  511. else {
  512. now -= s->ulpd_gauge_start;
  513. /* 32-kHz ticks */
  514. ticks = muldiv64(now, 32768, get_ticks_per_sec());
  515. s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
  516. s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
  517. if (ticks >> 32) /* OVERFLOW_32K */
  518. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
  519. /* High frequency ticks */
  520. ticks = muldiv64(now, 12000000, get_ticks_per_sec());
  521. s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
  522. s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
  523. if (ticks >> 32) /* OVERFLOW_HI_FREQ */
  524. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
  525. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
  526. qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
  527. }
  528. }
  529. s->ulpd_pm_regs[addr >> 2] = value;
  530. break;
  531. case 0x18: /* Reserved */
  532. case 0x1c: /* Reserved */
  533. case 0x20: /* Reserved */
  534. case 0x28: /* Reserved */
  535. case 0x2c: /* Reserved */
  536. OMAP_BAD_REG(addr);
  537. /* fall through */
  538. case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
  539. case 0x38: /* COUNTER_32_FIQ */
  540. case 0x48: /* LOCL_TIME */
  541. case 0x50: /* POWER_CTRL */
  542. s->ulpd_pm_regs[addr >> 2] = value;
  543. break;
  544. case 0x30: /* CLOCK_CTRL */
  545. diff = s->ulpd_pm_regs[addr >> 2] ^ value;
  546. s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
  547. omap_ulpd_clk_update(s, diff, value);
  548. break;
  549. case 0x34: /* SOFT_REQ */
  550. diff = s->ulpd_pm_regs[addr >> 2] ^ value;
  551. s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
  552. omap_ulpd_req_update(s, diff, value);
  553. break;
  554. case 0x3c: /* DPLL_CTRL */
  555. /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
  556. * omitted altogether, probably a typo. */
  557. /* This register has identical semantics with DPLL(1:3) control
  558. * registers, see omap_dpll_write() */
  559. diff = s->ulpd_pm_regs[addr >> 2] & value;
  560. s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
  561. if (diff & (0x3ff << 2)) {
  562. if (value & (1 << 4)) { /* PLL_ENABLE */
  563. div = ((value >> 5) & 3) + 1; /* PLL_DIV */
  564. mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
  565. } else {
  566. div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
  567. mult = 1;
  568. }
  569. omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
  570. }
  571. /* Enter the desired mode. */
  572. s->ulpd_pm_regs[addr >> 2] =
  573. (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
  574. ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
  575. /* Act as if the lock is restored. */
  576. s->ulpd_pm_regs[addr >> 2] |= 2;
  577. break;
  578. case 0x4c: /* APLL_CTRL */
  579. diff = s->ulpd_pm_regs[addr >> 2] & value;
  580. s->ulpd_pm_regs[addr >> 2] = value & 0xf;
  581. if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
  582. omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
  583. (value & (1 << 0)) ? "apll" : "dpll4"));
  584. break;
  585. default:
  586. OMAP_BAD_REG(addr);
  587. }
  588. }
  589. static const MemoryRegionOps omap_ulpd_pm_ops = {
  590. .read = omap_ulpd_pm_read,
  591. .write = omap_ulpd_pm_write,
  592. .endianness = DEVICE_NATIVE_ENDIAN,
  593. };
  594. static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
  595. {
  596. mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
  597. mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
  598. mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
  599. mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
  600. mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
  601. mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
  602. mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
  603. mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
  604. mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
  605. mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
  606. mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
  607. omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
  608. mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
  609. omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
  610. mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
  611. mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
  612. mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
  613. mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
  614. mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
  615. mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
  616. mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
  617. omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
  618. omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
  619. }
  620. static void omap_ulpd_pm_init(MemoryRegion *system_memory,
  621. hwaddr base,
  622. struct omap_mpu_state_s *mpu)
  623. {
  624. memory_region_init_io(&mpu->ulpd_pm_iomem, &omap_ulpd_pm_ops, mpu,
  625. "omap-ulpd-pm", 0x800);
  626. memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
  627. omap_ulpd_pm_reset(mpu);
  628. }
  629. /* OMAP Pin Configuration */
  630. static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
  631. unsigned size)
  632. {
  633. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  634. if (size != 4) {
  635. return omap_badwidth_read32(opaque, addr);
  636. }
  637. switch (addr) {
  638. case 0x00: /* FUNC_MUX_CTRL_0 */
  639. case 0x04: /* FUNC_MUX_CTRL_1 */
  640. case 0x08: /* FUNC_MUX_CTRL_2 */
  641. return s->func_mux_ctrl[addr >> 2];
  642. case 0x0c: /* COMP_MODE_CTRL_0 */
  643. return s->comp_mode_ctrl[0];
  644. case 0x10: /* FUNC_MUX_CTRL_3 */
  645. case 0x14: /* FUNC_MUX_CTRL_4 */
  646. case 0x18: /* FUNC_MUX_CTRL_5 */
  647. case 0x1c: /* FUNC_MUX_CTRL_6 */
  648. case 0x20: /* FUNC_MUX_CTRL_7 */
  649. case 0x24: /* FUNC_MUX_CTRL_8 */
  650. case 0x28: /* FUNC_MUX_CTRL_9 */
  651. case 0x2c: /* FUNC_MUX_CTRL_A */
  652. case 0x30: /* FUNC_MUX_CTRL_B */
  653. case 0x34: /* FUNC_MUX_CTRL_C */
  654. case 0x38: /* FUNC_MUX_CTRL_D */
  655. return s->func_mux_ctrl[(addr >> 2) - 1];
  656. case 0x40: /* PULL_DWN_CTRL_0 */
  657. case 0x44: /* PULL_DWN_CTRL_1 */
  658. case 0x48: /* PULL_DWN_CTRL_2 */
  659. case 0x4c: /* PULL_DWN_CTRL_3 */
  660. return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
  661. case 0x50: /* GATE_INH_CTRL_0 */
  662. return s->gate_inh_ctrl[0];
  663. case 0x60: /* VOLTAGE_CTRL_0 */
  664. return s->voltage_ctrl[0];
  665. case 0x70: /* TEST_DBG_CTRL_0 */
  666. return s->test_dbg_ctrl[0];
  667. case 0x80: /* MOD_CONF_CTRL_0 */
  668. return s->mod_conf_ctrl[0];
  669. }
  670. OMAP_BAD_REG(addr);
  671. return 0;
  672. }
  673. static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
  674. uint32_t diff, uint32_t value)
  675. {
  676. if (s->compat1509) {
  677. if (diff & (1 << 9)) /* BLUETOOTH */
  678. omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
  679. (~value >> 9) & 1);
  680. if (diff & (1 << 7)) /* USB.CLKO */
  681. omap_clk_onoff(omap_findclk(s, "usb.clko"),
  682. (value >> 7) & 1);
  683. }
  684. }
  685. static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
  686. uint32_t diff, uint32_t value)
  687. {
  688. if (s->compat1509) {
  689. if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
  690. omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
  691. (value >> 31) & 1);
  692. if (diff & (1 << 1)) /* CLK32K */
  693. omap_clk_onoff(omap_findclk(s, "clk32k_out"),
  694. (~value >> 1) & 1);
  695. }
  696. }
  697. static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
  698. uint32_t diff, uint32_t value)
  699. {
  700. if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
  701. omap_clk_reparent(omap_findclk(s, "uart3_ck"),
  702. omap_findclk(s, ((value >> 31) & 1) ?
  703. "ck_48m" : "armper_ck"));
  704. if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
  705. omap_clk_reparent(omap_findclk(s, "uart2_ck"),
  706. omap_findclk(s, ((value >> 30) & 1) ?
  707. "ck_48m" : "armper_ck"));
  708. if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
  709. omap_clk_reparent(omap_findclk(s, "uart1_ck"),
  710. omap_findclk(s, ((value >> 29) & 1) ?
  711. "ck_48m" : "armper_ck"));
  712. if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
  713. omap_clk_reparent(omap_findclk(s, "mmc_ck"),
  714. omap_findclk(s, ((value >> 23) & 1) ?
  715. "ck_48m" : "armper_ck"));
  716. if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
  717. omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
  718. omap_findclk(s, ((value >> 12) & 1) ?
  719. "ck_48m" : "armper_ck"));
  720. if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
  721. omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
  722. }
  723. static void omap_pin_cfg_write(void *opaque, hwaddr addr,
  724. uint64_t value, unsigned size)
  725. {
  726. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  727. uint32_t diff;
  728. if (size != 4) {
  729. return omap_badwidth_write32(opaque, addr, value);
  730. }
  731. switch (addr) {
  732. case 0x00: /* FUNC_MUX_CTRL_0 */
  733. diff = s->func_mux_ctrl[addr >> 2] ^ value;
  734. s->func_mux_ctrl[addr >> 2] = value;
  735. omap_pin_funcmux0_update(s, diff, value);
  736. return;
  737. case 0x04: /* FUNC_MUX_CTRL_1 */
  738. diff = s->func_mux_ctrl[addr >> 2] ^ value;
  739. s->func_mux_ctrl[addr >> 2] = value;
  740. omap_pin_funcmux1_update(s, diff, value);
  741. return;
  742. case 0x08: /* FUNC_MUX_CTRL_2 */
  743. s->func_mux_ctrl[addr >> 2] = value;
  744. return;
  745. case 0x0c: /* COMP_MODE_CTRL_0 */
  746. s->comp_mode_ctrl[0] = value;
  747. s->compat1509 = (value != 0x0000eaef);
  748. omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
  749. omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
  750. return;
  751. case 0x10: /* FUNC_MUX_CTRL_3 */
  752. case 0x14: /* FUNC_MUX_CTRL_4 */
  753. case 0x18: /* FUNC_MUX_CTRL_5 */
  754. case 0x1c: /* FUNC_MUX_CTRL_6 */
  755. case 0x20: /* FUNC_MUX_CTRL_7 */
  756. case 0x24: /* FUNC_MUX_CTRL_8 */
  757. case 0x28: /* FUNC_MUX_CTRL_9 */
  758. case 0x2c: /* FUNC_MUX_CTRL_A */
  759. case 0x30: /* FUNC_MUX_CTRL_B */
  760. case 0x34: /* FUNC_MUX_CTRL_C */
  761. case 0x38: /* FUNC_MUX_CTRL_D */
  762. s->func_mux_ctrl[(addr >> 2) - 1] = value;
  763. return;
  764. case 0x40: /* PULL_DWN_CTRL_0 */
  765. case 0x44: /* PULL_DWN_CTRL_1 */
  766. case 0x48: /* PULL_DWN_CTRL_2 */
  767. case 0x4c: /* PULL_DWN_CTRL_3 */
  768. s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
  769. return;
  770. case 0x50: /* GATE_INH_CTRL_0 */
  771. s->gate_inh_ctrl[0] = value;
  772. return;
  773. case 0x60: /* VOLTAGE_CTRL_0 */
  774. s->voltage_ctrl[0] = value;
  775. return;
  776. case 0x70: /* TEST_DBG_CTRL_0 */
  777. s->test_dbg_ctrl[0] = value;
  778. return;
  779. case 0x80: /* MOD_CONF_CTRL_0 */
  780. diff = s->mod_conf_ctrl[0] ^ value;
  781. s->mod_conf_ctrl[0] = value;
  782. omap_pin_modconf1_update(s, diff, value);
  783. return;
  784. default:
  785. OMAP_BAD_REG(addr);
  786. }
  787. }
  788. static const MemoryRegionOps omap_pin_cfg_ops = {
  789. .read = omap_pin_cfg_read,
  790. .write = omap_pin_cfg_write,
  791. .endianness = DEVICE_NATIVE_ENDIAN,
  792. };
  793. static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
  794. {
  795. /* Start in Compatibility Mode. */
  796. mpu->compat1509 = 1;
  797. omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
  798. omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
  799. omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
  800. memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
  801. memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
  802. memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
  803. memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
  804. memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
  805. memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
  806. memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
  807. }
  808. static void omap_pin_cfg_init(MemoryRegion *system_memory,
  809. hwaddr base,
  810. struct omap_mpu_state_s *mpu)
  811. {
  812. memory_region_init_io(&mpu->pin_cfg_iomem, &omap_pin_cfg_ops, mpu,
  813. "omap-pin-cfg", 0x800);
  814. memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
  815. omap_pin_cfg_reset(mpu);
  816. }
  817. /* Device Identification, Die Identification */
  818. static uint64_t omap_id_read(void *opaque, hwaddr addr,
  819. unsigned size)
  820. {
  821. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  822. if (size != 4) {
  823. return omap_badwidth_read32(opaque, addr);
  824. }
  825. switch (addr) {
  826. case 0xfffe1800: /* DIE_ID_LSB */
  827. return 0xc9581f0e;
  828. case 0xfffe1804: /* DIE_ID_MSB */
  829. return 0xa8858bfa;
  830. case 0xfffe2000: /* PRODUCT_ID_LSB */
  831. return 0x00aaaafc;
  832. case 0xfffe2004: /* PRODUCT_ID_MSB */
  833. return 0xcafeb574;
  834. case 0xfffed400: /* JTAG_ID_LSB */
  835. switch (s->mpu_model) {
  836. case omap310:
  837. return 0x03310315;
  838. case omap1510:
  839. return 0x03310115;
  840. default:
  841. hw_error("%s: bad mpu model\n", __FUNCTION__);
  842. }
  843. break;
  844. case 0xfffed404: /* JTAG_ID_MSB */
  845. switch (s->mpu_model) {
  846. case omap310:
  847. return 0xfb57402f;
  848. case omap1510:
  849. return 0xfb47002f;
  850. default:
  851. hw_error("%s: bad mpu model\n", __FUNCTION__);
  852. }
  853. break;
  854. }
  855. OMAP_BAD_REG(addr);
  856. return 0;
  857. }
  858. static void omap_id_write(void *opaque, hwaddr addr,
  859. uint64_t value, unsigned size)
  860. {
  861. if (size != 4) {
  862. return omap_badwidth_write32(opaque, addr, value);
  863. }
  864. OMAP_BAD_REG(addr);
  865. }
  866. static const MemoryRegionOps omap_id_ops = {
  867. .read = omap_id_read,
  868. .write = omap_id_write,
  869. .endianness = DEVICE_NATIVE_ENDIAN,
  870. };
  871. static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
  872. {
  873. memory_region_init_io(&mpu->id_iomem, &omap_id_ops, mpu,
  874. "omap-id", 0x100000000ULL);
  875. memory_region_init_alias(&mpu->id_iomem_e18, "omap-id-e18", &mpu->id_iomem,
  876. 0xfffe1800, 0x800);
  877. memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
  878. memory_region_init_alias(&mpu->id_iomem_ed4, "omap-id-ed4", &mpu->id_iomem,
  879. 0xfffed400, 0x100);
  880. memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
  881. if (!cpu_is_omap15xx(mpu)) {
  882. memory_region_init_alias(&mpu->id_iomem_ed4, "omap-id-e20",
  883. &mpu->id_iomem, 0xfffe2000, 0x800);
  884. memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
  885. }
  886. }
  887. /* MPUI Control (Dummy) */
  888. static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
  889. unsigned size)
  890. {
  891. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  892. if (size != 4) {
  893. return omap_badwidth_read32(opaque, addr);
  894. }
  895. switch (addr) {
  896. case 0x00: /* CTRL */
  897. return s->mpui_ctrl;
  898. case 0x04: /* DEBUG_ADDR */
  899. return 0x01ffffff;
  900. case 0x08: /* DEBUG_DATA */
  901. return 0xffffffff;
  902. case 0x0c: /* DEBUG_FLAG */
  903. return 0x00000800;
  904. case 0x10: /* STATUS */
  905. return 0x00000000;
  906. /* Not in OMAP310 */
  907. case 0x14: /* DSP_STATUS */
  908. case 0x18: /* DSP_BOOT_CONFIG */
  909. return 0x00000000;
  910. case 0x1c: /* DSP_MPUI_CONFIG */
  911. return 0x0000ffff;
  912. }
  913. OMAP_BAD_REG(addr);
  914. return 0;
  915. }
  916. static void omap_mpui_write(void *opaque, hwaddr addr,
  917. uint64_t value, unsigned size)
  918. {
  919. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  920. if (size != 4) {
  921. return omap_badwidth_write32(opaque, addr, value);
  922. }
  923. switch (addr) {
  924. case 0x00: /* CTRL */
  925. s->mpui_ctrl = value & 0x007fffff;
  926. break;
  927. case 0x04: /* DEBUG_ADDR */
  928. case 0x08: /* DEBUG_DATA */
  929. case 0x0c: /* DEBUG_FLAG */
  930. case 0x10: /* STATUS */
  931. /* Not in OMAP310 */
  932. case 0x14: /* DSP_STATUS */
  933. OMAP_RO_REG(addr);
  934. break;
  935. case 0x18: /* DSP_BOOT_CONFIG */
  936. case 0x1c: /* DSP_MPUI_CONFIG */
  937. break;
  938. default:
  939. OMAP_BAD_REG(addr);
  940. }
  941. }
  942. static const MemoryRegionOps omap_mpui_ops = {
  943. .read = omap_mpui_read,
  944. .write = omap_mpui_write,
  945. .endianness = DEVICE_NATIVE_ENDIAN,
  946. };
  947. static void omap_mpui_reset(struct omap_mpu_state_s *s)
  948. {
  949. s->mpui_ctrl = 0x0003ff1b;
  950. }
  951. static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
  952. struct omap_mpu_state_s *mpu)
  953. {
  954. memory_region_init_io(&mpu->mpui_iomem, &omap_mpui_ops, mpu,
  955. "omap-mpui", 0x100);
  956. memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
  957. omap_mpui_reset(mpu);
  958. }
  959. /* TIPB Bridges */
  960. struct omap_tipb_bridge_s {
  961. qemu_irq abort;
  962. MemoryRegion iomem;
  963. int width_intr;
  964. uint16_t control;
  965. uint16_t alloc;
  966. uint16_t buffer;
  967. uint16_t enh_control;
  968. };
  969. static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
  970. unsigned size)
  971. {
  972. struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
  973. if (size < 2) {
  974. return omap_badwidth_read16(opaque, addr);
  975. }
  976. switch (addr) {
  977. case 0x00: /* TIPB_CNTL */
  978. return s->control;
  979. case 0x04: /* TIPB_BUS_ALLOC */
  980. return s->alloc;
  981. case 0x08: /* MPU_TIPB_CNTL */
  982. return s->buffer;
  983. case 0x0c: /* ENHANCED_TIPB_CNTL */
  984. return s->enh_control;
  985. case 0x10: /* ADDRESS_DBG */
  986. case 0x14: /* DATA_DEBUG_LOW */
  987. case 0x18: /* DATA_DEBUG_HIGH */
  988. return 0xffff;
  989. case 0x1c: /* DEBUG_CNTR_SIG */
  990. return 0x00f8;
  991. }
  992. OMAP_BAD_REG(addr);
  993. return 0;
  994. }
  995. static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
  996. uint64_t value, unsigned size)
  997. {
  998. struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
  999. if (size < 2) {
  1000. return omap_badwidth_write16(opaque, addr, value);
  1001. }
  1002. switch (addr) {
  1003. case 0x00: /* TIPB_CNTL */
  1004. s->control = value & 0xffff;
  1005. break;
  1006. case 0x04: /* TIPB_BUS_ALLOC */
  1007. s->alloc = value & 0x003f;
  1008. break;
  1009. case 0x08: /* MPU_TIPB_CNTL */
  1010. s->buffer = value & 0x0003;
  1011. break;
  1012. case 0x0c: /* ENHANCED_TIPB_CNTL */
  1013. s->width_intr = !(value & 2);
  1014. s->enh_control = value & 0x000f;
  1015. break;
  1016. case 0x10: /* ADDRESS_DBG */
  1017. case 0x14: /* DATA_DEBUG_LOW */
  1018. case 0x18: /* DATA_DEBUG_HIGH */
  1019. case 0x1c: /* DEBUG_CNTR_SIG */
  1020. OMAP_RO_REG(addr);
  1021. break;
  1022. default:
  1023. OMAP_BAD_REG(addr);
  1024. }
  1025. }
  1026. static const MemoryRegionOps omap_tipb_bridge_ops = {
  1027. .read = omap_tipb_bridge_read,
  1028. .write = omap_tipb_bridge_write,
  1029. .endianness = DEVICE_NATIVE_ENDIAN,
  1030. };
  1031. static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
  1032. {
  1033. s->control = 0xffff;
  1034. s->alloc = 0x0009;
  1035. s->buffer = 0x0000;
  1036. s->enh_control = 0x000f;
  1037. }
  1038. static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
  1039. MemoryRegion *memory, hwaddr base,
  1040. qemu_irq abort_irq, omap_clk clk)
  1041. {
  1042. struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
  1043. g_malloc0(sizeof(struct omap_tipb_bridge_s));
  1044. s->abort = abort_irq;
  1045. omap_tipb_bridge_reset(s);
  1046. memory_region_init_io(&s->iomem, &omap_tipb_bridge_ops, s,
  1047. "omap-tipb-bridge", 0x100);
  1048. memory_region_add_subregion(memory, base, &s->iomem);
  1049. return s;
  1050. }
  1051. /* Dummy Traffic Controller's Memory Interface */
  1052. static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
  1053. unsigned size)
  1054. {
  1055. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1056. uint32_t ret;
  1057. if (size != 4) {
  1058. return omap_badwidth_read32(opaque, addr);
  1059. }
  1060. switch (addr) {
  1061. case 0x00: /* IMIF_PRIO */
  1062. case 0x04: /* EMIFS_PRIO */
  1063. case 0x08: /* EMIFF_PRIO */
  1064. case 0x0c: /* EMIFS_CONFIG */
  1065. case 0x10: /* EMIFS_CS0_CONFIG */
  1066. case 0x14: /* EMIFS_CS1_CONFIG */
  1067. case 0x18: /* EMIFS_CS2_CONFIG */
  1068. case 0x1c: /* EMIFS_CS3_CONFIG */
  1069. case 0x24: /* EMIFF_MRS */
  1070. case 0x28: /* TIMEOUT1 */
  1071. case 0x2c: /* TIMEOUT2 */
  1072. case 0x30: /* TIMEOUT3 */
  1073. case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
  1074. case 0x40: /* EMIFS_CFG_DYN_WAIT */
  1075. return s->tcmi_regs[addr >> 2];
  1076. case 0x20: /* EMIFF_SDRAM_CONFIG */
  1077. ret = s->tcmi_regs[addr >> 2];
  1078. s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
  1079. /* XXX: We can try using the VGA_DIRTY flag for this */
  1080. return ret;
  1081. }
  1082. OMAP_BAD_REG(addr);
  1083. return 0;
  1084. }
  1085. static void omap_tcmi_write(void *opaque, hwaddr addr,
  1086. uint64_t value, unsigned size)
  1087. {
  1088. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1089. if (size != 4) {
  1090. return omap_badwidth_write32(opaque, addr, value);
  1091. }
  1092. switch (addr) {
  1093. case 0x00: /* IMIF_PRIO */
  1094. case 0x04: /* EMIFS_PRIO */
  1095. case 0x08: /* EMIFF_PRIO */
  1096. case 0x10: /* EMIFS_CS0_CONFIG */
  1097. case 0x14: /* EMIFS_CS1_CONFIG */
  1098. case 0x18: /* EMIFS_CS2_CONFIG */
  1099. case 0x1c: /* EMIFS_CS3_CONFIG */
  1100. case 0x20: /* EMIFF_SDRAM_CONFIG */
  1101. case 0x24: /* EMIFF_MRS */
  1102. case 0x28: /* TIMEOUT1 */
  1103. case 0x2c: /* TIMEOUT2 */
  1104. case 0x30: /* TIMEOUT3 */
  1105. case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
  1106. case 0x40: /* EMIFS_CFG_DYN_WAIT */
  1107. s->tcmi_regs[addr >> 2] = value;
  1108. break;
  1109. case 0x0c: /* EMIFS_CONFIG */
  1110. s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
  1111. break;
  1112. default:
  1113. OMAP_BAD_REG(addr);
  1114. }
  1115. }
  1116. static const MemoryRegionOps omap_tcmi_ops = {
  1117. .read = omap_tcmi_read,
  1118. .write = omap_tcmi_write,
  1119. .endianness = DEVICE_NATIVE_ENDIAN,
  1120. };
  1121. static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
  1122. {
  1123. mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
  1124. mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
  1125. mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
  1126. mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
  1127. mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
  1128. mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
  1129. mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
  1130. mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
  1131. mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
  1132. mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
  1133. mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
  1134. mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
  1135. mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
  1136. mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
  1137. mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
  1138. }
  1139. static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
  1140. struct omap_mpu_state_s *mpu)
  1141. {
  1142. memory_region_init_io(&mpu->tcmi_iomem, &omap_tcmi_ops, mpu,
  1143. "omap-tcmi", 0x100);
  1144. memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
  1145. omap_tcmi_reset(mpu);
  1146. }
  1147. /* Digital phase-locked loops control */
  1148. struct dpll_ctl_s {
  1149. MemoryRegion iomem;
  1150. uint16_t mode;
  1151. omap_clk dpll;
  1152. };
  1153. static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
  1154. unsigned size)
  1155. {
  1156. struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
  1157. if (size != 2) {
  1158. return omap_badwidth_read16(opaque, addr);
  1159. }
  1160. if (addr == 0x00) /* CTL_REG */
  1161. return s->mode;
  1162. OMAP_BAD_REG(addr);
  1163. return 0;
  1164. }
  1165. static void omap_dpll_write(void *opaque, hwaddr addr,
  1166. uint64_t value, unsigned size)
  1167. {
  1168. struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
  1169. uint16_t diff;
  1170. static const int bypass_div[4] = { 1, 2, 4, 4 };
  1171. int div, mult;
  1172. if (size != 2) {
  1173. return omap_badwidth_write16(opaque, addr, value);
  1174. }
  1175. if (addr == 0x00) { /* CTL_REG */
  1176. /* See omap_ulpd_pm_write() too */
  1177. diff = s->mode & value;
  1178. s->mode = value & 0x2fff;
  1179. if (diff & (0x3ff << 2)) {
  1180. if (value & (1 << 4)) { /* PLL_ENABLE */
  1181. div = ((value >> 5) & 3) + 1; /* PLL_DIV */
  1182. mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
  1183. } else {
  1184. div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
  1185. mult = 1;
  1186. }
  1187. omap_clk_setrate(s->dpll, div, mult);
  1188. }
  1189. /* Enter the desired mode. */
  1190. s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
  1191. /* Act as if the lock is restored. */
  1192. s->mode |= 2;
  1193. } else {
  1194. OMAP_BAD_REG(addr);
  1195. }
  1196. }
  1197. static const MemoryRegionOps omap_dpll_ops = {
  1198. .read = omap_dpll_read,
  1199. .write = omap_dpll_write,
  1200. .endianness = DEVICE_NATIVE_ENDIAN,
  1201. };
  1202. static void omap_dpll_reset(struct dpll_ctl_s *s)
  1203. {
  1204. s->mode = 0x2002;
  1205. omap_clk_setrate(s->dpll, 1, 1);
  1206. }
  1207. static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
  1208. hwaddr base, omap_clk clk)
  1209. {
  1210. struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
  1211. memory_region_init_io(&s->iomem, &omap_dpll_ops, s, "omap-dpll", 0x100);
  1212. s->dpll = clk;
  1213. omap_dpll_reset(s);
  1214. memory_region_add_subregion(memory, base, &s->iomem);
  1215. return s;
  1216. }
  1217. /* MPU Clock/Reset/Power Mode Control */
  1218. static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
  1219. unsigned size)
  1220. {
  1221. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1222. if (size != 2) {
  1223. return omap_badwidth_read16(opaque, addr);
  1224. }
  1225. switch (addr) {
  1226. case 0x00: /* ARM_CKCTL */
  1227. return s->clkm.arm_ckctl;
  1228. case 0x04: /* ARM_IDLECT1 */
  1229. return s->clkm.arm_idlect1;
  1230. case 0x08: /* ARM_IDLECT2 */
  1231. return s->clkm.arm_idlect2;
  1232. case 0x0c: /* ARM_EWUPCT */
  1233. return s->clkm.arm_ewupct;
  1234. case 0x10: /* ARM_RSTCT1 */
  1235. return s->clkm.arm_rstct1;
  1236. case 0x14: /* ARM_RSTCT2 */
  1237. return s->clkm.arm_rstct2;
  1238. case 0x18: /* ARM_SYSST */
  1239. return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
  1240. case 0x1c: /* ARM_CKOUT1 */
  1241. return s->clkm.arm_ckout1;
  1242. case 0x20: /* ARM_CKOUT2 */
  1243. break;
  1244. }
  1245. OMAP_BAD_REG(addr);
  1246. return 0;
  1247. }
  1248. static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
  1249. uint16_t diff, uint16_t value)
  1250. {
  1251. omap_clk clk;
  1252. if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
  1253. if (value & (1 << 14))
  1254. /* Reserved */;
  1255. else {
  1256. clk = omap_findclk(s, "arminth_ck");
  1257. omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
  1258. }
  1259. }
  1260. if (diff & (1 << 12)) { /* ARM_TIMXO */
  1261. clk = omap_findclk(s, "armtim_ck");
  1262. if (value & (1 << 12))
  1263. omap_clk_reparent(clk, omap_findclk(s, "clkin"));
  1264. else
  1265. omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
  1266. }
  1267. /* XXX: en_dspck */
  1268. if (diff & (3 << 10)) { /* DSPMMUDIV */
  1269. clk = omap_findclk(s, "dspmmu_ck");
  1270. omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
  1271. }
  1272. if (diff & (3 << 8)) { /* TCDIV */
  1273. clk = omap_findclk(s, "tc_ck");
  1274. omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
  1275. }
  1276. if (diff & (3 << 6)) { /* DSPDIV */
  1277. clk = omap_findclk(s, "dsp_ck");
  1278. omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
  1279. }
  1280. if (diff & (3 << 4)) { /* ARMDIV */
  1281. clk = omap_findclk(s, "arm_ck");
  1282. omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
  1283. }
  1284. if (diff & (3 << 2)) { /* LCDDIV */
  1285. clk = omap_findclk(s, "lcd_ck");
  1286. omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
  1287. }
  1288. if (diff & (3 << 0)) { /* PERDIV */
  1289. clk = omap_findclk(s, "armper_ck");
  1290. omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
  1291. }
  1292. }
  1293. static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
  1294. uint16_t diff, uint16_t value)
  1295. {
  1296. omap_clk clk;
  1297. if (value & (1 << 11)) { /* SETARM_IDLE */
  1298. cpu_interrupt(&s->cpu->env, CPU_INTERRUPT_HALT);
  1299. }
  1300. if (!(value & (1 << 10))) /* WKUP_MODE */
  1301. qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
  1302. #define SET_CANIDLE(clock, bit) \
  1303. if (diff & (1 << bit)) { \
  1304. clk = omap_findclk(s, clock); \
  1305. omap_clk_canidle(clk, (value >> bit) & 1); \
  1306. }
  1307. SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
  1308. SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
  1309. SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
  1310. SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
  1311. SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
  1312. SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
  1313. SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
  1314. SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
  1315. SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
  1316. SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
  1317. SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
  1318. SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
  1319. SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
  1320. SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
  1321. }
  1322. static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
  1323. uint16_t diff, uint16_t value)
  1324. {
  1325. omap_clk clk;
  1326. #define SET_ONOFF(clock, bit) \
  1327. if (diff & (1 << bit)) { \
  1328. clk = omap_findclk(s, clock); \
  1329. omap_clk_onoff(clk, (value >> bit) & 1); \
  1330. }
  1331. SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
  1332. SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
  1333. SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
  1334. SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
  1335. SET_ONOFF("lb_ck", 4) /* EN_LBCK */
  1336. SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
  1337. SET_ONOFF("mpui_ck", 6) /* EN_APICK */
  1338. SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
  1339. SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
  1340. SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
  1341. SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
  1342. }
  1343. static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
  1344. uint16_t diff, uint16_t value)
  1345. {
  1346. omap_clk clk;
  1347. if (diff & (3 << 4)) { /* TCLKOUT */
  1348. clk = omap_findclk(s, "tclk_out");
  1349. switch ((value >> 4) & 3) {
  1350. case 1:
  1351. omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
  1352. omap_clk_onoff(clk, 1);
  1353. break;
  1354. case 2:
  1355. omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
  1356. omap_clk_onoff(clk, 1);
  1357. break;
  1358. default:
  1359. omap_clk_onoff(clk, 0);
  1360. }
  1361. }
  1362. if (diff & (3 << 2)) { /* DCLKOUT */
  1363. clk = omap_findclk(s, "dclk_out");
  1364. switch ((value >> 2) & 3) {
  1365. case 0:
  1366. omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
  1367. break;
  1368. case 1:
  1369. omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
  1370. break;
  1371. case 2:
  1372. omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
  1373. break;
  1374. case 3:
  1375. omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
  1376. break;
  1377. }
  1378. }
  1379. if (diff & (3 << 0)) { /* ACLKOUT */
  1380. clk = omap_findclk(s, "aclk_out");
  1381. switch ((value >> 0) & 3) {
  1382. case 1:
  1383. omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
  1384. omap_clk_onoff(clk, 1);
  1385. break;
  1386. case 2:
  1387. omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
  1388. omap_clk_onoff(clk, 1);
  1389. break;
  1390. case 3:
  1391. omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
  1392. omap_clk_onoff(clk, 1);
  1393. break;
  1394. default:
  1395. omap_clk_onoff(clk, 0);
  1396. }
  1397. }
  1398. }
  1399. static void omap_clkm_write(void *opaque, hwaddr addr,
  1400. uint64_t value, unsigned size)
  1401. {
  1402. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1403. uint16_t diff;
  1404. omap_clk clk;
  1405. static const char *clkschemename[8] = {
  1406. "fully synchronous", "fully asynchronous", "synchronous scalable",
  1407. "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
  1408. };
  1409. if (size != 2) {
  1410. return omap_badwidth_write16(opaque, addr, value);
  1411. }
  1412. switch (addr) {
  1413. case 0x00: /* ARM_CKCTL */
  1414. diff = s->clkm.arm_ckctl ^ value;
  1415. s->clkm.arm_ckctl = value & 0x7fff;
  1416. omap_clkm_ckctl_update(s, diff, value);
  1417. return;
  1418. case 0x04: /* ARM_IDLECT1 */
  1419. diff = s->clkm.arm_idlect1 ^ value;
  1420. s->clkm.arm_idlect1 = value & 0x0fff;
  1421. omap_clkm_idlect1_update(s, diff, value);
  1422. return;
  1423. case 0x08: /* ARM_IDLECT2 */
  1424. diff = s->clkm.arm_idlect2 ^ value;
  1425. s->clkm.arm_idlect2 = value & 0x07ff;
  1426. omap_clkm_idlect2_update(s, diff, value);
  1427. return;
  1428. case 0x0c: /* ARM_EWUPCT */
  1429. s->clkm.arm_ewupct = value & 0x003f;
  1430. return;
  1431. case 0x10: /* ARM_RSTCT1 */
  1432. diff = s->clkm.arm_rstct1 ^ value;
  1433. s->clkm.arm_rstct1 = value & 0x0007;
  1434. if (value & 9) {
  1435. qemu_system_reset_request();
  1436. s->clkm.cold_start = 0xa;
  1437. }
  1438. if (diff & ~value & 4) { /* DSP_RST */
  1439. omap_mpui_reset(s);
  1440. omap_tipb_bridge_reset(s->private_tipb);
  1441. omap_tipb_bridge_reset(s->public_tipb);
  1442. }
  1443. if (diff & 2) { /* DSP_EN */
  1444. clk = omap_findclk(s, "dsp_ck");
  1445. omap_clk_canidle(clk, (~value >> 1) & 1);
  1446. }
  1447. return;
  1448. case 0x14: /* ARM_RSTCT2 */
  1449. s->clkm.arm_rstct2 = value & 0x0001;
  1450. return;
  1451. case 0x18: /* ARM_SYSST */
  1452. if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
  1453. s->clkm.clocking_scheme = (value >> 11) & 7;
  1454. printf("%s: clocking scheme set to %s\n", __FUNCTION__,
  1455. clkschemename[s->clkm.clocking_scheme]);
  1456. }
  1457. s->clkm.cold_start &= value & 0x3f;
  1458. return;
  1459. case 0x1c: /* ARM_CKOUT1 */
  1460. diff = s->clkm.arm_ckout1 ^ value;
  1461. s->clkm.arm_ckout1 = value & 0x003f;
  1462. omap_clkm_ckout1_update(s, diff, value);
  1463. return;
  1464. case 0x20: /* ARM_CKOUT2 */
  1465. default:
  1466. OMAP_BAD_REG(addr);
  1467. }
  1468. }
  1469. static const MemoryRegionOps omap_clkm_ops = {
  1470. .read = omap_clkm_read,
  1471. .write = omap_clkm_write,
  1472. .endianness = DEVICE_NATIVE_ENDIAN,
  1473. };
  1474. static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
  1475. unsigned size)
  1476. {
  1477. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1478. if (size != 2) {
  1479. return omap_badwidth_read16(opaque, addr);
  1480. }
  1481. switch (addr) {
  1482. case 0x04: /* DSP_IDLECT1 */
  1483. return s->clkm.dsp_idlect1;
  1484. case 0x08: /* DSP_IDLECT2 */
  1485. return s->clkm.dsp_idlect2;
  1486. case 0x14: /* DSP_RSTCT2 */
  1487. return s->clkm.dsp_rstct2;
  1488. case 0x18: /* DSP_SYSST */
  1489. return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
  1490. (s->cpu->env.halted << 6); /* Quite useless... */
  1491. }
  1492. OMAP_BAD_REG(addr);
  1493. return 0;
  1494. }
  1495. static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
  1496. uint16_t diff, uint16_t value)
  1497. {
  1498. omap_clk clk;
  1499. SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
  1500. }
  1501. static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
  1502. uint16_t diff, uint16_t value)
  1503. {
  1504. omap_clk clk;
  1505. SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
  1506. }
  1507. static void omap_clkdsp_write(void *opaque, hwaddr addr,
  1508. uint64_t value, unsigned size)
  1509. {
  1510. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1511. uint16_t diff;
  1512. if (size != 2) {
  1513. return omap_badwidth_write16(opaque, addr, value);
  1514. }
  1515. switch (addr) {
  1516. case 0x04: /* DSP_IDLECT1 */
  1517. diff = s->clkm.dsp_idlect1 ^ value;
  1518. s->clkm.dsp_idlect1 = value & 0x01f7;
  1519. omap_clkdsp_idlect1_update(s, diff, value);
  1520. break;
  1521. case 0x08: /* DSP_IDLECT2 */
  1522. s->clkm.dsp_idlect2 = value & 0x0037;
  1523. diff = s->clkm.dsp_idlect1 ^ value;
  1524. omap_clkdsp_idlect2_update(s, diff, value);
  1525. break;
  1526. case 0x14: /* DSP_RSTCT2 */
  1527. s->clkm.dsp_rstct2 = value & 0x0001;
  1528. break;
  1529. case 0x18: /* DSP_SYSST */
  1530. s->clkm.cold_start &= value & 0x3f;
  1531. break;
  1532. default:
  1533. OMAP_BAD_REG(addr);
  1534. }
  1535. }
  1536. static const MemoryRegionOps omap_clkdsp_ops = {
  1537. .read = omap_clkdsp_read,
  1538. .write = omap_clkdsp_write,
  1539. .endianness = DEVICE_NATIVE_ENDIAN,
  1540. };
  1541. static void omap_clkm_reset(struct omap_mpu_state_s *s)
  1542. {
  1543. if (s->wdt && s->wdt->reset)
  1544. s->clkm.cold_start = 0x6;
  1545. s->clkm.clocking_scheme = 0;
  1546. omap_clkm_ckctl_update(s, ~0, 0x3000);
  1547. s->clkm.arm_ckctl = 0x3000;
  1548. omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
  1549. s->clkm.arm_idlect1 = 0x0400;
  1550. omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
  1551. s->clkm.arm_idlect2 = 0x0100;
  1552. s->clkm.arm_ewupct = 0x003f;
  1553. s->clkm.arm_rstct1 = 0x0000;
  1554. s->clkm.arm_rstct2 = 0x0000;
  1555. s->clkm.arm_ckout1 = 0x0015;
  1556. s->clkm.dpll1_mode = 0x2002;
  1557. omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
  1558. s->clkm.dsp_idlect1 = 0x0040;
  1559. omap_clkdsp_idlect2_update(s, ~0, 0x0000);
  1560. s->clkm.dsp_idlect2 = 0x0000;
  1561. s->clkm.dsp_rstct2 = 0x0000;
  1562. }
  1563. static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
  1564. hwaddr dsp_base, struct omap_mpu_state_s *s)
  1565. {
  1566. memory_region_init_io(&s->clkm_iomem, &omap_clkm_ops, s,
  1567. "omap-clkm", 0x100);
  1568. memory_region_init_io(&s->clkdsp_iomem, &omap_clkdsp_ops, s,
  1569. "omap-clkdsp", 0x1000);
  1570. s->clkm.arm_idlect1 = 0x03ff;
  1571. s->clkm.arm_idlect2 = 0x0100;
  1572. s->clkm.dsp_idlect1 = 0x0002;
  1573. omap_clkm_reset(s);
  1574. s->clkm.cold_start = 0x3a;
  1575. memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
  1576. memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
  1577. }
  1578. /* MPU I/O */
  1579. struct omap_mpuio_s {
  1580. qemu_irq irq;
  1581. qemu_irq kbd_irq;
  1582. qemu_irq *in;
  1583. qemu_irq handler[16];
  1584. qemu_irq wakeup;
  1585. MemoryRegion iomem;
  1586. uint16_t inputs;
  1587. uint16_t outputs;
  1588. uint16_t dir;
  1589. uint16_t edge;
  1590. uint16_t mask;
  1591. uint16_t ints;
  1592. uint16_t debounce;
  1593. uint16_t latch;
  1594. uint8_t event;
  1595. uint8_t buttons[5];
  1596. uint8_t row_latch;
  1597. uint8_t cols;
  1598. int kbd_mask;
  1599. int clk;
  1600. };
  1601. static void omap_mpuio_set(void *opaque, int line, int level)
  1602. {
  1603. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  1604. uint16_t prev = s->inputs;
  1605. if (level)
  1606. s->inputs |= 1 << line;
  1607. else
  1608. s->inputs &= ~(1 << line);
  1609. if (((1 << line) & s->dir & ~s->mask) && s->clk) {
  1610. if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
  1611. s->ints |= 1 << line;
  1612. qemu_irq_raise(s->irq);
  1613. /* TODO: wakeup */
  1614. }
  1615. if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
  1616. (s->event >> 1) == line) /* PIN_SELECT */
  1617. s->latch = s->inputs;
  1618. }
  1619. }
  1620. static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
  1621. {
  1622. int i;
  1623. uint8_t *row, rows = 0, cols = ~s->cols;
  1624. for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
  1625. if (*row & cols)
  1626. rows |= i;
  1627. qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
  1628. s->row_latch = ~rows;
  1629. }
  1630. static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
  1631. unsigned size)
  1632. {
  1633. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  1634. int offset = addr & OMAP_MPUI_REG_MASK;
  1635. uint16_t ret;
  1636. if (size != 2) {
  1637. return omap_badwidth_read16(opaque, addr);
  1638. }
  1639. switch (offset) {
  1640. case 0x00: /* INPUT_LATCH */
  1641. return s->inputs;
  1642. case 0x04: /* OUTPUT_REG */
  1643. return s->outputs;
  1644. case 0x08: /* IO_CNTL */
  1645. return s->dir;
  1646. case 0x10: /* KBR_LATCH */
  1647. return s->row_latch;
  1648. case 0x14: /* KBC_REG */
  1649. return s->cols;
  1650. case 0x18: /* GPIO_EVENT_MODE_REG */
  1651. return s->event;
  1652. case 0x1c: /* GPIO_INT_EDGE_REG */
  1653. return s->edge;
  1654. case 0x20: /* KBD_INT */
  1655. return (~s->row_latch & 0x1f) && !s->kbd_mask;
  1656. case 0x24: /* GPIO_INT */
  1657. ret = s->ints;
  1658. s->ints &= s->mask;
  1659. if (ret)
  1660. qemu_irq_lower(s->irq);
  1661. return ret;
  1662. case 0x28: /* KBD_MASKIT */
  1663. return s->kbd_mask;
  1664. case 0x2c: /* GPIO_MASKIT */
  1665. return s->mask;
  1666. case 0x30: /* GPIO_DEBOUNCING_REG */
  1667. return s->debounce;
  1668. case 0x34: /* GPIO_LATCH_REG */
  1669. return s->latch;
  1670. }
  1671. OMAP_BAD_REG(addr);
  1672. return 0;
  1673. }
  1674. static void omap_mpuio_write(void *opaque, hwaddr addr,
  1675. uint64_t value, unsigned size)
  1676. {
  1677. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  1678. int offset = addr & OMAP_MPUI_REG_MASK;
  1679. uint16_t diff;
  1680. int ln;
  1681. if (size != 2) {
  1682. return omap_badwidth_write16(opaque, addr, value);
  1683. }
  1684. switch (offset) {
  1685. case 0x04: /* OUTPUT_REG */
  1686. diff = (s->outputs ^ value) & ~s->dir;
  1687. s->outputs = value;
  1688. while ((ln = ffs(diff))) {
  1689. ln --;
  1690. if (s->handler[ln])
  1691. qemu_set_irq(s->handler[ln], (value >> ln) & 1);
  1692. diff &= ~(1 << ln);
  1693. }
  1694. break;
  1695. case 0x08: /* IO_CNTL */
  1696. diff = s->outputs & (s->dir ^ value);
  1697. s->dir = value;
  1698. value = s->outputs & ~s->dir;
  1699. while ((ln = ffs(diff))) {
  1700. ln --;
  1701. if (s->handler[ln])
  1702. qemu_set_irq(s->handler[ln], (value >> ln) & 1);
  1703. diff &= ~(1 << ln);
  1704. }
  1705. break;
  1706. case 0x14: /* KBC_REG */
  1707. s->cols = value;
  1708. omap_mpuio_kbd_update(s);
  1709. break;
  1710. case 0x18: /* GPIO_EVENT_MODE_REG */
  1711. s->event = value & 0x1f;
  1712. break;
  1713. case 0x1c: /* GPIO_INT_EDGE_REG */
  1714. s->edge = value;
  1715. break;
  1716. case 0x28: /* KBD_MASKIT */
  1717. s->kbd_mask = value & 1;
  1718. omap_mpuio_kbd_update(s);
  1719. break;
  1720. case 0x2c: /* GPIO_MASKIT */
  1721. s->mask = value;
  1722. break;
  1723. case 0x30: /* GPIO_DEBOUNCING_REG */
  1724. s->debounce = value & 0x1ff;
  1725. break;
  1726. case 0x00: /* INPUT_LATCH */
  1727. case 0x10: /* KBR_LATCH */
  1728. case 0x20: /* KBD_INT */
  1729. case 0x24: /* GPIO_INT */
  1730. case 0x34: /* GPIO_LATCH_REG */
  1731. OMAP_RO_REG(addr);
  1732. return;
  1733. default:
  1734. OMAP_BAD_REG(addr);
  1735. return;
  1736. }
  1737. }
  1738. static const MemoryRegionOps omap_mpuio_ops = {
  1739. .read = omap_mpuio_read,
  1740. .write = omap_mpuio_write,
  1741. .endianness = DEVICE_NATIVE_ENDIAN,
  1742. };
  1743. static void omap_mpuio_reset(struct omap_mpuio_s *s)
  1744. {
  1745. s->inputs = 0;
  1746. s->outputs = 0;
  1747. s->dir = ~0;
  1748. s->event = 0;
  1749. s->edge = 0;
  1750. s->kbd_mask = 0;
  1751. s->mask = 0;
  1752. s->debounce = 0;
  1753. s->latch = 0;
  1754. s->ints = 0;
  1755. s->row_latch = 0x1f;
  1756. s->clk = 1;
  1757. }
  1758. static void omap_mpuio_onoff(void *opaque, int line, int on)
  1759. {
  1760. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  1761. s->clk = on;
  1762. if (on)
  1763. omap_mpuio_kbd_update(s);
  1764. }
  1765. static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
  1766. hwaddr base,
  1767. qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
  1768. omap_clk clk)
  1769. {
  1770. struct omap_mpuio_s *s = (struct omap_mpuio_s *)
  1771. g_malloc0(sizeof(struct omap_mpuio_s));
  1772. s->irq = gpio_int;
  1773. s->kbd_irq = kbd_int;
  1774. s->wakeup = wakeup;
  1775. s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
  1776. omap_mpuio_reset(s);
  1777. memory_region_init_io(&s->iomem, &omap_mpuio_ops, s,
  1778. "omap-mpuio", 0x800);
  1779. memory_region_add_subregion(memory, base, &s->iomem);
  1780. omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
  1781. return s;
  1782. }
  1783. qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
  1784. {
  1785. return s->in;
  1786. }
  1787. void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
  1788. {
  1789. if (line >= 16 || line < 0)
  1790. hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
  1791. s->handler[line] = handler;
  1792. }
  1793. void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
  1794. {
  1795. if (row >= 5 || row < 0)
  1796. hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
  1797. if (down)
  1798. s->buttons[row] |= 1 << col;
  1799. else
  1800. s->buttons[row] &= ~(1 << col);
  1801. omap_mpuio_kbd_update(s);
  1802. }
  1803. /* MicroWire Interface */
  1804. struct omap_uwire_s {
  1805. MemoryRegion iomem;
  1806. qemu_irq txirq;
  1807. qemu_irq rxirq;
  1808. qemu_irq txdrq;
  1809. uint16_t txbuf;
  1810. uint16_t rxbuf;
  1811. uint16_t control;
  1812. uint16_t setup[5];
  1813. uWireSlave *chip[4];
  1814. };
  1815. static void omap_uwire_transfer_start(struct omap_uwire_s *s)
  1816. {
  1817. int chipselect = (s->control >> 10) & 3; /* INDEX */
  1818. uWireSlave *slave = s->chip[chipselect];
  1819. if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
  1820. if (s->control & (1 << 12)) /* CS_CMD */
  1821. if (slave && slave->send)
  1822. slave->send(slave->opaque,
  1823. s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
  1824. s->control &= ~(1 << 14); /* CSRB */
  1825. /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
  1826. * a DRQ. When is the level IRQ supposed to be reset? */
  1827. }
  1828. if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
  1829. if (s->control & (1 << 12)) /* CS_CMD */
  1830. if (slave && slave->receive)
  1831. s->rxbuf = slave->receive(slave->opaque);
  1832. s->control |= 1 << 15; /* RDRB */
  1833. /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
  1834. * a DRQ. When is the level IRQ supposed to be reset? */
  1835. }
  1836. }
  1837. static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
  1838. unsigned size)
  1839. {
  1840. struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
  1841. int offset = addr & OMAP_MPUI_REG_MASK;
  1842. if (size != 2) {
  1843. return omap_badwidth_read16(opaque, addr);
  1844. }
  1845. switch (offset) {
  1846. case 0x00: /* RDR */
  1847. s->control &= ~(1 << 15); /* RDRB */
  1848. return s->rxbuf;
  1849. case 0x04: /* CSR */
  1850. return s->control;
  1851. case 0x08: /* SR1 */
  1852. return s->setup[0];
  1853. case 0x0c: /* SR2 */
  1854. return s->setup[1];
  1855. case 0x10: /* SR3 */
  1856. return s->setup[2];
  1857. case 0x14: /* SR4 */
  1858. return s->setup[3];
  1859. case 0x18: /* SR5 */
  1860. return s->setup[4];
  1861. }
  1862. OMAP_BAD_REG(addr);
  1863. return 0;
  1864. }
  1865. static void omap_uwire_write(void *opaque, hwaddr addr,
  1866. uint64_t value, unsigned size)
  1867. {
  1868. struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
  1869. int offset = addr & OMAP_MPUI_REG_MASK;
  1870. if (size != 2) {
  1871. return omap_badwidth_write16(opaque, addr, value);
  1872. }
  1873. switch (offset) {
  1874. case 0x00: /* TDR */
  1875. s->txbuf = value; /* TD */
  1876. if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
  1877. ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
  1878. (s->control & (1 << 12)))) { /* CS_CMD */
  1879. s->control |= 1 << 14; /* CSRB */
  1880. omap_uwire_transfer_start(s);
  1881. }
  1882. break;
  1883. case 0x04: /* CSR */
  1884. s->control = value & 0x1fff;
  1885. if (value & (1 << 13)) /* START */
  1886. omap_uwire_transfer_start(s);
  1887. break;
  1888. case 0x08: /* SR1 */
  1889. s->setup[0] = value & 0x003f;
  1890. break;
  1891. case 0x0c: /* SR2 */
  1892. s->setup[1] = value & 0x0fc0;
  1893. break;
  1894. case 0x10: /* SR3 */
  1895. s->setup[2] = value & 0x0003;
  1896. break;
  1897. case 0x14: /* SR4 */
  1898. s->setup[3] = value & 0x0001;
  1899. break;
  1900. case 0x18: /* SR5 */
  1901. s->setup[4] = value & 0x000f;
  1902. break;
  1903. default:
  1904. OMAP_BAD_REG(addr);
  1905. return;
  1906. }
  1907. }
  1908. static const MemoryRegionOps omap_uwire_ops = {
  1909. .read = omap_uwire_read,
  1910. .write = omap_uwire_write,
  1911. .endianness = DEVICE_NATIVE_ENDIAN,
  1912. };
  1913. static void omap_uwire_reset(struct omap_uwire_s *s)
  1914. {
  1915. s->control = 0;
  1916. s->setup[0] = 0;
  1917. s->setup[1] = 0;
  1918. s->setup[2] = 0;
  1919. s->setup[3] = 0;
  1920. s->setup[4] = 0;
  1921. }
  1922. static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
  1923. hwaddr base,
  1924. qemu_irq txirq, qemu_irq rxirq,
  1925. qemu_irq dma,
  1926. omap_clk clk)
  1927. {
  1928. struct omap_uwire_s *s = (struct omap_uwire_s *)
  1929. g_malloc0(sizeof(struct omap_uwire_s));
  1930. s->txirq = txirq;
  1931. s->rxirq = rxirq;
  1932. s->txdrq = dma;
  1933. omap_uwire_reset(s);
  1934. memory_region_init_io(&s->iomem, &omap_uwire_ops, s, "omap-uwire", 0x800);
  1935. memory_region_add_subregion(system_memory, base, &s->iomem);
  1936. return s;
  1937. }
  1938. void omap_uwire_attach(struct omap_uwire_s *s,
  1939. uWireSlave *slave, int chipselect)
  1940. {
  1941. if (chipselect < 0 || chipselect > 3) {
  1942. fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
  1943. exit(-1);
  1944. }
  1945. s->chip[chipselect] = slave;
  1946. }
  1947. /* Pseudonoise Pulse-Width Light Modulator */
  1948. struct omap_pwl_s {
  1949. MemoryRegion iomem;
  1950. uint8_t output;
  1951. uint8_t level;
  1952. uint8_t enable;
  1953. int clk;
  1954. };
  1955. static void omap_pwl_update(struct omap_pwl_s *s)
  1956. {
  1957. int output = (s->clk && s->enable) ? s->level : 0;
  1958. if (output != s->output) {
  1959. s->output = output;
  1960. printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
  1961. }
  1962. }
  1963. static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
  1964. unsigned size)
  1965. {
  1966. struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
  1967. int offset = addr & OMAP_MPUI_REG_MASK;
  1968. if (size != 1) {
  1969. return omap_badwidth_read8(opaque, addr);
  1970. }
  1971. switch (offset) {
  1972. case 0x00: /* PWL_LEVEL */
  1973. return s->level;
  1974. case 0x04: /* PWL_CTRL */
  1975. return s->enable;
  1976. }
  1977. OMAP_BAD_REG(addr);
  1978. return 0;
  1979. }
  1980. static void omap_pwl_write(void *opaque, hwaddr addr,
  1981. uint64_t value, unsigned size)
  1982. {
  1983. struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
  1984. int offset = addr & OMAP_MPUI_REG_MASK;
  1985. if (size != 1) {
  1986. return omap_badwidth_write8(opaque, addr, value);
  1987. }
  1988. switch (offset) {
  1989. case 0x00: /* PWL_LEVEL */
  1990. s->level = value;
  1991. omap_pwl_update(s);
  1992. break;
  1993. case 0x04: /* PWL_CTRL */
  1994. s->enable = value & 1;
  1995. omap_pwl_update(s);
  1996. break;
  1997. default:
  1998. OMAP_BAD_REG(addr);
  1999. return;
  2000. }
  2001. }
  2002. static const MemoryRegionOps omap_pwl_ops = {
  2003. .read = omap_pwl_read,
  2004. .write = omap_pwl_write,
  2005. .endianness = DEVICE_NATIVE_ENDIAN,
  2006. };
  2007. static void omap_pwl_reset(struct omap_pwl_s *s)
  2008. {
  2009. s->output = 0;
  2010. s->level = 0;
  2011. s->enable = 0;
  2012. s->clk = 1;
  2013. omap_pwl_update(s);
  2014. }
  2015. static void omap_pwl_clk_update(void *opaque, int line, int on)
  2016. {
  2017. struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
  2018. s->clk = on;
  2019. omap_pwl_update(s);
  2020. }
  2021. static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
  2022. hwaddr base,
  2023. omap_clk clk)
  2024. {
  2025. struct omap_pwl_s *s = g_malloc0(sizeof(*s));
  2026. omap_pwl_reset(s);
  2027. memory_region_init_io(&s->iomem, &omap_pwl_ops, s,
  2028. "omap-pwl", 0x800);
  2029. memory_region_add_subregion(system_memory, base, &s->iomem);
  2030. omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
  2031. return s;
  2032. }
  2033. /* Pulse-Width Tone module */
  2034. struct omap_pwt_s {
  2035. MemoryRegion iomem;
  2036. uint8_t frc;
  2037. uint8_t vrc;
  2038. uint8_t gcr;
  2039. omap_clk clk;
  2040. };
  2041. static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
  2042. unsigned size)
  2043. {
  2044. struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
  2045. int offset = addr & OMAP_MPUI_REG_MASK;
  2046. if (size != 1) {
  2047. return omap_badwidth_read8(opaque, addr);
  2048. }
  2049. switch (offset) {
  2050. case 0x00: /* FRC */
  2051. return s->frc;
  2052. case 0x04: /* VCR */
  2053. return s->vrc;
  2054. case 0x08: /* GCR */
  2055. return s->gcr;
  2056. }
  2057. OMAP_BAD_REG(addr);
  2058. return 0;
  2059. }
  2060. static void omap_pwt_write(void *opaque, hwaddr addr,
  2061. uint64_t value, unsigned size)
  2062. {
  2063. struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
  2064. int offset = addr & OMAP_MPUI_REG_MASK;
  2065. if (size != 1) {
  2066. return omap_badwidth_write8(opaque, addr, value);
  2067. }
  2068. switch (offset) {
  2069. case 0x00: /* FRC */
  2070. s->frc = value & 0x3f;
  2071. break;
  2072. case 0x04: /* VRC */
  2073. if ((value ^ s->vrc) & 1) {
  2074. if (value & 1)
  2075. printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
  2076. /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
  2077. ((omap_clk_getrate(s->clk) >> 3) /
  2078. /* Pre-multiplexer divider */
  2079. ((s->gcr & 2) ? 1 : 154) /
  2080. /* Octave multiplexer */
  2081. (2 << (value & 3)) *
  2082. /* 101/107 divider */
  2083. ((value & (1 << 2)) ? 101 : 107) *
  2084. /* 49/55 divider */
  2085. ((value & (1 << 3)) ? 49 : 55) *
  2086. /* 50/63 divider */
  2087. ((value & (1 << 4)) ? 50 : 63) *
  2088. /* 80/127 divider */
  2089. ((value & (1 << 5)) ? 80 : 127) /
  2090. (107 * 55 * 63 * 127)));
  2091. else
  2092. printf("%s: silence!\n", __FUNCTION__);
  2093. }
  2094. s->vrc = value & 0x7f;
  2095. break;
  2096. case 0x08: /* GCR */
  2097. s->gcr = value & 3;
  2098. break;
  2099. default:
  2100. OMAP_BAD_REG(addr);
  2101. return;
  2102. }
  2103. }
  2104. static const MemoryRegionOps omap_pwt_ops = {
  2105. .read =omap_pwt_read,
  2106. .write = omap_pwt_write,
  2107. .endianness = DEVICE_NATIVE_ENDIAN,
  2108. };
  2109. static void omap_pwt_reset(struct omap_pwt_s *s)
  2110. {
  2111. s->frc = 0;
  2112. s->vrc = 0;
  2113. s->gcr = 0;
  2114. }
  2115. static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
  2116. hwaddr base,
  2117. omap_clk clk)
  2118. {
  2119. struct omap_pwt_s *s = g_malloc0(sizeof(*s));
  2120. s->clk = clk;
  2121. omap_pwt_reset(s);
  2122. memory_region_init_io(&s->iomem, &omap_pwt_ops, s,
  2123. "omap-pwt", 0x800);
  2124. memory_region_add_subregion(system_memory, base, &s->iomem);
  2125. return s;
  2126. }
  2127. /* Real-time Clock module */
  2128. struct omap_rtc_s {
  2129. MemoryRegion iomem;
  2130. qemu_irq irq;
  2131. qemu_irq alarm;
  2132. QEMUTimer *clk;
  2133. uint8_t interrupts;
  2134. uint8_t status;
  2135. int16_t comp_reg;
  2136. int running;
  2137. int pm_am;
  2138. int auto_comp;
  2139. int round;
  2140. struct tm alarm_tm;
  2141. time_t alarm_ti;
  2142. struct tm current_tm;
  2143. time_t ti;
  2144. uint64_t tick;
  2145. };
  2146. static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
  2147. {
  2148. /* s->alarm is level-triggered */
  2149. qemu_set_irq(s->alarm, (s->status >> 6) & 1);
  2150. }
  2151. static void omap_rtc_alarm_update(struct omap_rtc_s *s)
  2152. {
  2153. s->alarm_ti = mktimegm(&s->alarm_tm);
  2154. if (s->alarm_ti == -1)
  2155. printf("%s: conversion failed\n", __FUNCTION__);
  2156. }
  2157. static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
  2158. unsigned size)
  2159. {
  2160. struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
  2161. int offset = addr & OMAP_MPUI_REG_MASK;
  2162. uint8_t i;
  2163. if (size != 1) {
  2164. return omap_badwidth_read8(opaque, addr);
  2165. }
  2166. switch (offset) {
  2167. case 0x00: /* SECONDS_REG */
  2168. return to_bcd(s->current_tm.tm_sec);
  2169. case 0x04: /* MINUTES_REG */
  2170. return to_bcd(s->current_tm.tm_min);
  2171. case 0x08: /* HOURS_REG */
  2172. if (s->pm_am)
  2173. return ((s->current_tm.tm_hour > 11) << 7) |
  2174. to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
  2175. else
  2176. return to_bcd(s->current_tm.tm_hour);
  2177. case 0x0c: /* DAYS_REG */
  2178. return to_bcd(s->current_tm.tm_mday);
  2179. case 0x10: /* MONTHS_REG */
  2180. return to_bcd(s->current_tm.tm_mon + 1);
  2181. case 0x14: /* YEARS_REG */
  2182. return to_bcd(s->current_tm.tm_year % 100);
  2183. case 0x18: /* WEEK_REG */
  2184. return s->current_tm.tm_wday;
  2185. case 0x20: /* ALARM_SECONDS_REG */
  2186. return to_bcd(s->alarm_tm.tm_sec);
  2187. case 0x24: /* ALARM_MINUTES_REG */
  2188. return to_bcd(s->alarm_tm.tm_min);
  2189. case 0x28: /* ALARM_HOURS_REG */
  2190. if (s->pm_am)
  2191. return ((s->alarm_tm.tm_hour > 11) << 7) |
  2192. to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
  2193. else
  2194. return to_bcd(s->alarm_tm.tm_hour);
  2195. case 0x2c: /* ALARM_DAYS_REG */
  2196. return to_bcd(s->alarm_tm.tm_mday);
  2197. case 0x30: /* ALARM_MONTHS_REG */
  2198. return to_bcd(s->alarm_tm.tm_mon + 1);
  2199. case 0x34: /* ALARM_YEARS_REG */
  2200. return to_bcd(s->alarm_tm.tm_year % 100);
  2201. case 0x40: /* RTC_CTRL_REG */
  2202. return (s->pm_am << 3) | (s->auto_comp << 2) |
  2203. (s->round << 1) | s->running;
  2204. case 0x44: /* RTC_STATUS_REG */
  2205. i = s->status;
  2206. s->status &= ~0x3d;
  2207. return i;
  2208. case 0x48: /* RTC_INTERRUPTS_REG */
  2209. return s->interrupts;
  2210. case 0x4c: /* RTC_COMP_LSB_REG */
  2211. return ((uint16_t) s->comp_reg) & 0xff;
  2212. case 0x50: /* RTC_COMP_MSB_REG */
  2213. return ((uint16_t) s->comp_reg) >> 8;
  2214. }
  2215. OMAP_BAD_REG(addr);
  2216. return 0;
  2217. }
  2218. static void omap_rtc_write(void *opaque, hwaddr addr,
  2219. uint64_t value, unsigned size)
  2220. {
  2221. struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
  2222. int offset = addr & OMAP_MPUI_REG_MASK;
  2223. struct tm new_tm;
  2224. time_t ti[2];
  2225. if (size != 1) {
  2226. return omap_badwidth_write8(opaque, addr, value);
  2227. }
  2228. switch (offset) {
  2229. case 0x00: /* SECONDS_REG */
  2230. #ifdef ALMDEBUG
  2231. printf("RTC SEC_REG <-- %02x\n", value);
  2232. #endif
  2233. s->ti -= s->current_tm.tm_sec;
  2234. s->ti += from_bcd(value);
  2235. return;
  2236. case 0x04: /* MINUTES_REG */
  2237. #ifdef ALMDEBUG
  2238. printf("RTC MIN_REG <-- %02x\n", value);
  2239. #endif
  2240. s->ti -= s->current_tm.tm_min * 60;
  2241. s->ti += from_bcd(value) * 60;
  2242. return;
  2243. case 0x08: /* HOURS_REG */
  2244. #ifdef ALMDEBUG
  2245. printf("RTC HRS_REG <-- %02x\n", value);
  2246. #endif
  2247. s->ti -= s->current_tm.tm_hour * 3600;
  2248. if (s->pm_am) {
  2249. s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
  2250. s->ti += ((value >> 7) & 1) * 43200;
  2251. } else
  2252. s->ti += from_bcd(value & 0x3f) * 3600;
  2253. return;
  2254. case 0x0c: /* DAYS_REG */
  2255. #ifdef ALMDEBUG
  2256. printf("RTC DAY_REG <-- %02x\n", value);
  2257. #endif
  2258. s->ti -= s->current_tm.tm_mday * 86400;
  2259. s->ti += from_bcd(value) * 86400;
  2260. return;
  2261. case 0x10: /* MONTHS_REG */
  2262. #ifdef ALMDEBUG
  2263. printf("RTC MTH_REG <-- %02x\n", value);
  2264. #endif
  2265. memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
  2266. new_tm.tm_mon = from_bcd(value);
  2267. ti[0] = mktimegm(&s->current_tm);
  2268. ti[1] = mktimegm(&new_tm);
  2269. if (ti[0] != -1 && ti[1] != -1) {
  2270. s->ti -= ti[0];
  2271. s->ti += ti[1];
  2272. } else {
  2273. /* A less accurate version */
  2274. s->ti -= s->current_tm.tm_mon * 2592000;
  2275. s->ti += from_bcd(value) * 2592000;
  2276. }
  2277. return;
  2278. case 0x14: /* YEARS_REG */
  2279. #ifdef ALMDEBUG
  2280. printf("RTC YRS_REG <-- %02x\n", value);
  2281. #endif
  2282. memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
  2283. new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
  2284. ti[0] = mktimegm(&s->current_tm);
  2285. ti[1] = mktimegm(&new_tm);
  2286. if (ti[0] != -1 && ti[1] != -1) {
  2287. s->ti -= ti[0];
  2288. s->ti += ti[1];
  2289. } else {
  2290. /* A less accurate version */
  2291. s->ti -= (s->current_tm.tm_year % 100) * 31536000;
  2292. s->ti += from_bcd(value) * 31536000;
  2293. }
  2294. return;
  2295. case 0x18: /* WEEK_REG */
  2296. return; /* Ignored */
  2297. case 0x20: /* ALARM_SECONDS_REG */
  2298. #ifdef ALMDEBUG
  2299. printf("ALM SEC_REG <-- %02x\n", value);
  2300. #endif
  2301. s->alarm_tm.tm_sec = from_bcd(value);
  2302. omap_rtc_alarm_update(s);
  2303. return;
  2304. case 0x24: /* ALARM_MINUTES_REG */
  2305. #ifdef ALMDEBUG
  2306. printf("ALM MIN_REG <-- %02x\n", value);
  2307. #endif
  2308. s->alarm_tm.tm_min = from_bcd(value);
  2309. omap_rtc_alarm_update(s);
  2310. return;
  2311. case 0x28: /* ALARM_HOURS_REG */
  2312. #ifdef ALMDEBUG
  2313. printf("ALM HRS_REG <-- %02x\n", value);
  2314. #endif
  2315. if (s->pm_am)
  2316. s->alarm_tm.tm_hour =
  2317. ((from_bcd(value & 0x3f)) % 12) +
  2318. ((value >> 7) & 1) * 12;
  2319. else
  2320. s->alarm_tm.tm_hour = from_bcd(value);
  2321. omap_rtc_alarm_update(s);
  2322. return;
  2323. case 0x2c: /* ALARM_DAYS_REG */
  2324. #ifdef ALMDEBUG
  2325. printf("ALM DAY_REG <-- %02x\n", value);
  2326. #endif
  2327. s->alarm_tm.tm_mday = from_bcd(value);
  2328. omap_rtc_alarm_update(s);
  2329. return;
  2330. case 0x30: /* ALARM_MONTHS_REG */
  2331. #ifdef ALMDEBUG
  2332. printf("ALM MON_REG <-- %02x\n", value);
  2333. #endif
  2334. s->alarm_tm.tm_mon = from_bcd(value);
  2335. omap_rtc_alarm_update(s);
  2336. return;
  2337. case 0x34: /* ALARM_YEARS_REG */
  2338. #ifdef ALMDEBUG
  2339. printf("ALM YRS_REG <-- %02x\n", value);
  2340. #endif
  2341. s->alarm_tm.tm_year = from_bcd(value);
  2342. omap_rtc_alarm_update(s);
  2343. return;
  2344. case 0x40: /* RTC_CTRL_REG */
  2345. #ifdef ALMDEBUG
  2346. printf("RTC CONTROL <-- %02x\n", value);
  2347. #endif
  2348. s->pm_am = (value >> 3) & 1;
  2349. s->auto_comp = (value >> 2) & 1;
  2350. s->round = (value >> 1) & 1;
  2351. s->running = value & 1;
  2352. s->status &= 0xfd;
  2353. s->status |= s->running << 1;
  2354. return;
  2355. case 0x44: /* RTC_STATUS_REG */
  2356. #ifdef ALMDEBUG
  2357. printf("RTC STATUSL <-- %02x\n", value);
  2358. #endif
  2359. s->status &= ~((value & 0xc0) ^ 0x80);
  2360. omap_rtc_interrupts_update(s);
  2361. return;
  2362. case 0x48: /* RTC_INTERRUPTS_REG */
  2363. #ifdef ALMDEBUG
  2364. printf("RTC INTRS <-- %02x\n", value);
  2365. #endif
  2366. s->interrupts = value;
  2367. return;
  2368. case 0x4c: /* RTC_COMP_LSB_REG */
  2369. #ifdef ALMDEBUG
  2370. printf("RTC COMPLSB <-- %02x\n", value);
  2371. #endif
  2372. s->comp_reg &= 0xff00;
  2373. s->comp_reg |= 0x00ff & value;
  2374. return;
  2375. case 0x50: /* RTC_COMP_MSB_REG */
  2376. #ifdef ALMDEBUG
  2377. printf("RTC COMPMSB <-- %02x\n", value);
  2378. #endif
  2379. s->comp_reg &= 0x00ff;
  2380. s->comp_reg |= 0xff00 & (value << 8);
  2381. return;
  2382. default:
  2383. OMAP_BAD_REG(addr);
  2384. return;
  2385. }
  2386. }
  2387. static const MemoryRegionOps omap_rtc_ops = {
  2388. .read = omap_rtc_read,
  2389. .write = omap_rtc_write,
  2390. .endianness = DEVICE_NATIVE_ENDIAN,
  2391. };
  2392. static void omap_rtc_tick(void *opaque)
  2393. {
  2394. struct omap_rtc_s *s = opaque;
  2395. if (s->round) {
  2396. /* Round to nearest full minute. */
  2397. if (s->current_tm.tm_sec < 30)
  2398. s->ti -= s->current_tm.tm_sec;
  2399. else
  2400. s->ti += 60 - s->current_tm.tm_sec;
  2401. s->round = 0;
  2402. }
  2403. localtime_r(&s->ti, &s->current_tm);
  2404. if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
  2405. s->status |= 0x40;
  2406. omap_rtc_interrupts_update(s);
  2407. }
  2408. if (s->interrupts & 0x04)
  2409. switch (s->interrupts & 3) {
  2410. case 0:
  2411. s->status |= 0x04;
  2412. qemu_irq_pulse(s->irq);
  2413. break;
  2414. case 1:
  2415. if (s->current_tm.tm_sec)
  2416. break;
  2417. s->status |= 0x08;
  2418. qemu_irq_pulse(s->irq);
  2419. break;
  2420. case 2:
  2421. if (s->current_tm.tm_sec || s->current_tm.tm_min)
  2422. break;
  2423. s->status |= 0x10;
  2424. qemu_irq_pulse(s->irq);
  2425. break;
  2426. case 3:
  2427. if (s->current_tm.tm_sec ||
  2428. s->current_tm.tm_min || s->current_tm.tm_hour)
  2429. break;
  2430. s->status |= 0x20;
  2431. qemu_irq_pulse(s->irq);
  2432. break;
  2433. }
  2434. /* Move on */
  2435. if (s->running)
  2436. s->ti ++;
  2437. s->tick += 1000;
  2438. /*
  2439. * Every full hour add a rough approximation of the compensation
  2440. * register to the 32kHz Timer (which drives the RTC) value.
  2441. */
  2442. if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
  2443. s->tick += s->comp_reg * 1000 / 32768;
  2444. qemu_mod_timer(s->clk, s->tick);
  2445. }
  2446. static void omap_rtc_reset(struct omap_rtc_s *s)
  2447. {
  2448. struct tm tm;
  2449. s->interrupts = 0;
  2450. s->comp_reg = 0;
  2451. s->running = 0;
  2452. s->pm_am = 0;
  2453. s->auto_comp = 0;
  2454. s->round = 0;
  2455. s->tick = qemu_get_clock_ms(rtc_clock);
  2456. memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
  2457. s->alarm_tm.tm_mday = 0x01;
  2458. s->status = 1 << 7;
  2459. qemu_get_timedate(&tm, 0);
  2460. s->ti = mktimegm(&tm);
  2461. omap_rtc_alarm_update(s);
  2462. omap_rtc_tick(s);
  2463. }
  2464. static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
  2465. hwaddr base,
  2466. qemu_irq timerirq, qemu_irq alarmirq,
  2467. omap_clk clk)
  2468. {
  2469. struct omap_rtc_s *s = (struct omap_rtc_s *)
  2470. g_malloc0(sizeof(struct omap_rtc_s));
  2471. s->irq = timerirq;
  2472. s->alarm = alarmirq;
  2473. s->clk = qemu_new_timer_ms(rtc_clock, omap_rtc_tick, s);
  2474. omap_rtc_reset(s);
  2475. memory_region_init_io(&s->iomem, &omap_rtc_ops, s,
  2476. "omap-rtc", 0x800);
  2477. memory_region_add_subregion(system_memory, base, &s->iomem);
  2478. return s;
  2479. }
  2480. /* Multi-channel Buffered Serial Port interfaces */
  2481. struct omap_mcbsp_s {
  2482. MemoryRegion iomem;
  2483. qemu_irq txirq;
  2484. qemu_irq rxirq;
  2485. qemu_irq txdrq;
  2486. qemu_irq rxdrq;
  2487. uint16_t spcr[2];
  2488. uint16_t rcr[2];
  2489. uint16_t xcr[2];
  2490. uint16_t srgr[2];
  2491. uint16_t mcr[2];
  2492. uint16_t pcr;
  2493. uint16_t rcer[8];
  2494. uint16_t xcer[8];
  2495. int tx_rate;
  2496. int rx_rate;
  2497. int tx_req;
  2498. int rx_req;
  2499. I2SCodec *codec;
  2500. QEMUTimer *source_timer;
  2501. QEMUTimer *sink_timer;
  2502. };
  2503. static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
  2504. {
  2505. int irq;
  2506. switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
  2507. case 0:
  2508. irq = (s->spcr[0] >> 1) & 1; /* RRDY */
  2509. break;
  2510. case 3:
  2511. irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
  2512. break;
  2513. default:
  2514. irq = 0;
  2515. break;
  2516. }
  2517. if (irq)
  2518. qemu_irq_pulse(s->rxirq);
  2519. switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
  2520. case 0:
  2521. irq = (s->spcr[1] >> 1) & 1; /* XRDY */
  2522. break;
  2523. case 3:
  2524. irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
  2525. break;
  2526. default:
  2527. irq = 0;
  2528. break;
  2529. }
  2530. if (irq)
  2531. qemu_irq_pulse(s->txirq);
  2532. }
  2533. static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
  2534. {
  2535. if ((s->spcr[0] >> 1) & 1) /* RRDY */
  2536. s->spcr[0] |= 1 << 2; /* RFULL */
  2537. s->spcr[0] |= 1 << 1; /* RRDY */
  2538. qemu_irq_raise(s->rxdrq);
  2539. omap_mcbsp_intr_update(s);
  2540. }
  2541. static void omap_mcbsp_source_tick(void *opaque)
  2542. {
  2543. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2544. static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
  2545. if (!s->rx_rate)
  2546. return;
  2547. if (s->rx_req)
  2548. printf("%s: Rx FIFO overrun\n", __FUNCTION__);
  2549. s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
  2550. omap_mcbsp_rx_newdata(s);
  2551. qemu_mod_timer(s->source_timer, qemu_get_clock_ns(vm_clock) +
  2552. get_ticks_per_sec());
  2553. }
  2554. static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
  2555. {
  2556. if (!s->codec || !s->codec->rts)
  2557. omap_mcbsp_source_tick(s);
  2558. else if (s->codec->in.len) {
  2559. s->rx_req = s->codec->in.len;
  2560. omap_mcbsp_rx_newdata(s);
  2561. }
  2562. }
  2563. static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
  2564. {
  2565. qemu_del_timer(s->source_timer);
  2566. }
  2567. static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
  2568. {
  2569. s->spcr[0] &= ~(1 << 1); /* RRDY */
  2570. qemu_irq_lower(s->rxdrq);
  2571. omap_mcbsp_intr_update(s);
  2572. }
  2573. static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
  2574. {
  2575. s->spcr[1] |= 1 << 1; /* XRDY */
  2576. qemu_irq_raise(s->txdrq);
  2577. omap_mcbsp_intr_update(s);
  2578. }
  2579. static void omap_mcbsp_sink_tick(void *opaque)
  2580. {
  2581. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2582. static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
  2583. if (!s->tx_rate)
  2584. return;
  2585. if (s->tx_req)
  2586. printf("%s: Tx FIFO underrun\n", __FUNCTION__);
  2587. s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
  2588. omap_mcbsp_tx_newdata(s);
  2589. qemu_mod_timer(s->sink_timer, qemu_get_clock_ns(vm_clock) +
  2590. get_ticks_per_sec());
  2591. }
  2592. static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
  2593. {
  2594. if (!s->codec || !s->codec->cts)
  2595. omap_mcbsp_sink_tick(s);
  2596. else if (s->codec->out.size) {
  2597. s->tx_req = s->codec->out.size;
  2598. omap_mcbsp_tx_newdata(s);
  2599. }
  2600. }
  2601. static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
  2602. {
  2603. s->spcr[1] &= ~(1 << 1); /* XRDY */
  2604. qemu_irq_lower(s->txdrq);
  2605. omap_mcbsp_intr_update(s);
  2606. if (s->codec && s->codec->cts)
  2607. s->codec->tx_swallow(s->codec->opaque);
  2608. }
  2609. static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
  2610. {
  2611. s->tx_req = 0;
  2612. omap_mcbsp_tx_done(s);
  2613. qemu_del_timer(s->sink_timer);
  2614. }
  2615. static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
  2616. {
  2617. int prev_rx_rate, prev_tx_rate;
  2618. int rx_rate = 0, tx_rate = 0;
  2619. int cpu_rate = 1500000; /* XXX */
  2620. /* TODO: check CLKSTP bit */
  2621. if (s->spcr[1] & (1 << 6)) { /* GRST */
  2622. if (s->spcr[0] & (1 << 0)) { /* RRST */
  2623. if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
  2624. (s->pcr & (1 << 8))) { /* CLKRM */
  2625. if (~s->pcr & (1 << 7)) /* SCLKME */
  2626. rx_rate = cpu_rate /
  2627. ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
  2628. } else
  2629. if (s->codec)
  2630. rx_rate = s->codec->rx_rate;
  2631. }
  2632. if (s->spcr[1] & (1 << 0)) { /* XRST */
  2633. if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
  2634. (s->pcr & (1 << 9))) { /* CLKXM */
  2635. if (~s->pcr & (1 << 7)) /* SCLKME */
  2636. tx_rate = cpu_rate /
  2637. ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
  2638. } else
  2639. if (s->codec)
  2640. tx_rate = s->codec->tx_rate;
  2641. }
  2642. }
  2643. prev_tx_rate = s->tx_rate;
  2644. prev_rx_rate = s->rx_rate;
  2645. s->tx_rate = tx_rate;
  2646. s->rx_rate = rx_rate;
  2647. if (s->codec)
  2648. s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
  2649. if (!prev_tx_rate && tx_rate)
  2650. omap_mcbsp_tx_start(s);
  2651. else if (s->tx_rate && !tx_rate)
  2652. omap_mcbsp_tx_stop(s);
  2653. if (!prev_rx_rate && rx_rate)
  2654. omap_mcbsp_rx_start(s);
  2655. else if (prev_tx_rate && !tx_rate)
  2656. omap_mcbsp_rx_stop(s);
  2657. }
  2658. static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
  2659. unsigned size)
  2660. {
  2661. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2662. int offset = addr & OMAP_MPUI_REG_MASK;
  2663. uint16_t ret;
  2664. if (size != 2) {
  2665. return omap_badwidth_read16(opaque, addr);
  2666. }
  2667. switch (offset) {
  2668. case 0x00: /* DRR2 */
  2669. if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
  2670. return 0x0000;
  2671. /* Fall through. */
  2672. case 0x02: /* DRR1 */
  2673. if (s->rx_req < 2) {
  2674. printf("%s: Rx FIFO underrun\n", __FUNCTION__);
  2675. omap_mcbsp_rx_done(s);
  2676. } else {
  2677. s->tx_req -= 2;
  2678. if (s->codec && s->codec->in.len >= 2) {
  2679. ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
  2680. ret |= s->codec->in.fifo[s->codec->in.start ++];
  2681. s->codec->in.len -= 2;
  2682. } else
  2683. ret = 0x0000;
  2684. if (!s->tx_req)
  2685. omap_mcbsp_rx_done(s);
  2686. return ret;
  2687. }
  2688. return 0x0000;
  2689. case 0x04: /* DXR2 */
  2690. case 0x06: /* DXR1 */
  2691. return 0x0000;
  2692. case 0x08: /* SPCR2 */
  2693. return s->spcr[1];
  2694. case 0x0a: /* SPCR1 */
  2695. return s->spcr[0];
  2696. case 0x0c: /* RCR2 */
  2697. return s->rcr[1];
  2698. case 0x0e: /* RCR1 */
  2699. return s->rcr[0];
  2700. case 0x10: /* XCR2 */
  2701. return s->xcr[1];
  2702. case 0x12: /* XCR1 */
  2703. return s->xcr[0];
  2704. case 0x14: /* SRGR2 */
  2705. return s->srgr[1];
  2706. case 0x16: /* SRGR1 */
  2707. return s->srgr[0];
  2708. case 0x18: /* MCR2 */
  2709. return s->mcr[1];
  2710. case 0x1a: /* MCR1 */
  2711. return s->mcr[0];
  2712. case 0x1c: /* RCERA */
  2713. return s->rcer[0];
  2714. case 0x1e: /* RCERB */
  2715. return s->rcer[1];
  2716. case 0x20: /* XCERA */
  2717. return s->xcer[0];
  2718. case 0x22: /* XCERB */
  2719. return s->xcer[1];
  2720. case 0x24: /* PCR0 */
  2721. return s->pcr;
  2722. case 0x26: /* RCERC */
  2723. return s->rcer[2];
  2724. case 0x28: /* RCERD */
  2725. return s->rcer[3];
  2726. case 0x2a: /* XCERC */
  2727. return s->xcer[2];
  2728. case 0x2c: /* XCERD */
  2729. return s->xcer[3];
  2730. case 0x2e: /* RCERE */
  2731. return s->rcer[4];
  2732. case 0x30: /* RCERF */
  2733. return s->rcer[5];
  2734. case 0x32: /* XCERE */
  2735. return s->xcer[4];
  2736. case 0x34: /* XCERF */
  2737. return s->xcer[5];
  2738. case 0x36: /* RCERG */
  2739. return s->rcer[6];
  2740. case 0x38: /* RCERH */
  2741. return s->rcer[7];
  2742. case 0x3a: /* XCERG */
  2743. return s->xcer[6];
  2744. case 0x3c: /* XCERH */
  2745. return s->xcer[7];
  2746. }
  2747. OMAP_BAD_REG(addr);
  2748. return 0;
  2749. }
  2750. static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
  2751. uint32_t value)
  2752. {
  2753. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2754. int offset = addr & OMAP_MPUI_REG_MASK;
  2755. switch (offset) {
  2756. case 0x00: /* DRR2 */
  2757. case 0x02: /* DRR1 */
  2758. OMAP_RO_REG(addr);
  2759. return;
  2760. case 0x04: /* DXR2 */
  2761. if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
  2762. return;
  2763. /* Fall through. */
  2764. case 0x06: /* DXR1 */
  2765. if (s->tx_req > 1) {
  2766. s->tx_req -= 2;
  2767. if (s->codec && s->codec->cts) {
  2768. s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
  2769. s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
  2770. }
  2771. if (s->tx_req < 2)
  2772. omap_mcbsp_tx_done(s);
  2773. } else
  2774. printf("%s: Tx FIFO overrun\n", __FUNCTION__);
  2775. return;
  2776. case 0x08: /* SPCR2 */
  2777. s->spcr[1] &= 0x0002;
  2778. s->spcr[1] |= 0x03f9 & value;
  2779. s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
  2780. if (~value & 1) /* XRST */
  2781. s->spcr[1] &= ~6;
  2782. omap_mcbsp_req_update(s);
  2783. return;
  2784. case 0x0a: /* SPCR1 */
  2785. s->spcr[0] &= 0x0006;
  2786. s->spcr[0] |= 0xf8f9 & value;
  2787. if (value & (1 << 15)) /* DLB */
  2788. printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
  2789. if (~value & 1) { /* RRST */
  2790. s->spcr[0] &= ~6;
  2791. s->rx_req = 0;
  2792. omap_mcbsp_rx_done(s);
  2793. }
  2794. omap_mcbsp_req_update(s);
  2795. return;
  2796. case 0x0c: /* RCR2 */
  2797. s->rcr[1] = value & 0xffff;
  2798. return;
  2799. case 0x0e: /* RCR1 */
  2800. s->rcr[0] = value & 0x7fe0;
  2801. return;
  2802. case 0x10: /* XCR2 */
  2803. s->xcr[1] = value & 0xffff;
  2804. return;
  2805. case 0x12: /* XCR1 */
  2806. s->xcr[0] = value & 0x7fe0;
  2807. return;
  2808. case 0x14: /* SRGR2 */
  2809. s->srgr[1] = value & 0xffff;
  2810. omap_mcbsp_req_update(s);
  2811. return;
  2812. case 0x16: /* SRGR1 */
  2813. s->srgr[0] = value & 0xffff;
  2814. omap_mcbsp_req_update(s);
  2815. return;
  2816. case 0x18: /* MCR2 */
  2817. s->mcr[1] = value & 0x03e3;
  2818. if (value & 3) /* XMCM */
  2819. printf("%s: Tx channel selection mode enable attempt\n",
  2820. __FUNCTION__);
  2821. return;
  2822. case 0x1a: /* MCR1 */
  2823. s->mcr[0] = value & 0x03e1;
  2824. if (value & 1) /* RMCM */
  2825. printf("%s: Rx channel selection mode enable attempt\n",
  2826. __FUNCTION__);
  2827. return;
  2828. case 0x1c: /* RCERA */
  2829. s->rcer[0] = value & 0xffff;
  2830. return;
  2831. case 0x1e: /* RCERB */
  2832. s->rcer[1] = value & 0xffff;
  2833. return;
  2834. case 0x20: /* XCERA */
  2835. s->xcer[0] = value & 0xffff;
  2836. return;
  2837. case 0x22: /* XCERB */
  2838. s->xcer[1] = value & 0xffff;
  2839. return;
  2840. case 0x24: /* PCR0 */
  2841. s->pcr = value & 0x7faf;
  2842. return;
  2843. case 0x26: /* RCERC */
  2844. s->rcer[2] = value & 0xffff;
  2845. return;
  2846. case 0x28: /* RCERD */
  2847. s->rcer[3] = value & 0xffff;
  2848. return;
  2849. case 0x2a: /* XCERC */
  2850. s->xcer[2] = value & 0xffff;
  2851. return;
  2852. case 0x2c: /* XCERD */
  2853. s->xcer[3] = value & 0xffff;
  2854. return;
  2855. case 0x2e: /* RCERE */
  2856. s->rcer[4] = value & 0xffff;
  2857. return;
  2858. case 0x30: /* RCERF */
  2859. s->rcer[5] = value & 0xffff;
  2860. return;
  2861. case 0x32: /* XCERE */
  2862. s->xcer[4] = value & 0xffff;
  2863. return;
  2864. case 0x34: /* XCERF */
  2865. s->xcer[5] = value & 0xffff;
  2866. return;
  2867. case 0x36: /* RCERG */
  2868. s->rcer[6] = value & 0xffff;
  2869. return;
  2870. case 0x38: /* RCERH */
  2871. s->rcer[7] = value & 0xffff;
  2872. return;
  2873. case 0x3a: /* XCERG */
  2874. s->xcer[6] = value & 0xffff;
  2875. return;
  2876. case 0x3c: /* XCERH */
  2877. s->xcer[7] = value & 0xffff;
  2878. return;
  2879. }
  2880. OMAP_BAD_REG(addr);
  2881. }
  2882. static void omap_mcbsp_writew(void *opaque, hwaddr addr,
  2883. uint32_t value)
  2884. {
  2885. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2886. int offset = addr & OMAP_MPUI_REG_MASK;
  2887. if (offset == 0x04) { /* DXR */
  2888. if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
  2889. return;
  2890. if (s->tx_req > 3) {
  2891. s->tx_req -= 4;
  2892. if (s->codec && s->codec->cts) {
  2893. s->codec->out.fifo[s->codec->out.len ++] =
  2894. (value >> 24) & 0xff;
  2895. s->codec->out.fifo[s->codec->out.len ++] =
  2896. (value >> 16) & 0xff;
  2897. s->codec->out.fifo[s->codec->out.len ++] =
  2898. (value >> 8) & 0xff;
  2899. s->codec->out.fifo[s->codec->out.len ++] =
  2900. (value >> 0) & 0xff;
  2901. }
  2902. if (s->tx_req < 4)
  2903. omap_mcbsp_tx_done(s);
  2904. } else
  2905. printf("%s: Tx FIFO overrun\n", __FUNCTION__);
  2906. return;
  2907. }
  2908. omap_badwidth_write16(opaque, addr, value);
  2909. }
  2910. static void omap_mcbsp_write(void *opaque, hwaddr addr,
  2911. uint64_t value, unsigned size)
  2912. {
  2913. switch (size) {
  2914. case 2: return omap_mcbsp_writeh(opaque, addr, value);
  2915. case 4: return omap_mcbsp_writew(opaque, addr, value);
  2916. default: return omap_badwidth_write16(opaque, addr, value);
  2917. }
  2918. }
  2919. static const MemoryRegionOps omap_mcbsp_ops = {
  2920. .read = omap_mcbsp_read,
  2921. .write = omap_mcbsp_write,
  2922. .endianness = DEVICE_NATIVE_ENDIAN,
  2923. };
  2924. static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
  2925. {
  2926. memset(&s->spcr, 0, sizeof(s->spcr));
  2927. memset(&s->rcr, 0, sizeof(s->rcr));
  2928. memset(&s->xcr, 0, sizeof(s->xcr));
  2929. s->srgr[0] = 0x0001;
  2930. s->srgr[1] = 0x2000;
  2931. memset(&s->mcr, 0, sizeof(s->mcr));
  2932. memset(&s->pcr, 0, sizeof(s->pcr));
  2933. memset(&s->rcer, 0, sizeof(s->rcer));
  2934. memset(&s->xcer, 0, sizeof(s->xcer));
  2935. s->tx_req = 0;
  2936. s->rx_req = 0;
  2937. s->tx_rate = 0;
  2938. s->rx_rate = 0;
  2939. qemu_del_timer(s->source_timer);
  2940. qemu_del_timer(s->sink_timer);
  2941. }
  2942. static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
  2943. hwaddr base,
  2944. qemu_irq txirq, qemu_irq rxirq,
  2945. qemu_irq *dma, omap_clk clk)
  2946. {
  2947. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
  2948. g_malloc0(sizeof(struct omap_mcbsp_s));
  2949. s->txirq = txirq;
  2950. s->rxirq = rxirq;
  2951. s->txdrq = dma[0];
  2952. s->rxdrq = dma[1];
  2953. s->sink_timer = qemu_new_timer_ns(vm_clock, omap_mcbsp_sink_tick, s);
  2954. s->source_timer = qemu_new_timer_ns(vm_clock, omap_mcbsp_source_tick, s);
  2955. omap_mcbsp_reset(s);
  2956. memory_region_init_io(&s->iomem, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
  2957. memory_region_add_subregion(system_memory, base, &s->iomem);
  2958. return s;
  2959. }
  2960. static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
  2961. {
  2962. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2963. if (s->rx_rate) {
  2964. s->rx_req = s->codec->in.len;
  2965. omap_mcbsp_rx_newdata(s);
  2966. }
  2967. }
  2968. static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
  2969. {
  2970. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2971. if (s->tx_rate) {
  2972. s->tx_req = s->codec->out.size;
  2973. omap_mcbsp_tx_newdata(s);
  2974. }
  2975. }
  2976. void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
  2977. {
  2978. s->codec = slave;
  2979. slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
  2980. slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
  2981. }
  2982. /* LED Pulse Generators */
  2983. struct omap_lpg_s {
  2984. MemoryRegion iomem;
  2985. QEMUTimer *tm;
  2986. uint8_t control;
  2987. uint8_t power;
  2988. int64_t on;
  2989. int64_t period;
  2990. int clk;
  2991. int cycle;
  2992. };
  2993. static void omap_lpg_tick(void *opaque)
  2994. {
  2995. struct omap_lpg_s *s = opaque;
  2996. if (s->cycle)
  2997. qemu_mod_timer(s->tm, qemu_get_clock_ms(vm_clock) + s->period - s->on);
  2998. else
  2999. qemu_mod_timer(s->tm, qemu_get_clock_ms(vm_clock) + s->on);
  3000. s->cycle = !s->cycle;
  3001. printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
  3002. }
  3003. static void omap_lpg_update(struct omap_lpg_s *s)
  3004. {
  3005. int64_t on, period = 1, ticks = 1000;
  3006. static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
  3007. if (~s->control & (1 << 6)) /* LPGRES */
  3008. on = 0;
  3009. else if (s->control & (1 << 7)) /* PERM_ON */
  3010. on = period;
  3011. else {
  3012. period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
  3013. 256 / 32);
  3014. on = (s->clk && s->power) ? muldiv64(ticks,
  3015. per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
  3016. }
  3017. qemu_del_timer(s->tm);
  3018. if (on == period && s->on < s->period)
  3019. printf("%s: LED is on\n", __FUNCTION__);
  3020. else if (on == 0 && s->on)
  3021. printf("%s: LED is off\n", __FUNCTION__);
  3022. else if (on && (on != s->on || period != s->period)) {
  3023. s->cycle = 0;
  3024. s->on = on;
  3025. s->period = period;
  3026. omap_lpg_tick(s);
  3027. return;
  3028. }
  3029. s->on = on;
  3030. s->period = period;
  3031. }
  3032. static void omap_lpg_reset(struct omap_lpg_s *s)
  3033. {
  3034. s->control = 0x00;
  3035. s->power = 0x00;
  3036. s->clk = 1;
  3037. omap_lpg_update(s);
  3038. }
  3039. static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
  3040. unsigned size)
  3041. {
  3042. struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
  3043. int offset = addr & OMAP_MPUI_REG_MASK;
  3044. if (size != 1) {
  3045. return omap_badwidth_read8(opaque, addr);
  3046. }
  3047. switch (offset) {
  3048. case 0x00: /* LCR */
  3049. return s->control;
  3050. case 0x04: /* PMR */
  3051. return s->power;
  3052. }
  3053. OMAP_BAD_REG(addr);
  3054. return 0;
  3055. }
  3056. static void omap_lpg_write(void *opaque, hwaddr addr,
  3057. uint64_t value, unsigned size)
  3058. {
  3059. struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
  3060. int offset = addr & OMAP_MPUI_REG_MASK;
  3061. if (size != 1) {
  3062. return omap_badwidth_write8(opaque, addr, value);
  3063. }
  3064. switch (offset) {
  3065. case 0x00: /* LCR */
  3066. if (~value & (1 << 6)) /* LPGRES */
  3067. omap_lpg_reset(s);
  3068. s->control = value & 0xff;
  3069. omap_lpg_update(s);
  3070. return;
  3071. case 0x04: /* PMR */
  3072. s->power = value & 0x01;
  3073. omap_lpg_update(s);
  3074. return;
  3075. default:
  3076. OMAP_BAD_REG(addr);
  3077. return;
  3078. }
  3079. }
  3080. static const MemoryRegionOps omap_lpg_ops = {
  3081. .read = omap_lpg_read,
  3082. .write = omap_lpg_write,
  3083. .endianness = DEVICE_NATIVE_ENDIAN,
  3084. };
  3085. static void omap_lpg_clk_update(void *opaque, int line, int on)
  3086. {
  3087. struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
  3088. s->clk = on;
  3089. omap_lpg_update(s);
  3090. }
  3091. static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
  3092. hwaddr base, omap_clk clk)
  3093. {
  3094. struct omap_lpg_s *s = (struct omap_lpg_s *)
  3095. g_malloc0(sizeof(struct omap_lpg_s));
  3096. s->tm = qemu_new_timer_ms(vm_clock, omap_lpg_tick, s);
  3097. omap_lpg_reset(s);
  3098. memory_region_init_io(&s->iomem, &omap_lpg_ops, s, "omap-lpg", 0x800);
  3099. memory_region_add_subregion(system_memory, base, &s->iomem);
  3100. omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
  3101. return s;
  3102. }
  3103. /* MPUI Peripheral Bridge configuration */
  3104. static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
  3105. unsigned size)
  3106. {
  3107. if (size != 2) {
  3108. return omap_badwidth_read16(opaque, addr);
  3109. }
  3110. if (addr == OMAP_MPUI_BASE) /* CMR */
  3111. return 0xfe4d;
  3112. OMAP_BAD_REG(addr);
  3113. return 0;
  3114. }
  3115. static void omap_mpui_io_write(void *opaque, hwaddr addr,
  3116. uint64_t value, unsigned size)
  3117. {
  3118. /* FIXME: infinite loop */
  3119. omap_badwidth_write16(opaque, addr, value);
  3120. }
  3121. static const MemoryRegionOps omap_mpui_io_ops = {
  3122. .read = omap_mpui_io_read,
  3123. .write = omap_mpui_io_write,
  3124. .endianness = DEVICE_NATIVE_ENDIAN,
  3125. };
  3126. static void omap_setup_mpui_io(MemoryRegion *system_memory,
  3127. struct omap_mpu_state_s *mpu)
  3128. {
  3129. memory_region_init_io(&mpu->mpui_io_iomem, &omap_mpui_io_ops, mpu,
  3130. "omap-mpui-io", 0x7fff);
  3131. memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
  3132. &mpu->mpui_io_iomem);
  3133. }
  3134. /* General chip reset */
  3135. static void omap1_mpu_reset(void *opaque)
  3136. {
  3137. struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
  3138. omap_dma_reset(mpu->dma);
  3139. omap_mpu_timer_reset(mpu->timer[0]);
  3140. omap_mpu_timer_reset(mpu->timer[1]);
  3141. omap_mpu_timer_reset(mpu->timer[2]);
  3142. omap_wd_timer_reset(mpu->wdt);
  3143. omap_os_timer_reset(mpu->os_timer);
  3144. omap_lcdc_reset(mpu->lcd);
  3145. omap_ulpd_pm_reset(mpu);
  3146. omap_pin_cfg_reset(mpu);
  3147. omap_mpui_reset(mpu);
  3148. omap_tipb_bridge_reset(mpu->private_tipb);
  3149. omap_tipb_bridge_reset(mpu->public_tipb);
  3150. omap_dpll_reset(mpu->dpll[0]);
  3151. omap_dpll_reset(mpu->dpll[1]);
  3152. omap_dpll_reset(mpu->dpll[2]);
  3153. omap_uart_reset(mpu->uart[0]);
  3154. omap_uart_reset(mpu->uart[1]);
  3155. omap_uart_reset(mpu->uart[2]);
  3156. omap_mmc_reset(mpu->mmc);
  3157. omap_mpuio_reset(mpu->mpuio);
  3158. omap_uwire_reset(mpu->microwire);
  3159. omap_pwl_reset(mpu->pwl);
  3160. omap_pwt_reset(mpu->pwt);
  3161. omap_rtc_reset(mpu->rtc);
  3162. omap_mcbsp_reset(mpu->mcbsp1);
  3163. omap_mcbsp_reset(mpu->mcbsp2);
  3164. omap_mcbsp_reset(mpu->mcbsp3);
  3165. omap_lpg_reset(mpu->led[0]);
  3166. omap_lpg_reset(mpu->led[1]);
  3167. omap_clkm_reset(mpu);
  3168. cpu_reset(CPU(mpu->cpu));
  3169. }
  3170. static const struct omap_map_s {
  3171. hwaddr phys_dsp;
  3172. hwaddr phys_mpu;
  3173. uint32_t size;
  3174. const char *name;
  3175. } omap15xx_dsp_mm[] = {
  3176. /* Strobe 0 */
  3177. { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
  3178. { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
  3179. { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
  3180. { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
  3181. { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
  3182. { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
  3183. { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
  3184. { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
  3185. { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
  3186. { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
  3187. { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
  3188. { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
  3189. { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
  3190. { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
  3191. { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
  3192. { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
  3193. { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
  3194. /* Strobe 1 */
  3195. { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
  3196. { 0 }
  3197. };
  3198. static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
  3199. const struct omap_map_s *map)
  3200. {
  3201. MemoryRegion *io;
  3202. for (; map->phys_dsp; map ++) {
  3203. io = g_new(MemoryRegion, 1);
  3204. memory_region_init_alias(io, map->name,
  3205. system_memory, map->phys_mpu, map->size);
  3206. memory_region_add_subregion(system_memory, map->phys_dsp, io);
  3207. }
  3208. }
  3209. void omap_mpu_wakeup(void *opaque, int irq, int req)
  3210. {
  3211. struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
  3212. if (mpu->cpu->env.halted) {
  3213. cpu_interrupt(&mpu->cpu->env, CPU_INTERRUPT_EXITTB);
  3214. }
  3215. }
  3216. static const struct dma_irq_map omap1_dma_irq_map[] = {
  3217. { 0, OMAP_INT_DMA_CH0_6 },
  3218. { 0, OMAP_INT_DMA_CH1_7 },
  3219. { 0, OMAP_INT_DMA_CH2_8 },
  3220. { 0, OMAP_INT_DMA_CH3 },
  3221. { 0, OMAP_INT_DMA_CH4 },
  3222. { 0, OMAP_INT_DMA_CH5 },
  3223. { 1, OMAP_INT_1610_DMA_CH6 },
  3224. { 1, OMAP_INT_1610_DMA_CH7 },
  3225. { 1, OMAP_INT_1610_DMA_CH8 },
  3226. { 1, OMAP_INT_1610_DMA_CH9 },
  3227. { 1, OMAP_INT_1610_DMA_CH10 },
  3228. { 1, OMAP_INT_1610_DMA_CH11 },
  3229. { 1, OMAP_INT_1610_DMA_CH12 },
  3230. { 1, OMAP_INT_1610_DMA_CH13 },
  3231. { 1, OMAP_INT_1610_DMA_CH14 },
  3232. { 1, OMAP_INT_1610_DMA_CH15 }
  3233. };
  3234. /* DMA ports for OMAP1 */
  3235. static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
  3236. hwaddr addr)
  3237. {
  3238. return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
  3239. }
  3240. static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
  3241. hwaddr addr)
  3242. {
  3243. return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
  3244. addr);
  3245. }
  3246. static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
  3247. hwaddr addr)
  3248. {
  3249. return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
  3250. }
  3251. static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
  3252. hwaddr addr)
  3253. {
  3254. return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
  3255. }
  3256. static int omap_validate_local_addr(struct omap_mpu_state_s *s,
  3257. hwaddr addr)
  3258. {
  3259. return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
  3260. }
  3261. static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
  3262. hwaddr addr)
  3263. {
  3264. return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
  3265. }
  3266. struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
  3267. unsigned long sdram_size,
  3268. const char *core)
  3269. {
  3270. int i;
  3271. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
  3272. g_malloc0(sizeof(struct omap_mpu_state_s));
  3273. qemu_irq *cpu_irq;
  3274. qemu_irq dma_irqs[6];
  3275. DriveInfo *dinfo;
  3276. SysBusDevice *busdev;
  3277. if (!core)
  3278. core = "ti925t";
  3279. /* Core */
  3280. s->mpu_model = omap310;
  3281. s->cpu = cpu_arm_init(core);
  3282. if (s->cpu == NULL) {
  3283. fprintf(stderr, "Unable to find CPU definition\n");
  3284. exit(1);
  3285. }
  3286. s->sdram_size = sdram_size;
  3287. s->sram_size = OMAP15XX_SRAM_SIZE;
  3288. s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
  3289. /* Clocks */
  3290. omap_clk_init(s);
  3291. /* Memory-mapped stuff */
  3292. memory_region_init_ram(&s->emiff_ram, "omap1.dram", s->sdram_size);
  3293. vmstate_register_ram_global(&s->emiff_ram);
  3294. memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
  3295. memory_region_init_ram(&s->imif_ram, "omap1.sram", s->sram_size);
  3296. vmstate_register_ram_global(&s->imif_ram);
  3297. memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
  3298. omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
  3299. cpu_irq = arm_pic_init_cpu(s->cpu);
  3300. s->ih[0] = qdev_create(NULL, "omap-intc");
  3301. qdev_prop_set_uint32(s->ih[0], "size", 0x100);
  3302. qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
  3303. qdev_init_nofail(s->ih[0]);
  3304. busdev = SYS_BUS_DEVICE(s->ih[0]);
  3305. sysbus_connect_irq(busdev, 0, cpu_irq[ARM_PIC_CPU_IRQ]);
  3306. sysbus_connect_irq(busdev, 1, cpu_irq[ARM_PIC_CPU_FIQ]);
  3307. sysbus_mmio_map(busdev, 0, 0xfffecb00);
  3308. s->ih[1] = qdev_create(NULL, "omap-intc");
  3309. qdev_prop_set_uint32(s->ih[1], "size", 0x800);
  3310. qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
  3311. qdev_init_nofail(s->ih[1]);
  3312. busdev = SYS_BUS_DEVICE(s->ih[1]);
  3313. sysbus_connect_irq(busdev, 0,
  3314. qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
  3315. /* The second interrupt controller's FIQ output is not wired up */
  3316. sysbus_mmio_map(busdev, 0, 0xfffe0000);
  3317. for (i = 0; i < 6; i++) {
  3318. dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
  3319. omap1_dma_irq_map[i].intr);
  3320. }
  3321. s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
  3322. qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
  3323. s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
  3324. s->port[emiff ].addr_valid = omap_validate_emiff_addr;
  3325. s->port[emifs ].addr_valid = omap_validate_emifs_addr;
  3326. s->port[imif ].addr_valid = omap_validate_imif_addr;
  3327. s->port[tipb ].addr_valid = omap_validate_tipb_addr;
  3328. s->port[local ].addr_valid = omap_validate_local_addr;
  3329. s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
  3330. /* Register SDRAM and SRAM DMA ports for fast transfers. */
  3331. soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
  3332. OMAP_EMIFF_BASE, s->sdram_size);
  3333. soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
  3334. OMAP_IMIF_BASE, s->sram_size);
  3335. s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
  3336. qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
  3337. omap_findclk(s, "mputim_ck"));
  3338. s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
  3339. qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
  3340. omap_findclk(s, "mputim_ck"));
  3341. s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
  3342. qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
  3343. omap_findclk(s, "mputim_ck"));
  3344. s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
  3345. qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
  3346. omap_findclk(s, "armwdt_ck"));
  3347. s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
  3348. qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
  3349. omap_findclk(s, "clk32-kHz"));
  3350. s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
  3351. qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
  3352. omap_dma_get_lcdch(s->dma),
  3353. omap_findclk(s, "lcd_ck"));
  3354. omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
  3355. omap_pin_cfg_init(system_memory, 0xfffe1000, s);
  3356. omap_id_init(system_memory, s);
  3357. omap_mpui_init(system_memory, 0xfffec900, s);
  3358. s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
  3359. qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
  3360. omap_findclk(s, "tipb_ck"));
  3361. s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
  3362. qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
  3363. omap_findclk(s, "tipb_ck"));
  3364. omap_tcmi_init(system_memory, 0xfffecc00, s);
  3365. s->uart[0] = omap_uart_init(0xfffb0000,
  3366. qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
  3367. omap_findclk(s, "uart1_ck"),
  3368. omap_findclk(s, "uart1_ck"),
  3369. s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
  3370. "uart1",
  3371. serial_hds[0]);
  3372. s->uart[1] = omap_uart_init(0xfffb0800,
  3373. qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
  3374. omap_findclk(s, "uart2_ck"),
  3375. omap_findclk(s, "uart2_ck"),
  3376. s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
  3377. "uart2",
  3378. serial_hds[0] ? serial_hds[1] : NULL);
  3379. s->uart[2] = omap_uart_init(0xfffb9800,
  3380. qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
  3381. omap_findclk(s, "uart3_ck"),
  3382. omap_findclk(s, "uart3_ck"),
  3383. s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
  3384. "uart3",
  3385. serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
  3386. s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
  3387. omap_findclk(s, "dpll1"));
  3388. s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
  3389. omap_findclk(s, "dpll2"));
  3390. s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
  3391. omap_findclk(s, "dpll3"));
  3392. dinfo = drive_get(IF_SD, 0, 0);
  3393. if (!dinfo) {
  3394. fprintf(stderr, "qemu: missing SecureDigital device\n");
  3395. exit(1);
  3396. }
  3397. s->mmc = omap_mmc_init(0xfffb7800, system_memory, dinfo->bdrv,
  3398. qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
  3399. &s->drq[OMAP_DMA_MMC_TX],
  3400. omap_findclk(s, "mmc_ck"));
  3401. s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
  3402. qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
  3403. qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
  3404. s->wakeup, omap_findclk(s, "clk32-kHz"));
  3405. s->gpio = qdev_create(NULL, "omap-gpio");
  3406. qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
  3407. qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
  3408. qdev_init_nofail(s->gpio);
  3409. sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
  3410. qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
  3411. sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
  3412. s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
  3413. qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
  3414. qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
  3415. s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
  3416. s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
  3417. omap_findclk(s, "armxor_ck"));
  3418. s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
  3419. omap_findclk(s, "armxor_ck"));
  3420. s->i2c[0] = qdev_create(NULL, "omap_i2c");
  3421. qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
  3422. qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
  3423. qdev_init_nofail(s->i2c[0]);
  3424. busdev = SYS_BUS_DEVICE(s->i2c[0]);
  3425. sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
  3426. sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
  3427. sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
  3428. sysbus_mmio_map(busdev, 0, 0xfffb3800);
  3429. s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
  3430. qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
  3431. qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
  3432. omap_findclk(s, "clk32-kHz"));
  3433. s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
  3434. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
  3435. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
  3436. &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
  3437. s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
  3438. qdev_get_gpio_in(s->ih[0],
  3439. OMAP_INT_310_McBSP2_TX),
  3440. qdev_get_gpio_in(s->ih[0],
  3441. OMAP_INT_310_McBSP2_RX),
  3442. &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
  3443. s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
  3444. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
  3445. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
  3446. &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
  3447. s->led[0] = omap_lpg_init(system_memory,
  3448. 0xfffbd000, omap_findclk(s, "clk32-kHz"));
  3449. s->led[1] = omap_lpg_init(system_memory,
  3450. 0xfffbd800, omap_findclk(s, "clk32-kHz"));
  3451. /* Register mappings not currenlty implemented:
  3452. * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
  3453. * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
  3454. * USB W2FC fffb4000 - fffb47ff
  3455. * Camera Interface fffb6800 - fffb6fff
  3456. * USB Host fffba000 - fffba7ff
  3457. * FAC fffba800 - fffbafff
  3458. * HDQ/1-Wire fffbc000 - fffbc7ff
  3459. * TIPB switches fffbc800 - fffbcfff
  3460. * Mailbox fffcf000 - fffcf7ff
  3461. * Local bus IF fffec100 - fffec1ff
  3462. * Local bus MMU fffec200 - fffec2ff
  3463. * DSP MMU fffed200 - fffed2ff
  3464. */
  3465. omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
  3466. omap_setup_mpui_io(system_memory, s);
  3467. qemu_register_reset(omap1_mpu_reset, s);
  3468. return s;
  3469. }