mcf_fec.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480
  1. /*
  2. * ColdFire Fast Ethernet Controller emulation.
  3. *
  4. * Copyright (c) 2007 CodeSourcery.
  5. *
  6. * This code is licensed under the GPL
  7. */
  8. #include "hw.h"
  9. #include "net/net.h"
  10. #include "mcf.h"
  11. /* For crc32 */
  12. #include <zlib.h>
  13. #include "exec/address-spaces.h"
  14. //#define DEBUG_FEC 1
  15. #ifdef DEBUG_FEC
  16. #define DPRINTF(fmt, ...) \
  17. do { printf("mcf_fec: " fmt , ## __VA_ARGS__); } while (0)
  18. #else
  19. #define DPRINTF(fmt, ...) do {} while(0)
  20. #endif
  21. #define FEC_MAX_FRAME_SIZE 2032
  22. typedef struct {
  23. MemoryRegion *sysmem;
  24. MemoryRegion iomem;
  25. qemu_irq *irq;
  26. NICState *nic;
  27. NICConf conf;
  28. uint32_t irq_state;
  29. uint32_t eir;
  30. uint32_t eimr;
  31. int rx_enabled;
  32. uint32_t rx_descriptor;
  33. uint32_t tx_descriptor;
  34. uint32_t ecr;
  35. uint32_t mmfr;
  36. uint32_t mscr;
  37. uint32_t rcr;
  38. uint32_t tcr;
  39. uint32_t tfwr;
  40. uint32_t rfsr;
  41. uint32_t erdsr;
  42. uint32_t etdsr;
  43. uint32_t emrbr;
  44. } mcf_fec_state;
  45. #define FEC_INT_HB 0x80000000
  46. #define FEC_INT_BABR 0x40000000
  47. #define FEC_INT_BABT 0x20000000
  48. #define FEC_INT_GRA 0x10000000
  49. #define FEC_INT_TXF 0x08000000
  50. #define FEC_INT_TXB 0x04000000
  51. #define FEC_INT_RXF 0x02000000
  52. #define FEC_INT_RXB 0x01000000
  53. #define FEC_INT_MII 0x00800000
  54. #define FEC_INT_EB 0x00400000
  55. #define FEC_INT_LC 0x00200000
  56. #define FEC_INT_RL 0x00100000
  57. #define FEC_INT_UN 0x00080000
  58. #define FEC_EN 2
  59. #define FEC_RESET 1
  60. /* Map interrupt flags onto IRQ lines. */
  61. #define FEC_NUM_IRQ 13
  62. static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = {
  63. FEC_INT_TXF,
  64. FEC_INT_TXB,
  65. FEC_INT_UN,
  66. FEC_INT_RL,
  67. FEC_INT_RXF,
  68. FEC_INT_RXB,
  69. FEC_INT_MII,
  70. FEC_INT_LC,
  71. FEC_INT_HB,
  72. FEC_INT_GRA,
  73. FEC_INT_EB,
  74. FEC_INT_BABT,
  75. FEC_INT_BABR
  76. };
  77. /* Buffer Descriptor. */
  78. typedef struct {
  79. uint16_t flags;
  80. uint16_t length;
  81. uint32_t data;
  82. } mcf_fec_bd;
  83. #define FEC_BD_R 0x8000
  84. #define FEC_BD_E 0x8000
  85. #define FEC_BD_O1 0x4000
  86. #define FEC_BD_W 0x2000
  87. #define FEC_BD_O2 0x1000
  88. #define FEC_BD_L 0x0800
  89. #define FEC_BD_TC 0x0400
  90. #define FEC_BD_ABC 0x0200
  91. #define FEC_BD_M 0x0100
  92. #define FEC_BD_BC 0x0080
  93. #define FEC_BD_MC 0x0040
  94. #define FEC_BD_LG 0x0020
  95. #define FEC_BD_NO 0x0010
  96. #define FEC_BD_CR 0x0004
  97. #define FEC_BD_OV 0x0002
  98. #define FEC_BD_TR 0x0001
  99. static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr)
  100. {
  101. cpu_physical_memory_read(addr, (uint8_t *)bd, sizeof(*bd));
  102. be16_to_cpus(&bd->flags);
  103. be16_to_cpus(&bd->length);
  104. be32_to_cpus(&bd->data);
  105. }
  106. static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr)
  107. {
  108. mcf_fec_bd tmp;
  109. tmp.flags = cpu_to_be16(bd->flags);
  110. tmp.length = cpu_to_be16(bd->length);
  111. tmp.data = cpu_to_be32(bd->data);
  112. cpu_physical_memory_write(addr, (uint8_t *)&tmp, sizeof(tmp));
  113. }
  114. static void mcf_fec_update(mcf_fec_state *s)
  115. {
  116. uint32_t active;
  117. uint32_t changed;
  118. uint32_t mask;
  119. int i;
  120. active = s->eir & s->eimr;
  121. changed = active ^s->irq_state;
  122. for (i = 0; i < FEC_NUM_IRQ; i++) {
  123. mask = mcf_fec_irq_map[i];
  124. if (changed & mask) {
  125. DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0);
  126. qemu_set_irq(s->irq[i], (active & mask) != 0);
  127. }
  128. }
  129. s->irq_state = active;
  130. }
  131. static void mcf_fec_do_tx(mcf_fec_state *s)
  132. {
  133. uint32_t addr;
  134. mcf_fec_bd bd;
  135. int frame_size;
  136. int len;
  137. uint8_t frame[FEC_MAX_FRAME_SIZE];
  138. uint8_t *ptr;
  139. DPRINTF("do_tx\n");
  140. ptr = frame;
  141. frame_size = 0;
  142. addr = s->tx_descriptor;
  143. while (1) {
  144. mcf_fec_read_bd(&bd, addr);
  145. DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
  146. addr, bd.flags, bd.length, bd.data);
  147. if ((bd.flags & FEC_BD_R) == 0) {
  148. /* Run out of descriptors to transmit. */
  149. break;
  150. }
  151. len = bd.length;
  152. if (frame_size + len > FEC_MAX_FRAME_SIZE) {
  153. len = FEC_MAX_FRAME_SIZE - frame_size;
  154. s->eir |= FEC_INT_BABT;
  155. }
  156. cpu_physical_memory_read(bd.data, ptr, len);
  157. ptr += len;
  158. frame_size += len;
  159. if (bd.flags & FEC_BD_L) {
  160. /* Last buffer in frame. */
  161. DPRINTF("Sending packet\n");
  162. qemu_send_packet(qemu_get_queue(s->nic), frame, len);
  163. ptr = frame;
  164. frame_size = 0;
  165. s->eir |= FEC_INT_TXF;
  166. }
  167. s->eir |= FEC_INT_TXB;
  168. bd.flags &= ~FEC_BD_R;
  169. /* Write back the modified descriptor. */
  170. mcf_fec_write_bd(&bd, addr);
  171. /* Advance to the next descriptor. */
  172. if ((bd.flags & FEC_BD_W) != 0) {
  173. addr = s->etdsr;
  174. } else {
  175. addr += 8;
  176. }
  177. }
  178. s->tx_descriptor = addr;
  179. }
  180. static void mcf_fec_enable_rx(mcf_fec_state *s)
  181. {
  182. mcf_fec_bd bd;
  183. mcf_fec_read_bd(&bd, s->rx_descriptor);
  184. s->rx_enabled = ((bd.flags & FEC_BD_E) != 0);
  185. if (!s->rx_enabled)
  186. DPRINTF("RX buffer full\n");
  187. }
  188. static void mcf_fec_reset(mcf_fec_state *s)
  189. {
  190. s->eir = 0;
  191. s->eimr = 0;
  192. s->rx_enabled = 0;
  193. s->ecr = 0;
  194. s->mscr = 0;
  195. s->rcr = 0x05ee0001;
  196. s->tcr = 0;
  197. s->tfwr = 0;
  198. s->rfsr = 0x500;
  199. }
  200. static uint64_t mcf_fec_read(void *opaque, hwaddr addr,
  201. unsigned size)
  202. {
  203. mcf_fec_state *s = (mcf_fec_state *)opaque;
  204. switch (addr & 0x3ff) {
  205. case 0x004: return s->eir;
  206. case 0x008: return s->eimr;
  207. case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */
  208. case 0x014: return 0; /* TDAR */
  209. case 0x024: return s->ecr;
  210. case 0x040: return s->mmfr;
  211. case 0x044: return s->mscr;
  212. case 0x064: return 0; /* MIBC */
  213. case 0x084: return s->rcr;
  214. case 0x0c4: return s->tcr;
  215. case 0x0e4: /* PALR */
  216. return (s->conf.macaddr.a[0] << 24) | (s->conf.macaddr.a[1] << 16)
  217. | (s->conf.macaddr.a[2] << 8) | s->conf.macaddr.a[3];
  218. break;
  219. case 0x0e8: /* PAUR */
  220. return (s->conf.macaddr.a[4] << 24) | (s->conf.macaddr.a[5] << 16) | 0x8808;
  221. case 0x0ec: return 0x10000; /* OPD */
  222. case 0x118: return 0;
  223. case 0x11c: return 0;
  224. case 0x120: return 0;
  225. case 0x124: return 0;
  226. case 0x144: return s->tfwr;
  227. case 0x14c: return 0x600;
  228. case 0x150: return s->rfsr;
  229. case 0x180: return s->erdsr;
  230. case 0x184: return s->etdsr;
  231. case 0x188: return s->emrbr;
  232. default:
  233. hw_error("mcf_fec_read: Bad address 0x%x\n", (int)addr);
  234. return 0;
  235. }
  236. }
  237. static void mcf_fec_write(void *opaque, hwaddr addr,
  238. uint64_t value, unsigned size)
  239. {
  240. mcf_fec_state *s = (mcf_fec_state *)opaque;
  241. switch (addr & 0x3ff) {
  242. case 0x004:
  243. s->eir &= ~value;
  244. break;
  245. case 0x008:
  246. s->eimr = value;
  247. break;
  248. case 0x010: /* RDAR */
  249. if ((s->ecr & FEC_EN) && !s->rx_enabled) {
  250. DPRINTF("RX enable\n");
  251. mcf_fec_enable_rx(s);
  252. }
  253. break;
  254. case 0x014: /* TDAR */
  255. if (s->ecr & FEC_EN) {
  256. mcf_fec_do_tx(s);
  257. }
  258. break;
  259. case 0x024:
  260. s->ecr = value;
  261. if (value & FEC_RESET) {
  262. DPRINTF("Reset\n");
  263. mcf_fec_reset(s);
  264. }
  265. if ((s->ecr & FEC_EN) == 0) {
  266. s->rx_enabled = 0;
  267. }
  268. break;
  269. case 0x040:
  270. /* TODO: Implement MII. */
  271. s->mmfr = value;
  272. break;
  273. case 0x044:
  274. s->mscr = value & 0xfe;
  275. break;
  276. case 0x064:
  277. /* TODO: Implement MIB. */
  278. break;
  279. case 0x084:
  280. s->rcr = value & 0x07ff003f;
  281. /* TODO: Implement LOOP mode. */
  282. break;
  283. case 0x0c4: /* TCR */
  284. /* We transmit immediately, so raise GRA immediately. */
  285. s->tcr = value;
  286. if (value & 1)
  287. s->eir |= FEC_INT_GRA;
  288. break;
  289. case 0x0e4: /* PALR */
  290. s->conf.macaddr.a[0] = value >> 24;
  291. s->conf.macaddr.a[1] = value >> 16;
  292. s->conf.macaddr.a[2] = value >> 8;
  293. s->conf.macaddr.a[3] = value;
  294. break;
  295. case 0x0e8: /* PAUR */
  296. s->conf.macaddr.a[4] = value >> 24;
  297. s->conf.macaddr.a[5] = value >> 16;
  298. break;
  299. case 0x0ec:
  300. /* OPD */
  301. break;
  302. case 0x118:
  303. case 0x11c:
  304. case 0x120:
  305. case 0x124:
  306. /* TODO: implement MAC hash filtering. */
  307. break;
  308. case 0x144:
  309. s->tfwr = value & 3;
  310. break;
  311. case 0x14c:
  312. /* FRBR writes ignored. */
  313. break;
  314. case 0x150:
  315. s->rfsr = (value & 0x3fc) | 0x400;
  316. break;
  317. case 0x180:
  318. s->erdsr = value & ~3;
  319. s->rx_descriptor = s->erdsr;
  320. break;
  321. case 0x184:
  322. s->etdsr = value & ~3;
  323. s->tx_descriptor = s->etdsr;
  324. break;
  325. case 0x188:
  326. s->emrbr = value & 0x7f0;
  327. break;
  328. default:
  329. hw_error("mcf_fec_write Bad address 0x%x\n", (int)addr);
  330. }
  331. mcf_fec_update(s);
  332. }
  333. static int mcf_fec_can_receive(NetClientState *nc)
  334. {
  335. mcf_fec_state *s = qemu_get_nic_opaque(nc);
  336. return s->rx_enabled;
  337. }
  338. static ssize_t mcf_fec_receive(NetClientState *nc, const uint8_t *buf, size_t size)
  339. {
  340. mcf_fec_state *s = qemu_get_nic_opaque(nc);
  341. mcf_fec_bd bd;
  342. uint32_t flags = 0;
  343. uint32_t addr;
  344. uint32_t crc;
  345. uint32_t buf_addr;
  346. uint8_t *crc_ptr;
  347. unsigned int buf_len;
  348. DPRINTF("do_rx len %d\n", size);
  349. if (!s->rx_enabled) {
  350. fprintf(stderr, "mcf_fec_receive: Unexpected packet\n");
  351. }
  352. /* 4 bytes for the CRC. */
  353. size += 4;
  354. crc = cpu_to_be32(crc32(~0, buf, size));
  355. crc_ptr = (uint8_t *)&crc;
  356. /* Huge frames are truncted. */
  357. if (size > FEC_MAX_FRAME_SIZE) {
  358. size = FEC_MAX_FRAME_SIZE;
  359. flags |= FEC_BD_TR | FEC_BD_LG;
  360. }
  361. /* Frames larger than the user limit just set error flags. */
  362. if (size > (s->rcr >> 16)) {
  363. flags |= FEC_BD_LG;
  364. }
  365. addr = s->rx_descriptor;
  366. while (size > 0) {
  367. mcf_fec_read_bd(&bd, addr);
  368. if ((bd.flags & FEC_BD_E) == 0) {
  369. /* No descriptors available. Bail out. */
  370. /* FIXME: This is wrong. We should probably either save the
  371. remainder for when more RX buffers are available, or
  372. flag an error. */
  373. fprintf(stderr, "mcf_fec: Lost end of frame\n");
  374. break;
  375. }
  376. buf_len = (size <= s->emrbr) ? size: s->emrbr;
  377. bd.length = buf_len;
  378. size -= buf_len;
  379. DPRINTF("rx_bd %x length %d\n", addr, bd.length);
  380. /* The last 4 bytes are the CRC. */
  381. if (size < 4)
  382. buf_len += size - 4;
  383. buf_addr = bd.data;
  384. cpu_physical_memory_write(buf_addr, buf, buf_len);
  385. buf += buf_len;
  386. if (size < 4) {
  387. cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size);
  388. crc_ptr += 4 - size;
  389. }
  390. bd.flags &= ~FEC_BD_E;
  391. if (size == 0) {
  392. /* Last buffer in frame. */
  393. bd.flags |= flags | FEC_BD_L;
  394. DPRINTF("rx frame flags %04x\n", bd.flags);
  395. s->eir |= FEC_INT_RXF;
  396. } else {
  397. s->eir |= FEC_INT_RXB;
  398. }
  399. mcf_fec_write_bd(&bd, addr);
  400. /* Advance to the next descriptor. */
  401. if ((bd.flags & FEC_BD_W) != 0) {
  402. addr = s->erdsr;
  403. } else {
  404. addr += 8;
  405. }
  406. }
  407. s->rx_descriptor = addr;
  408. mcf_fec_enable_rx(s);
  409. mcf_fec_update(s);
  410. return size;
  411. }
  412. static const MemoryRegionOps mcf_fec_ops = {
  413. .read = mcf_fec_read,
  414. .write = mcf_fec_write,
  415. .endianness = DEVICE_NATIVE_ENDIAN,
  416. };
  417. static void mcf_fec_cleanup(NetClientState *nc)
  418. {
  419. mcf_fec_state *s = qemu_get_nic_opaque(nc);
  420. memory_region_del_subregion(s->sysmem, &s->iomem);
  421. memory_region_destroy(&s->iomem);
  422. g_free(s);
  423. }
  424. static NetClientInfo net_mcf_fec_info = {
  425. .type = NET_CLIENT_OPTIONS_KIND_NIC,
  426. .size = sizeof(NICState),
  427. .can_receive = mcf_fec_can_receive,
  428. .receive = mcf_fec_receive,
  429. .cleanup = mcf_fec_cleanup,
  430. };
  431. void mcf_fec_init(MemoryRegion *sysmem, NICInfo *nd,
  432. hwaddr base, qemu_irq *irq)
  433. {
  434. mcf_fec_state *s;
  435. qemu_check_nic_model(nd, "mcf_fec");
  436. s = (mcf_fec_state *)g_malloc0(sizeof(mcf_fec_state));
  437. s->sysmem = sysmem;
  438. s->irq = irq;
  439. memory_region_init_io(&s->iomem, &mcf_fec_ops, s, "fec", 0x400);
  440. memory_region_add_subregion(sysmem, base, &s->iomem);
  441. s->conf.macaddr = nd->macaddr;
  442. s->conf.peers.ncs[0] = nd->netdev;
  443. s->nic = qemu_new_nic(&net_mcf_fec_info, &s->conf, nd->model, nd->name, s);
  444. qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
  445. }