2
0

mc146818rtc.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913
  1. /*
  2. * QEMU MC146818 RTC emulation
  3. *
  4. * Copyright (c) 2003-2004 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "hw.h"
  25. #include "qemu/timer.h"
  26. #include "sysemu/sysemu.h"
  27. #include "mc146818rtc.h"
  28. #include "qapi/visitor.h"
  29. #ifdef TARGET_I386
  30. #include "apic.h"
  31. #endif
  32. //#define DEBUG_CMOS
  33. //#define DEBUG_COALESCED
  34. #ifdef DEBUG_CMOS
  35. # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
  36. #else
  37. # define CMOS_DPRINTF(format, ...) do { } while (0)
  38. #endif
  39. #ifdef DEBUG_COALESCED
  40. # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
  41. #else
  42. # define DPRINTF_C(format, ...) do { } while (0)
  43. #endif
  44. #define NSEC_PER_SEC 1000000000LL
  45. #define SEC_PER_MIN 60
  46. #define MIN_PER_HOUR 60
  47. #define SEC_PER_HOUR 3600
  48. #define HOUR_PER_DAY 24
  49. #define SEC_PER_DAY 86400
  50. #define RTC_REINJECT_ON_ACK_COUNT 20
  51. #define RTC_CLOCK_RATE 32768
  52. #define UIP_HOLD_LENGTH (8 * NSEC_PER_SEC / 32768)
  53. typedef struct RTCState {
  54. ISADevice dev;
  55. MemoryRegion io;
  56. uint8_t cmos_data[128];
  57. uint8_t cmos_index;
  58. int32_t base_year;
  59. uint64_t base_rtc;
  60. uint64_t last_update;
  61. int64_t offset;
  62. qemu_irq irq;
  63. qemu_irq sqw_irq;
  64. int it_shift;
  65. /* periodic timer */
  66. QEMUTimer *periodic_timer;
  67. int64_t next_periodic_time;
  68. /* update-ended timer */
  69. QEMUTimer *update_timer;
  70. uint64_t next_alarm_time;
  71. uint16_t irq_reinject_on_ack_count;
  72. uint32_t irq_coalesced;
  73. uint32_t period;
  74. QEMUTimer *coalesced_timer;
  75. Notifier clock_reset_notifier;
  76. LostTickPolicy lost_tick_policy;
  77. Notifier suspend_notifier;
  78. } RTCState;
  79. static void rtc_set_time(RTCState *s);
  80. static void rtc_update_time(RTCState *s);
  81. static void rtc_set_cmos(RTCState *s, const struct tm *tm);
  82. static inline int rtc_from_bcd(RTCState *s, int a);
  83. static uint64_t get_next_alarm(RTCState *s);
  84. static inline bool rtc_running(RTCState *s)
  85. {
  86. return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
  87. (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
  88. }
  89. static uint64_t get_guest_rtc_ns(RTCState *s)
  90. {
  91. uint64_t guest_rtc;
  92. uint64_t guest_clock = qemu_get_clock_ns(rtc_clock);
  93. guest_rtc = s->base_rtc * NSEC_PER_SEC
  94. + guest_clock - s->last_update + s->offset;
  95. return guest_rtc;
  96. }
  97. #ifdef TARGET_I386
  98. static void rtc_coalesced_timer_update(RTCState *s)
  99. {
  100. if (s->irq_coalesced == 0) {
  101. qemu_del_timer(s->coalesced_timer);
  102. } else {
  103. /* divide each RTC interval to 2 - 8 smaller intervals */
  104. int c = MIN(s->irq_coalesced, 7) + 1;
  105. int64_t next_clock = qemu_get_clock_ns(rtc_clock) +
  106. muldiv64(s->period / c, get_ticks_per_sec(), RTC_CLOCK_RATE);
  107. qemu_mod_timer(s->coalesced_timer, next_clock);
  108. }
  109. }
  110. static void rtc_coalesced_timer(void *opaque)
  111. {
  112. RTCState *s = opaque;
  113. if (s->irq_coalesced != 0) {
  114. apic_reset_irq_delivered();
  115. s->cmos_data[RTC_REG_C] |= 0xc0;
  116. DPRINTF_C("cmos: injecting from timer\n");
  117. qemu_irq_raise(s->irq);
  118. if (apic_get_irq_delivered()) {
  119. s->irq_coalesced--;
  120. DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
  121. s->irq_coalesced);
  122. }
  123. }
  124. rtc_coalesced_timer_update(s);
  125. }
  126. #endif
  127. /* handle periodic timer */
  128. static void periodic_timer_update(RTCState *s, int64_t current_time)
  129. {
  130. int period_code, period;
  131. int64_t cur_clock, next_irq_clock;
  132. period_code = s->cmos_data[RTC_REG_A] & 0x0f;
  133. if (period_code != 0
  134. && ((s->cmos_data[RTC_REG_B] & REG_B_PIE)
  135. || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
  136. if (period_code <= 2)
  137. period_code += 7;
  138. /* period in 32 Khz cycles */
  139. period = 1 << (period_code - 1);
  140. #ifdef TARGET_I386
  141. if (period != s->period) {
  142. s->irq_coalesced = (s->irq_coalesced * s->period) / period;
  143. DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced);
  144. }
  145. s->period = period;
  146. #endif
  147. /* compute 32 khz clock */
  148. cur_clock = muldiv64(current_time, RTC_CLOCK_RATE, get_ticks_per_sec());
  149. next_irq_clock = (cur_clock & ~(period - 1)) + period;
  150. s->next_periodic_time =
  151. muldiv64(next_irq_clock, get_ticks_per_sec(), RTC_CLOCK_RATE) + 1;
  152. qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
  153. } else {
  154. #ifdef TARGET_I386
  155. s->irq_coalesced = 0;
  156. #endif
  157. qemu_del_timer(s->periodic_timer);
  158. }
  159. }
  160. static void rtc_periodic_timer(void *opaque)
  161. {
  162. RTCState *s = opaque;
  163. periodic_timer_update(s, s->next_periodic_time);
  164. s->cmos_data[RTC_REG_C] |= REG_C_PF;
  165. if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
  166. s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
  167. #ifdef TARGET_I386
  168. if (s->lost_tick_policy == LOST_TICK_SLEW) {
  169. if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
  170. s->irq_reinject_on_ack_count = 0;
  171. apic_reset_irq_delivered();
  172. qemu_irq_raise(s->irq);
  173. if (!apic_get_irq_delivered()) {
  174. s->irq_coalesced++;
  175. rtc_coalesced_timer_update(s);
  176. DPRINTF_C("cmos: coalesced irqs increased to %d\n",
  177. s->irq_coalesced);
  178. }
  179. } else
  180. #endif
  181. qemu_irq_raise(s->irq);
  182. }
  183. if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
  184. /* Not square wave at all but we don't want 2048Hz interrupts!
  185. Must be seen as a pulse. */
  186. qemu_irq_raise(s->sqw_irq);
  187. }
  188. }
  189. /* handle update-ended timer */
  190. static void check_update_timer(RTCState *s)
  191. {
  192. uint64_t next_update_time;
  193. uint64_t guest_nsec;
  194. int next_alarm_sec;
  195. /* From the data sheet: "Holding the dividers in reset prevents
  196. * interrupts from operating, while setting the SET bit allows"
  197. * them to occur. However, it will prevent an alarm interrupt
  198. * from occurring, because the time of day is not updated.
  199. */
  200. if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
  201. qemu_del_timer(s->update_timer);
  202. return;
  203. }
  204. if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
  205. (s->cmos_data[RTC_REG_B] & REG_B_SET)) {
  206. qemu_del_timer(s->update_timer);
  207. return;
  208. }
  209. if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
  210. (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
  211. qemu_del_timer(s->update_timer);
  212. return;
  213. }
  214. guest_nsec = get_guest_rtc_ns(s) % NSEC_PER_SEC;
  215. /* if UF is clear, reprogram to next second */
  216. next_update_time = qemu_get_clock_ns(rtc_clock)
  217. + NSEC_PER_SEC - guest_nsec;
  218. /* Compute time of next alarm. One second is already accounted
  219. * for in next_update_time.
  220. */
  221. next_alarm_sec = get_next_alarm(s);
  222. s->next_alarm_time = next_update_time + (next_alarm_sec - 1) * NSEC_PER_SEC;
  223. if (s->cmos_data[RTC_REG_C] & REG_C_UF) {
  224. /* UF is set, but AF is clear. Program the timer to target
  225. * the alarm time. */
  226. next_update_time = s->next_alarm_time;
  227. }
  228. if (next_update_time != qemu_timer_expire_time_ns(s->update_timer)) {
  229. qemu_mod_timer(s->update_timer, next_update_time);
  230. }
  231. }
  232. static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
  233. {
  234. if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
  235. hour %= 12;
  236. if (s->cmos_data[RTC_HOURS] & 0x80) {
  237. hour += 12;
  238. }
  239. }
  240. return hour;
  241. }
  242. static uint64_t get_next_alarm(RTCState *s)
  243. {
  244. int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
  245. int32_t hour, min, sec;
  246. rtc_update_time(s);
  247. alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
  248. alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
  249. alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
  250. alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
  251. cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
  252. cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
  253. cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
  254. cur_hour = convert_hour(s, cur_hour);
  255. if (alarm_hour == -1) {
  256. alarm_hour = cur_hour;
  257. if (alarm_min == -1) {
  258. alarm_min = cur_min;
  259. if (alarm_sec == -1) {
  260. alarm_sec = cur_sec + 1;
  261. } else if (cur_sec > alarm_sec) {
  262. alarm_min++;
  263. }
  264. } else if (cur_min == alarm_min) {
  265. if (alarm_sec == -1) {
  266. alarm_sec = cur_sec + 1;
  267. } else {
  268. if (cur_sec > alarm_sec) {
  269. alarm_hour++;
  270. }
  271. }
  272. if (alarm_sec == SEC_PER_MIN) {
  273. /* wrap to next hour, minutes is not in don't care mode */
  274. alarm_sec = 0;
  275. alarm_hour++;
  276. }
  277. } else if (cur_min > alarm_min) {
  278. alarm_hour++;
  279. }
  280. } else if (cur_hour == alarm_hour) {
  281. if (alarm_min == -1) {
  282. alarm_min = cur_min;
  283. if (alarm_sec == -1) {
  284. alarm_sec = cur_sec + 1;
  285. } else if (cur_sec > alarm_sec) {
  286. alarm_min++;
  287. }
  288. if (alarm_sec == SEC_PER_MIN) {
  289. alarm_sec = 0;
  290. alarm_min++;
  291. }
  292. /* wrap to next day, hour is not in don't care mode */
  293. alarm_min %= MIN_PER_HOUR;
  294. } else if (cur_min == alarm_min) {
  295. if (alarm_sec == -1) {
  296. alarm_sec = cur_sec + 1;
  297. }
  298. /* wrap to next day, hours+minutes not in don't care mode */
  299. alarm_sec %= SEC_PER_MIN;
  300. }
  301. }
  302. /* values that are still don't care fire at the next min/sec */
  303. if (alarm_min == -1) {
  304. alarm_min = 0;
  305. }
  306. if (alarm_sec == -1) {
  307. alarm_sec = 0;
  308. }
  309. /* keep values in range */
  310. if (alarm_sec == SEC_PER_MIN) {
  311. alarm_sec = 0;
  312. alarm_min++;
  313. }
  314. if (alarm_min == MIN_PER_HOUR) {
  315. alarm_min = 0;
  316. alarm_hour++;
  317. }
  318. alarm_hour %= HOUR_PER_DAY;
  319. hour = alarm_hour - cur_hour;
  320. min = hour * MIN_PER_HOUR + alarm_min - cur_min;
  321. sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
  322. return sec <= 0 ? sec + SEC_PER_DAY : sec;
  323. }
  324. static void rtc_update_timer(void *opaque)
  325. {
  326. RTCState *s = opaque;
  327. int32_t irqs = REG_C_UF;
  328. int32_t new_irqs;
  329. assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
  330. /* UIP might have been latched, update time and clear it. */
  331. rtc_update_time(s);
  332. s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
  333. if (qemu_get_clock_ns(rtc_clock) >= s->next_alarm_time) {
  334. irqs |= REG_C_AF;
  335. if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
  336. qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC);
  337. }
  338. }
  339. new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
  340. s->cmos_data[RTC_REG_C] |= irqs;
  341. if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
  342. s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
  343. qemu_irq_raise(s->irq);
  344. }
  345. check_update_timer(s);
  346. }
  347. static void cmos_ioport_write(void *opaque, hwaddr addr,
  348. uint64_t data, unsigned size)
  349. {
  350. RTCState *s = opaque;
  351. if ((addr & 1) == 0) {
  352. s->cmos_index = data & 0x7f;
  353. } else {
  354. CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
  355. s->cmos_index, data);
  356. switch(s->cmos_index) {
  357. case RTC_SECONDS_ALARM:
  358. case RTC_MINUTES_ALARM:
  359. case RTC_HOURS_ALARM:
  360. s->cmos_data[s->cmos_index] = data;
  361. check_update_timer(s);
  362. break;
  363. case RTC_IBM_PS2_CENTURY_BYTE:
  364. s->cmos_index = RTC_CENTURY;
  365. /* fall through */
  366. case RTC_CENTURY:
  367. case RTC_SECONDS:
  368. case RTC_MINUTES:
  369. case RTC_HOURS:
  370. case RTC_DAY_OF_WEEK:
  371. case RTC_DAY_OF_MONTH:
  372. case RTC_MONTH:
  373. case RTC_YEAR:
  374. s->cmos_data[s->cmos_index] = data;
  375. /* if in set mode, do not update the time */
  376. if (rtc_running(s)) {
  377. rtc_set_time(s);
  378. check_update_timer(s);
  379. }
  380. break;
  381. case RTC_REG_A:
  382. if ((data & 0x60) == 0x60) {
  383. if (rtc_running(s)) {
  384. rtc_update_time(s);
  385. }
  386. /* What happens to UIP when divider reset is enabled is
  387. * unclear from the datasheet. Shouldn't matter much
  388. * though.
  389. */
  390. s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
  391. } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
  392. (data & 0x70) <= 0x20) {
  393. /* when the divider reset is removed, the first update cycle
  394. * begins one-half second later*/
  395. if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
  396. s->offset = 500000000;
  397. rtc_set_time(s);
  398. }
  399. s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
  400. }
  401. /* UIP bit is read only */
  402. s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
  403. (s->cmos_data[RTC_REG_A] & REG_A_UIP);
  404. periodic_timer_update(s, qemu_get_clock_ns(rtc_clock));
  405. check_update_timer(s);
  406. break;
  407. case RTC_REG_B:
  408. if (data & REG_B_SET) {
  409. /* update cmos to when the rtc was stopping */
  410. if (rtc_running(s)) {
  411. rtc_update_time(s);
  412. }
  413. /* set mode: reset UIP mode */
  414. s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
  415. data &= ~REG_B_UIE;
  416. } else {
  417. /* if disabling set mode, update the time */
  418. if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
  419. (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
  420. s->offset = get_guest_rtc_ns(s) % NSEC_PER_SEC;
  421. rtc_set_time(s);
  422. }
  423. }
  424. /* if an interrupt flag is already set when the interrupt
  425. * becomes enabled, raise an interrupt immediately. */
  426. if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
  427. s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
  428. qemu_irq_raise(s->irq);
  429. } else {
  430. s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
  431. qemu_irq_lower(s->irq);
  432. }
  433. s->cmos_data[RTC_REG_B] = data;
  434. periodic_timer_update(s, qemu_get_clock_ns(rtc_clock));
  435. check_update_timer(s);
  436. break;
  437. case RTC_REG_C:
  438. case RTC_REG_D:
  439. /* cannot write to them */
  440. break;
  441. default:
  442. s->cmos_data[s->cmos_index] = data;
  443. break;
  444. }
  445. }
  446. }
  447. static inline int rtc_to_bcd(RTCState *s, int a)
  448. {
  449. if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
  450. return a;
  451. } else {
  452. return ((a / 10) << 4) | (a % 10);
  453. }
  454. }
  455. static inline int rtc_from_bcd(RTCState *s, int a)
  456. {
  457. if ((a & 0xc0) == 0xc0) {
  458. return -1;
  459. }
  460. if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
  461. return a;
  462. } else {
  463. return ((a >> 4) * 10) + (a & 0x0f);
  464. }
  465. }
  466. static void rtc_get_time(RTCState *s, struct tm *tm)
  467. {
  468. tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
  469. tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
  470. tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
  471. if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
  472. tm->tm_hour %= 12;
  473. if (s->cmos_data[RTC_HOURS] & 0x80) {
  474. tm->tm_hour += 12;
  475. }
  476. }
  477. tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
  478. tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
  479. tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
  480. tm->tm_year =
  481. rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
  482. rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
  483. }
  484. static void rtc_set_time(RTCState *s)
  485. {
  486. struct tm tm;
  487. rtc_get_time(s, &tm);
  488. s->base_rtc = mktimegm(&tm);
  489. s->last_update = qemu_get_clock_ns(rtc_clock);
  490. rtc_change_mon_event(&tm);
  491. }
  492. static void rtc_set_cmos(RTCState *s, const struct tm *tm)
  493. {
  494. int year;
  495. s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
  496. s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
  497. if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
  498. /* 24 hour format */
  499. s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
  500. } else {
  501. /* 12 hour format */
  502. int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
  503. s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
  504. if (tm->tm_hour >= 12)
  505. s->cmos_data[RTC_HOURS] |= 0x80;
  506. }
  507. s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
  508. s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
  509. s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
  510. year = tm->tm_year + 1900 - s->base_year;
  511. s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
  512. s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
  513. }
  514. static void rtc_update_time(RTCState *s)
  515. {
  516. struct tm ret;
  517. time_t guest_sec;
  518. int64_t guest_nsec;
  519. guest_nsec = get_guest_rtc_ns(s);
  520. guest_sec = guest_nsec / NSEC_PER_SEC;
  521. gmtime_r(&guest_sec, &ret);
  522. /* Is SET flag of Register B disabled? */
  523. if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
  524. rtc_set_cmos(s, &ret);
  525. }
  526. }
  527. static int update_in_progress(RTCState *s)
  528. {
  529. int64_t guest_nsec;
  530. if (!rtc_running(s)) {
  531. return 0;
  532. }
  533. if (qemu_timer_pending(s->update_timer)) {
  534. int64_t next_update_time = qemu_timer_expire_time_ns(s->update_timer);
  535. /* Latch UIP until the timer expires. */
  536. if (qemu_get_clock_ns(rtc_clock) >= (next_update_time - UIP_HOLD_LENGTH)) {
  537. s->cmos_data[RTC_REG_A] |= REG_A_UIP;
  538. return 1;
  539. }
  540. }
  541. guest_nsec = get_guest_rtc_ns(s);
  542. /* UIP bit will be set at last 244us of every second. */
  543. if ((guest_nsec % NSEC_PER_SEC) >= (NSEC_PER_SEC - UIP_HOLD_LENGTH)) {
  544. return 1;
  545. }
  546. return 0;
  547. }
  548. static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
  549. unsigned size)
  550. {
  551. RTCState *s = opaque;
  552. int ret;
  553. if ((addr & 1) == 0) {
  554. return 0xff;
  555. } else {
  556. switch(s->cmos_index) {
  557. case RTC_IBM_PS2_CENTURY_BYTE:
  558. s->cmos_index = RTC_CENTURY;
  559. /* fall through */
  560. case RTC_CENTURY:
  561. case RTC_SECONDS:
  562. case RTC_MINUTES:
  563. case RTC_HOURS:
  564. case RTC_DAY_OF_WEEK:
  565. case RTC_DAY_OF_MONTH:
  566. case RTC_MONTH:
  567. case RTC_YEAR:
  568. /* if not in set mode, calibrate cmos before
  569. * reading*/
  570. if (rtc_running(s)) {
  571. rtc_update_time(s);
  572. }
  573. ret = s->cmos_data[s->cmos_index];
  574. break;
  575. case RTC_REG_A:
  576. if (update_in_progress(s)) {
  577. s->cmos_data[s->cmos_index] |= REG_A_UIP;
  578. } else {
  579. s->cmos_data[s->cmos_index] &= ~REG_A_UIP;
  580. }
  581. ret = s->cmos_data[s->cmos_index];
  582. break;
  583. case RTC_REG_C:
  584. ret = s->cmos_data[s->cmos_index];
  585. qemu_irq_lower(s->irq);
  586. s->cmos_data[RTC_REG_C] = 0x00;
  587. if (ret & (REG_C_UF | REG_C_AF)) {
  588. check_update_timer(s);
  589. }
  590. #ifdef TARGET_I386
  591. if(s->irq_coalesced &&
  592. (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
  593. s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
  594. s->irq_reinject_on_ack_count++;
  595. s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
  596. apic_reset_irq_delivered();
  597. DPRINTF_C("cmos: injecting on ack\n");
  598. qemu_irq_raise(s->irq);
  599. if (apic_get_irq_delivered()) {
  600. s->irq_coalesced--;
  601. DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
  602. s->irq_coalesced);
  603. }
  604. }
  605. #endif
  606. break;
  607. default:
  608. ret = s->cmos_data[s->cmos_index];
  609. break;
  610. }
  611. CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
  612. s->cmos_index, ret);
  613. return ret;
  614. }
  615. }
  616. void rtc_set_memory(ISADevice *dev, int addr, int val)
  617. {
  618. RTCState *s = DO_UPCAST(RTCState, dev, dev);
  619. if (addr >= 0 && addr <= 127)
  620. s->cmos_data[addr] = val;
  621. }
  622. static void rtc_set_date_from_host(ISADevice *dev)
  623. {
  624. RTCState *s = DO_UPCAST(RTCState, dev, dev);
  625. struct tm tm;
  626. qemu_get_timedate(&tm, 0);
  627. s->base_rtc = mktimegm(&tm);
  628. s->last_update = qemu_get_clock_ns(rtc_clock);
  629. s->offset = 0;
  630. /* set the CMOS date */
  631. rtc_set_cmos(s, &tm);
  632. }
  633. static int rtc_post_load(void *opaque, int version_id)
  634. {
  635. RTCState *s = opaque;
  636. if (version_id <= 2) {
  637. rtc_set_time(s);
  638. s->offset = 0;
  639. check_update_timer(s);
  640. }
  641. #ifdef TARGET_I386
  642. if (version_id >= 2) {
  643. if (s->lost_tick_policy == LOST_TICK_SLEW) {
  644. rtc_coalesced_timer_update(s);
  645. }
  646. }
  647. #endif
  648. return 0;
  649. }
  650. static const VMStateDescription vmstate_rtc = {
  651. .name = "mc146818rtc",
  652. .version_id = 3,
  653. .minimum_version_id = 1,
  654. .minimum_version_id_old = 1,
  655. .post_load = rtc_post_load,
  656. .fields = (VMStateField []) {
  657. VMSTATE_BUFFER(cmos_data, RTCState),
  658. VMSTATE_UINT8(cmos_index, RTCState),
  659. VMSTATE_UNUSED(7*4),
  660. VMSTATE_TIMER(periodic_timer, RTCState),
  661. VMSTATE_INT64(next_periodic_time, RTCState),
  662. VMSTATE_UNUSED(3*8),
  663. VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
  664. VMSTATE_UINT32_V(period, RTCState, 2),
  665. VMSTATE_UINT64_V(base_rtc, RTCState, 3),
  666. VMSTATE_UINT64_V(last_update, RTCState, 3),
  667. VMSTATE_INT64_V(offset, RTCState, 3),
  668. VMSTATE_TIMER_V(update_timer, RTCState, 3),
  669. VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
  670. VMSTATE_END_OF_LIST()
  671. }
  672. };
  673. static void rtc_notify_clock_reset(Notifier *notifier, void *data)
  674. {
  675. RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
  676. int64_t now = *(int64_t *)data;
  677. rtc_set_date_from_host(&s->dev);
  678. periodic_timer_update(s, now);
  679. check_update_timer(s);
  680. #ifdef TARGET_I386
  681. if (s->lost_tick_policy == LOST_TICK_SLEW) {
  682. rtc_coalesced_timer_update(s);
  683. }
  684. #endif
  685. }
  686. /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
  687. BIOS will read it and start S3 resume at POST Entry */
  688. static void rtc_notify_suspend(Notifier *notifier, void *data)
  689. {
  690. RTCState *s = container_of(notifier, RTCState, suspend_notifier);
  691. rtc_set_memory(&s->dev, 0xF, 0xFE);
  692. }
  693. static void rtc_reset(void *opaque)
  694. {
  695. RTCState *s = opaque;
  696. s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
  697. s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
  698. check_update_timer(s);
  699. qemu_irq_lower(s->irq);
  700. #ifdef TARGET_I386
  701. if (s->lost_tick_policy == LOST_TICK_SLEW) {
  702. s->irq_coalesced = 0;
  703. }
  704. #endif
  705. }
  706. static const MemoryRegionOps cmos_ops = {
  707. .read = cmos_ioport_read,
  708. .write = cmos_ioport_write,
  709. .impl = {
  710. .min_access_size = 1,
  711. .max_access_size = 1,
  712. },
  713. .endianness = DEVICE_LITTLE_ENDIAN,
  714. };
  715. static void rtc_get_date(Object *obj, Visitor *v, void *opaque,
  716. const char *name, Error **errp)
  717. {
  718. ISADevice *isa = ISA_DEVICE(obj);
  719. RTCState *s = DO_UPCAST(RTCState, dev, isa);
  720. struct tm current_tm;
  721. rtc_update_time(s);
  722. rtc_get_time(s, &current_tm);
  723. visit_start_struct(v, NULL, "struct tm", name, 0, errp);
  724. visit_type_int32(v, &current_tm.tm_year, "tm_year", errp);
  725. visit_type_int32(v, &current_tm.tm_mon, "tm_mon", errp);
  726. visit_type_int32(v, &current_tm.tm_mday, "tm_mday", errp);
  727. visit_type_int32(v, &current_tm.tm_hour, "tm_hour", errp);
  728. visit_type_int32(v, &current_tm.tm_min, "tm_min", errp);
  729. visit_type_int32(v, &current_tm.tm_sec, "tm_sec", errp);
  730. visit_end_struct(v, errp);
  731. }
  732. static int rtc_initfn(ISADevice *dev)
  733. {
  734. RTCState *s = DO_UPCAST(RTCState, dev, dev);
  735. int base = 0x70;
  736. s->cmos_data[RTC_REG_A] = 0x26;
  737. s->cmos_data[RTC_REG_B] = 0x02;
  738. s->cmos_data[RTC_REG_C] = 0x00;
  739. s->cmos_data[RTC_REG_D] = 0x80;
  740. /* This is for historical reasons. The default base year qdev property
  741. * was set to 2000 for most machine types before the century byte was
  742. * implemented.
  743. *
  744. * This if statement means that the century byte will be always 0
  745. * (at least until 2079...) for base_year = 1980, but will be set
  746. * correctly for base_year = 2000.
  747. */
  748. if (s->base_year == 2000) {
  749. s->base_year = 0;
  750. }
  751. rtc_set_date_from_host(dev);
  752. #ifdef TARGET_I386
  753. switch (s->lost_tick_policy) {
  754. case LOST_TICK_SLEW:
  755. s->coalesced_timer =
  756. qemu_new_timer_ns(rtc_clock, rtc_coalesced_timer, s);
  757. break;
  758. case LOST_TICK_DISCARD:
  759. break;
  760. default:
  761. return -EINVAL;
  762. }
  763. #endif
  764. s->periodic_timer = qemu_new_timer_ns(rtc_clock, rtc_periodic_timer, s);
  765. s->update_timer = qemu_new_timer_ns(rtc_clock, rtc_update_timer, s);
  766. check_update_timer(s);
  767. s->clock_reset_notifier.notify = rtc_notify_clock_reset;
  768. qemu_register_clock_reset_notifier(rtc_clock, &s->clock_reset_notifier);
  769. s->suspend_notifier.notify = rtc_notify_suspend;
  770. qemu_register_suspend_notifier(&s->suspend_notifier);
  771. memory_region_init_io(&s->io, &cmos_ops, s, "rtc", 2);
  772. isa_register_ioport(dev, &s->io, base);
  773. qdev_set_legacy_instance_id(&dev->qdev, base, 3);
  774. qemu_register_reset(rtc_reset, s);
  775. object_property_add(OBJECT(s), "date", "struct tm",
  776. rtc_get_date, NULL, NULL, s, NULL);
  777. return 0;
  778. }
  779. ISADevice *rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
  780. {
  781. ISADevice *dev;
  782. RTCState *s;
  783. dev = isa_create(bus, "mc146818rtc");
  784. s = DO_UPCAST(RTCState, dev, dev);
  785. qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
  786. qdev_init_nofail(&dev->qdev);
  787. if (intercept_irq) {
  788. s->irq = intercept_irq;
  789. } else {
  790. isa_init_irq(dev, &s->irq, RTC_ISA_IRQ);
  791. }
  792. return dev;
  793. }
  794. static Property mc146818rtc_properties[] = {
  795. DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
  796. DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
  797. lost_tick_policy, LOST_TICK_DISCARD),
  798. DEFINE_PROP_END_OF_LIST(),
  799. };
  800. static void rtc_class_initfn(ObjectClass *klass, void *data)
  801. {
  802. DeviceClass *dc = DEVICE_CLASS(klass);
  803. ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
  804. ic->init = rtc_initfn;
  805. dc->no_user = 1;
  806. dc->vmsd = &vmstate_rtc;
  807. dc->props = mc146818rtc_properties;
  808. }
  809. static const TypeInfo mc146818rtc_info = {
  810. .name = "mc146818rtc",
  811. .parent = TYPE_ISA_DEVICE,
  812. .instance_size = sizeof(RTCState),
  813. .class_init = rtc_class_initfn,
  814. };
  815. static void mc146818rtc_register_types(void)
  816. {
  817. type_register_static(&mc146818rtc_info);
  818. }
  819. type_init(mc146818rtc_register_types)