cadence_uart.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517
  1. /*
  2. * Device model for Cadence UART
  3. *
  4. * Copyright (c) 2010 Xilinx Inc.
  5. * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
  6. * Copyright (c) 2012 PetaLogix Pty Ltd.
  7. * Written by Haibing Ma
  8. * M.Habib
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. * You should have received a copy of the GNU General Public License along
  16. * with this program; if not, see <http://www.gnu.org/licenses/>.
  17. */
  18. #include "sysbus.h"
  19. #include "char/char.h"
  20. #include "qemu/timer.h"
  21. #ifdef CADENCE_UART_ERR_DEBUG
  22. #define DB_PRINT(...) do { \
  23. fprintf(stderr, ": %s: ", __func__); \
  24. fprintf(stderr, ## __VA_ARGS__); \
  25. } while (0);
  26. #else
  27. #define DB_PRINT(...)
  28. #endif
  29. #define UART_SR_INTR_RTRIG 0x00000001
  30. #define UART_SR_INTR_REMPTY 0x00000002
  31. #define UART_SR_INTR_RFUL 0x00000004
  32. #define UART_SR_INTR_TEMPTY 0x00000008
  33. #define UART_SR_INTR_TFUL 0x00000010
  34. /* bits fields in CSR that correlate to CISR. If any of these bits are set in
  35. * SR, then the same bit in CISR is set high too */
  36. #define UART_SR_TO_CISR_MASK 0x0000001F
  37. #define UART_INTR_ROVR 0x00000020
  38. #define UART_INTR_FRAME 0x00000040
  39. #define UART_INTR_PARE 0x00000080
  40. #define UART_INTR_TIMEOUT 0x00000100
  41. #define UART_INTR_DMSI 0x00000200
  42. #define UART_SR_RACTIVE 0x00000400
  43. #define UART_SR_TACTIVE 0x00000800
  44. #define UART_SR_FDELT 0x00001000
  45. #define UART_CR_RXRST 0x00000001
  46. #define UART_CR_TXRST 0x00000002
  47. #define UART_CR_RX_EN 0x00000004
  48. #define UART_CR_RX_DIS 0x00000008
  49. #define UART_CR_TX_EN 0x00000010
  50. #define UART_CR_TX_DIS 0x00000020
  51. #define UART_CR_RST_TO 0x00000040
  52. #define UART_CR_STARTBRK 0x00000080
  53. #define UART_CR_STOPBRK 0x00000100
  54. #define UART_MR_CLKS 0x00000001
  55. #define UART_MR_CHRL 0x00000006
  56. #define UART_MR_CHRL_SH 1
  57. #define UART_MR_PAR 0x00000038
  58. #define UART_MR_PAR_SH 3
  59. #define UART_MR_NBSTOP 0x000000C0
  60. #define UART_MR_NBSTOP_SH 6
  61. #define UART_MR_CHMODE 0x00000300
  62. #define UART_MR_CHMODE_SH 8
  63. #define UART_MR_UCLKEN 0x00000400
  64. #define UART_MR_IRMODE 0x00000800
  65. #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
  66. #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
  67. #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
  68. #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
  69. #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
  70. #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
  71. #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
  72. #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
  73. #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
  74. #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
  75. #define RX_FIFO_SIZE 16
  76. #define TX_FIFO_SIZE 16
  77. #define UART_INPUT_CLK 50000000
  78. #define R_CR (0x00/4)
  79. #define R_MR (0x04/4)
  80. #define R_IER (0x08/4)
  81. #define R_IDR (0x0C/4)
  82. #define R_IMR (0x10/4)
  83. #define R_CISR (0x14/4)
  84. #define R_BRGR (0x18/4)
  85. #define R_RTOR (0x1C/4)
  86. #define R_RTRIG (0x20/4)
  87. #define R_MCR (0x24/4)
  88. #define R_MSR (0x28/4)
  89. #define R_SR (0x2C/4)
  90. #define R_TX_RX (0x30/4)
  91. #define R_BDIV (0x34/4)
  92. #define R_FDEL (0x38/4)
  93. #define R_PMIN (0x3C/4)
  94. #define R_PWID (0x40/4)
  95. #define R_TTRIG (0x44/4)
  96. #define R_MAX (R_TTRIG + 1)
  97. typedef struct {
  98. SysBusDevice busdev;
  99. MemoryRegion iomem;
  100. uint32_t r[R_MAX];
  101. uint8_t r_fifo[RX_FIFO_SIZE];
  102. uint32_t rx_wpos;
  103. uint32_t rx_count;
  104. uint64_t char_tx_time;
  105. CharDriverState *chr;
  106. qemu_irq irq;
  107. struct QEMUTimer *fifo_trigger_handle;
  108. struct QEMUTimer *tx_time_handle;
  109. } UartState;
  110. static void uart_update_status(UartState *s)
  111. {
  112. s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
  113. qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
  114. }
  115. static void fifo_trigger_update(void *opaque)
  116. {
  117. UartState *s = (UartState *)opaque;
  118. s->r[R_CISR] |= UART_INTR_TIMEOUT;
  119. uart_update_status(s);
  120. }
  121. static void uart_tx_redo(UartState *s)
  122. {
  123. uint64_t new_tx_time = qemu_get_clock_ns(vm_clock);
  124. qemu_mod_timer(s->tx_time_handle, new_tx_time + s->char_tx_time);
  125. s->r[R_SR] |= UART_SR_INTR_TEMPTY;
  126. uart_update_status(s);
  127. }
  128. static void uart_tx_write(void *opaque)
  129. {
  130. UartState *s = (UartState *)opaque;
  131. uart_tx_redo(s);
  132. }
  133. static void uart_rx_reset(UartState *s)
  134. {
  135. s->rx_wpos = 0;
  136. s->rx_count = 0;
  137. s->r[R_SR] |= UART_SR_INTR_REMPTY;
  138. s->r[R_SR] &= ~UART_SR_INTR_RFUL;
  139. }
  140. static void uart_tx_reset(UartState *s)
  141. {
  142. s->r[R_SR] |= UART_SR_INTR_TEMPTY;
  143. s->r[R_SR] &= ~UART_SR_INTR_TFUL;
  144. }
  145. static void uart_send_breaks(UartState *s)
  146. {
  147. int break_enabled = 1;
  148. qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
  149. &break_enabled);
  150. }
  151. static void uart_parameters_setup(UartState *s)
  152. {
  153. QEMUSerialSetParams ssp;
  154. unsigned int baud_rate, packet_size;
  155. baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
  156. UART_INPUT_CLK / 8 : UART_INPUT_CLK;
  157. ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
  158. packet_size = 1;
  159. switch (s->r[R_MR] & UART_MR_PAR) {
  160. case UART_PARITY_EVEN:
  161. ssp.parity = 'E';
  162. packet_size++;
  163. break;
  164. case UART_PARITY_ODD:
  165. ssp.parity = 'O';
  166. packet_size++;
  167. break;
  168. default:
  169. ssp.parity = 'N';
  170. break;
  171. }
  172. switch (s->r[R_MR] & UART_MR_CHRL) {
  173. case UART_DATA_BITS_6:
  174. ssp.data_bits = 6;
  175. break;
  176. case UART_DATA_BITS_7:
  177. ssp.data_bits = 7;
  178. break;
  179. default:
  180. ssp.data_bits = 8;
  181. break;
  182. }
  183. switch (s->r[R_MR] & UART_MR_NBSTOP) {
  184. case UART_STOP_BITS_1:
  185. ssp.stop_bits = 1;
  186. break;
  187. default:
  188. ssp.stop_bits = 2;
  189. break;
  190. }
  191. packet_size += ssp.data_bits + ssp.stop_bits;
  192. s->char_tx_time = (get_ticks_per_sec() / ssp.speed) * packet_size;
  193. qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
  194. }
  195. static int uart_can_receive(void *opaque)
  196. {
  197. UartState *s = (UartState *)opaque;
  198. return RX_FIFO_SIZE - s->rx_count;
  199. }
  200. static void uart_ctrl_update(UartState *s)
  201. {
  202. if (s->r[R_CR] & UART_CR_TXRST) {
  203. uart_tx_reset(s);
  204. }
  205. if (s->r[R_CR] & UART_CR_RXRST) {
  206. uart_rx_reset(s);
  207. }
  208. s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
  209. if ((s->r[R_CR] & UART_CR_TX_EN) && !(s->r[R_CR] & UART_CR_TX_DIS)) {
  210. uart_tx_redo(s);
  211. }
  212. if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
  213. uart_send_breaks(s);
  214. }
  215. }
  216. static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
  217. {
  218. UartState *s = (UartState *)opaque;
  219. uint64_t new_rx_time = qemu_get_clock_ns(vm_clock);
  220. int i;
  221. if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
  222. return;
  223. }
  224. s->r[R_SR] &= ~UART_SR_INTR_REMPTY;
  225. if (s->rx_count == RX_FIFO_SIZE) {
  226. s->r[R_CISR] |= UART_INTR_ROVR;
  227. } else {
  228. for (i = 0; i < size; i++) {
  229. s->r_fifo[s->rx_wpos] = buf[i];
  230. s->rx_wpos = (s->rx_wpos + 1) % RX_FIFO_SIZE;
  231. s->rx_count++;
  232. if (s->rx_count == RX_FIFO_SIZE) {
  233. s->r[R_SR] |= UART_SR_INTR_RFUL;
  234. break;
  235. }
  236. if (s->rx_count >= s->r[R_RTRIG]) {
  237. s->r[R_SR] |= UART_SR_INTR_RTRIG;
  238. }
  239. }
  240. qemu_mod_timer(s->fifo_trigger_handle, new_rx_time +
  241. (s->char_tx_time * 4));
  242. }
  243. uart_update_status(s);
  244. }
  245. static void uart_write_tx_fifo(UartState *s, const uint8_t *buf, int size)
  246. {
  247. if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
  248. return;
  249. }
  250. while (size) {
  251. size -= qemu_chr_fe_write(s->chr, buf, size);
  252. }
  253. }
  254. static void uart_receive(void *opaque, const uint8_t *buf, int size)
  255. {
  256. UartState *s = (UartState *)opaque;
  257. uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
  258. if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
  259. uart_write_rx_fifo(opaque, buf, size);
  260. }
  261. if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
  262. uart_write_tx_fifo(s, buf, size);
  263. }
  264. }
  265. static void uart_event(void *opaque, int event)
  266. {
  267. UartState *s = (UartState *)opaque;
  268. uint8_t buf = '\0';
  269. if (event == CHR_EVENT_BREAK) {
  270. uart_write_rx_fifo(opaque, &buf, 1);
  271. }
  272. uart_update_status(s);
  273. }
  274. static void uart_read_rx_fifo(UartState *s, uint32_t *c)
  275. {
  276. if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
  277. return;
  278. }
  279. s->r[R_SR] &= ~UART_SR_INTR_RFUL;
  280. if (s->rx_count) {
  281. uint32_t rx_rpos =
  282. (RX_FIFO_SIZE + s->rx_wpos - s->rx_count) % RX_FIFO_SIZE;
  283. *c = s->r_fifo[rx_rpos];
  284. s->rx_count--;
  285. if (!s->rx_count) {
  286. s->r[R_SR] |= UART_SR_INTR_REMPTY;
  287. }
  288. qemu_chr_accept_input(s->chr);
  289. } else {
  290. *c = 0;
  291. s->r[R_SR] |= UART_SR_INTR_REMPTY;
  292. }
  293. if (s->rx_count < s->r[R_RTRIG]) {
  294. s->r[R_SR] &= ~UART_SR_INTR_RTRIG;
  295. }
  296. uart_update_status(s);
  297. }
  298. static void uart_write(void *opaque, hwaddr offset,
  299. uint64_t value, unsigned size)
  300. {
  301. UartState *s = (UartState *)opaque;
  302. DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
  303. offset >>= 2;
  304. switch (offset) {
  305. case R_IER: /* ier (wts imr) */
  306. s->r[R_IMR] |= value;
  307. break;
  308. case R_IDR: /* idr (wtc imr) */
  309. s->r[R_IMR] &= ~value;
  310. break;
  311. case R_IMR: /* imr (read only) */
  312. break;
  313. case R_CISR: /* cisr (wtc) */
  314. s->r[R_CISR] &= ~value;
  315. break;
  316. case R_TX_RX: /* UARTDR */
  317. switch (s->r[R_MR] & UART_MR_CHMODE) {
  318. case NORMAL_MODE:
  319. uart_write_tx_fifo(s, (uint8_t *) &value, 1);
  320. break;
  321. case LOCAL_LOOPBACK:
  322. uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
  323. break;
  324. }
  325. break;
  326. default:
  327. s->r[offset] = value;
  328. }
  329. switch (offset) {
  330. case R_CR:
  331. uart_ctrl_update(s);
  332. break;
  333. case R_MR:
  334. uart_parameters_setup(s);
  335. break;
  336. }
  337. }
  338. static uint64_t uart_read(void *opaque, hwaddr offset,
  339. unsigned size)
  340. {
  341. UartState *s = (UartState *)opaque;
  342. uint32_t c = 0;
  343. offset >>= 2;
  344. if (offset >= R_MAX) {
  345. c = 0;
  346. } else if (offset == R_TX_RX) {
  347. uart_read_rx_fifo(s, &c);
  348. } else {
  349. c = s->r[offset];
  350. }
  351. DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
  352. return c;
  353. }
  354. static const MemoryRegionOps uart_ops = {
  355. .read = uart_read,
  356. .write = uart_write,
  357. .endianness = DEVICE_NATIVE_ENDIAN,
  358. };
  359. static void cadence_uart_reset(UartState *s)
  360. {
  361. s->r[R_CR] = 0x00000128;
  362. s->r[R_IMR] = 0;
  363. s->r[R_CISR] = 0;
  364. s->r[R_RTRIG] = 0x00000020;
  365. s->r[R_BRGR] = 0x0000000F;
  366. s->r[R_TTRIG] = 0x00000020;
  367. uart_rx_reset(s);
  368. uart_tx_reset(s);
  369. s->rx_count = 0;
  370. s->rx_wpos = 0;
  371. }
  372. static int cadence_uart_init(SysBusDevice *dev)
  373. {
  374. UartState *s = FROM_SYSBUS(UartState, dev);
  375. memory_region_init_io(&s->iomem, &uart_ops, s, "uart", 0x1000);
  376. sysbus_init_mmio(dev, &s->iomem);
  377. sysbus_init_irq(dev, &s->irq);
  378. s->fifo_trigger_handle = qemu_new_timer_ns(vm_clock,
  379. (QEMUTimerCB *)fifo_trigger_update, s);
  380. s->tx_time_handle = qemu_new_timer_ns(vm_clock,
  381. (QEMUTimerCB *)uart_tx_write, s);
  382. s->char_tx_time = (get_ticks_per_sec() / 9600) * 10;
  383. s->chr = qemu_char_get_next_serial();
  384. cadence_uart_reset(s);
  385. if (s->chr) {
  386. qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
  387. uart_event, s);
  388. }
  389. return 0;
  390. }
  391. static int cadence_uart_post_load(void *opaque, int version_id)
  392. {
  393. UartState *s = opaque;
  394. uart_parameters_setup(s);
  395. uart_update_status(s);
  396. return 0;
  397. }
  398. static const VMStateDescription vmstate_cadence_uart = {
  399. .name = "cadence_uart",
  400. .version_id = 1,
  401. .minimum_version_id = 1,
  402. .minimum_version_id_old = 1,
  403. .post_load = cadence_uart_post_load,
  404. .fields = (VMStateField[]) {
  405. VMSTATE_UINT32_ARRAY(r, UartState, R_MAX),
  406. VMSTATE_UINT8_ARRAY(r_fifo, UartState, RX_FIFO_SIZE),
  407. VMSTATE_UINT32(rx_count, UartState),
  408. VMSTATE_UINT32(rx_wpos, UartState),
  409. VMSTATE_TIMER(fifo_trigger_handle, UartState),
  410. VMSTATE_TIMER(tx_time_handle, UartState),
  411. VMSTATE_END_OF_LIST()
  412. }
  413. };
  414. static void cadence_uart_class_init(ObjectClass *klass, void *data)
  415. {
  416. DeviceClass *dc = DEVICE_CLASS(klass);
  417. SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
  418. sdc->init = cadence_uart_init;
  419. dc->vmsd = &vmstate_cadence_uart;
  420. }
  421. static const TypeInfo cadence_uart_info = {
  422. .name = "cadence_uart",
  423. .parent = TYPE_SYS_BUS_DEVICE,
  424. .instance_size = sizeof(UartState),
  425. .class_init = cadence_uart_class_init,
  426. };
  427. static void cadence_uart_register_types(void)
  428. {
  429. type_register_static(&cadence_uart_info);
  430. }
  431. type_init(cadence_uart_register_types)