dma-helpers.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434
  1. /*
  2. * DMA helper functions
  3. *
  4. * Copyright (c) 2009 Red Hat
  5. *
  6. * This work is licensed under the terms of the GNU General Public License
  7. * (GNU GPL), version 2 or later.
  8. */
  9. #include "sysemu/dma.h"
  10. #include "trace.h"
  11. #include "qemu/range.h"
  12. #include "qemu/thread.h"
  13. /* #define DEBUG_IOMMU */
  14. static void do_dma_memory_set(AddressSpace *as,
  15. dma_addr_t addr, uint8_t c, dma_addr_t len)
  16. {
  17. #define FILLBUF_SIZE 512
  18. uint8_t fillbuf[FILLBUF_SIZE];
  19. int l;
  20. memset(fillbuf, c, FILLBUF_SIZE);
  21. while (len > 0) {
  22. l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
  23. address_space_rw(as, addr, fillbuf, l, true);
  24. len -= l;
  25. addr += l;
  26. }
  27. }
  28. int dma_memory_set(DMAContext *dma, dma_addr_t addr, uint8_t c, dma_addr_t len)
  29. {
  30. dma_barrier(dma, DMA_DIRECTION_FROM_DEVICE);
  31. if (dma_has_iommu(dma)) {
  32. return iommu_dma_memory_set(dma, addr, c, len);
  33. }
  34. do_dma_memory_set(dma->as, addr, c, len);
  35. return 0;
  36. }
  37. void qemu_sglist_init(QEMUSGList *qsg, int alloc_hint, DMAContext *dma)
  38. {
  39. qsg->sg = g_malloc(alloc_hint * sizeof(ScatterGatherEntry));
  40. qsg->nsg = 0;
  41. qsg->nalloc = alloc_hint;
  42. qsg->size = 0;
  43. qsg->dma = dma;
  44. }
  45. void qemu_sglist_add(QEMUSGList *qsg, dma_addr_t base, dma_addr_t len)
  46. {
  47. if (qsg->nsg == qsg->nalloc) {
  48. qsg->nalloc = 2 * qsg->nalloc + 1;
  49. qsg->sg = g_realloc(qsg->sg, qsg->nalloc * sizeof(ScatterGatherEntry));
  50. }
  51. qsg->sg[qsg->nsg].base = base;
  52. qsg->sg[qsg->nsg].len = len;
  53. qsg->size += len;
  54. ++qsg->nsg;
  55. }
  56. void qemu_sglist_destroy(QEMUSGList *qsg)
  57. {
  58. g_free(qsg->sg);
  59. memset(qsg, 0, sizeof(*qsg));
  60. }
  61. typedef struct {
  62. BlockDriverAIOCB common;
  63. BlockDriverState *bs;
  64. BlockDriverAIOCB *acb;
  65. QEMUSGList *sg;
  66. uint64_t sector_num;
  67. DMADirection dir;
  68. bool in_cancel;
  69. int sg_cur_index;
  70. dma_addr_t sg_cur_byte;
  71. QEMUIOVector iov;
  72. QEMUBH *bh;
  73. DMAIOFunc *io_func;
  74. } DMAAIOCB;
  75. static void dma_bdrv_cb(void *opaque, int ret);
  76. static void reschedule_dma(void *opaque)
  77. {
  78. DMAAIOCB *dbs = (DMAAIOCB *)opaque;
  79. qemu_bh_delete(dbs->bh);
  80. dbs->bh = NULL;
  81. dma_bdrv_cb(dbs, 0);
  82. }
  83. static void continue_after_map_failure(void *opaque)
  84. {
  85. DMAAIOCB *dbs = (DMAAIOCB *)opaque;
  86. dbs->bh = qemu_bh_new(reschedule_dma, dbs);
  87. qemu_bh_schedule(dbs->bh);
  88. }
  89. static void dma_bdrv_unmap(DMAAIOCB *dbs)
  90. {
  91. int i;
  92. for (i = 0; i < dbs->iov.niov; ++i) {
  93. dma_memory_unmap(dbs->sg->dma, dbs->iov.iov[i].iov_base,
  94. dbs->iov.iov[i].iov_len, dbs->dir,
  95. dbs->iov.iov[i].iov_len);
  96. }
  97. qemu_iovec_reset(&dbs->iov);
  98. }
  99. static void dma_complete(DMAAIOCB *dbs, int ret)
  100. {
  101. trace_dma_complete(dbs, ret, dbs->common.cb);
  102. dma_bdrv_unmap(dbs);
  103. if (dbs->common.cb) {
  104. dbs->common.cb(dbs->common.opaque, ret);
  105. }
  106. qemu_iovec_destroy(&dbs->iov);
  107. if (dbs->bh) {
  108. qemu_bh_delete(dbs->bh);
  109. dbs->bh = NULL;
  110. }
  111. if (!dbs->in_cancel) {
  112. /* Requests may complete while dma_aio_cancel is in progress. In
  113. * this case, the AIOCB should not be released because it is still
  114. * referenced by dma_aio_cancel. */
  115. qemu_aio_release(dbs);
  116. }
  117. }
  118. static void dma_bdrv_cb(void *opaque, int ret)
  119. {
  120. DMAAIOCB *dbs = (DMAAIOCB *)opaque;
  121. dma_addr_t cur_addr, cur_len;
  122. void *mem;
  123. trace_dma_bdrv_cb(dbs, ret);
  124. dbs->acb = NULL;
  125. dbs->sector_num += dbs->iov.size / 512;
  126. dma_bdrv_unmap(dbs);
  127. if (dbs->sg_cur_index == dbs->sg->nsg || ret < 0) {
  128. dma_complete(dbs, ret);
  129. return;
  130. }
  131. while (dbs->sg_cur_index < dbs->sg->nsg) {
  132. cur_addr = dbs->sg->sg[dbs->sg_cur_index].base + dbs->sg_cur_byte;
  133. cur_len = dbs->sg->sg[dbs->sg_cur_index].len - dbs->sg_cur_byte;
  134. mem = dma_memory_map(dbs->sg->dma, cur_addr, &cur_len, dbs->dir);
  135. if (!mem)
  136. break;
  137. qemu_iovec_add(&dbs->iov, mem, cur_len);
  138. dbs->sg_cur_byte += cur_len;
  139. if (dbs->sg_cur_byte == dbs->sg->sg[dbs->sg_cur_index].len) {
  140. dbs->sg_cur_byte = 0;
  141. ++dbs->sg_cur_index;
  142. }
  143. }
  144. if (dbs->iov.size == 0) {
  145. trace_dma_map_wait(dbs);
  146. cpu_register_map_client(dbs, continue_after_map_failure);
  147. return;
  148. }
  149. dbs->acb = dbs->io_func(dbs->bs, dbs->sector_num, &dbs->iov,
  150. dbs->iov.size / 512, dma_bdrv_cb, dbs);
  151. assert(dbs->acb);
  152. }
  153. static void dma_aio_cancel(BlockDriverAIOCB *acb)
  154. {
  155. DMAAIOCB *dbs = container_of(acb, DMAAIOCB, common);
  156. trace_dma_aio_cancel(dbs);
  157. if (dbs->acb) {
  158. BlockDriverAIOCB *acb = dbs->acb;
  159. dbs->acb = NULL;
  160. dbs->in_cancel = true;
  161. bdrv_aio_cancel(acb);
  162. dbs->in_cancel = false;
  163. }
  164. dbs->common.cb = NULL;
  165. dma_complete(dbs, 0);
  166. }
  167. static const AIOCBInfo dma_aiocb_info = {
  168. .aiocb_size = sizeof(DMAAIOCB),
  169. .cancel = dma_aio_cancel,
  170. };
  171. BlockDriverAIOCB *dma_bdrv_io(
  172. BlockDriverState *bs, QEMUSGList *sg, uint64_t sector_num,
  173. DMAIOFunc *io_func, BlockDriverCompletionFunc *cb,
  174. void *opaque, DMADirection dir)
  175. {
  176. DMAAIOCB *dbs = qemu_aio_get(&dma_aiocb_info, bs, cb, opaque);
  177. trace_dma_bdrv_io(dbs, bs, sector_num, (dir == DMA_DIRECTION_TO_DEVICE));
  178. dbs->acb = NULL;
  179. dbs->bs = bs;
  180. dbs->sg = sg;
  181. dbs->sector_num = sector_num;
  182. dbs->sg_cur_index = 0;
  183. dbs->sg_cur_byte = 0;
  184. dbs->dir = dir;
  185. dbs->io_func = io_func;
  186. dbs->bh = NULL;
  187. qemu_iovec_init(&dbs->iov, sg->nsg);
  188. dma_bdrv_cb(dbs, 0);
  189. return &dbs->common;
  190. }
  191. BlockDriverAIOCB *dma_bdrv_read(BlockDriverState *bs,
  192. QEMUSGList *sg, uint64_t sector,
  193. void (*cb)(void *opaque, int ret), void *opaque)
  194. {
  195. return dma_bdrv_io(bs, sg, sector, bdrv_aio_readv, cb, opaque,
  196. DMA_DIRECTION_FROM_DEVICE);
  197. }
  198. BlockDriverAIOCB *dma_bdrv_write(BlockDriverState *bs,
  199. QEMUSGList *sg, uint64_t sector,
  200. void (*cb)(void *opaque, int ret), void *opaque)
  201. {
  202. return dma_bdrv_io(bs, sg, sector, bdrv_aio_writev, cb, opaque,
  203. DMA_DIRECTION_TO_DEVICE);
  204. }
  205. static uint64_t dma_buf_rw(uint8_t *ptr, int32_t len, QEMUSGList *sg,
  206. DMADirection dir)
  207. {
  208. uint64_t resid;
  209. int sg_cur_index;
  210. resid = sg->size;
  211. sg_cur_index = 0;
  212. len = MIN(len, resid);
  213. while (len > 0) {
  214. ScatterGatherEntry entry = sg->sg[sg_cur_index++];
  215. int32_t xfer = MIN(len, entry.len);
  216. dma_memory_rw(sg->dma, entry.base, ptr, xfer, dir);
  217. ptr += xfer;
  218. len -= xfer;
  219. resid -= xfer;
  220. }
  221. return resid;
  222. }
  223. uint64_t dma_buf_read(uint8_t *ptr, int32_t len, QEMUSGList *sg)
  224. {
  225. return dma_buf_rw(ptr, len, sg, DMA_DIRECTION_FROM_DEVICE);
  226. }
  227. uint64_t dma_buf_write(uint8_t *ptr, int32_t len, QEMUSGList *sg)
  228. {
  229. return dma_buf_rw(ptr, len, sg, DMA_DIRECTION_TO_DEVICE);
  230. }
  231. void dma_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie,
  232. QEMUSGList *sg, enum BlockAcctType type)
  233. {
  234. bdrv_acct_start(bs, cookie, sg->size, type);
  235. }
  236. bool iommu_dma_memory_valid(DMAContext *dma, dma_addr_t addr, dma_addr_t len,
  237. DMADirection dir)
  238. {
  239. hwaddr paddr, plen;
  240. #ifdef DEBUG_IOMMU
  241. fprintf(stderr, "dma_memory_check context=%p addr=0x" DMA_ADDR_FMT
  242. " len=0x" DMA_ADDR_FMT " dir=%d\n", dma, addr, len, dir);
  243. #endif
  244. while (len) {
  245. if (dma->translate(dma, addr, &paddr, &plen, dir) != 0) {
  246. return false;
  247. }
  248. /* The translation might be valid for larger regions. */
  249. if (plen > len) {
  250. plen = len;
  251. }
  252. len -= plen;
  253. addr += plen;
  254. }
  255. return true;
  256. }
  257. int iommu_dma_memory_rw(DMAContext *dma, dma_addr_t addr,
  258. void *buf, dma_addr_t len, DMADirection dir)
  259. {
  260. hwaddr paddr, plen;
  261. int err;
  262. #ifdef DEBUG_IOMMU
  263. fprintf(stderr, "dma_memory_rw context=%p addr=0x" DMA_ADDR_FMT " len=0x"
  264. DMA_ADDR_FMT " dir=%d\n", dma, addr, len, dir);
  265. #endif
  266. while (len) {
  267. err = dma->translate(dma, addr, &paddr, &plen, dir);
  268. if (err) {
  269. /*
  270. * In case of failure on reads from the guest, we clean the
  271. * destination buffer so that a device that doesn't test
  272. * for errors will not expose qemu internal memory.
  273. */
  274. memset(buf, 0, len);
  275. return -1;
  276. }
  277. /* The translation might be valid for larger regions. */
  278. if (plen > len) {
  279. plen = len;
  280. }
  281. address_space_rw(dma->as, paddr, buf, plen, dir == DMA_DIRECTION_FROM_DEVICE);
  282. len -= plen;
  283. addr += plen;
  284. buf += plen;
  285. }
  286. return 0;
  287. }
  288. int iommu_dma_memory_set(DMAContext *dma, dma_addr_t addr, uint8_t c,
  289. dma_addr_t len)
  290. {
  291. hwaddr paddr, plen;
  292. int err;
  293. #ifdef DEBUG_IOMMU
  294. fprintf(stderr, "dma_memory_set context=%p addr=0x" DMA_ADDR_FMT
  295. " len=0x" DMA_ADDR_FMT "\n", dma, addr, len);
  296. #endif
  297. while (len) {
  298. err = dma->translate(dma, addr, &paddr, &plen,
  299. DMA_DIRECTION_FROM_DEVICE);
  300. if (err) {
  301. return err;
  302. }
  303. /* The translation might be valid for larger regions. */
  304. if (plen > len) {
  305. plen = len;
  306. }
  307. do_dma_memory_set(dma->as, paddr, c, plen);
  308. len -= plen;
  309. addr += plen;
  310. }
  311. return 0;
  312. }
  313. void dma_context_init(DMAContext *dma, AddressSpace *as, DMATranslateFunc translate,
  314. DMAMapFunc map, DMAUnmapFunc unmap)
  315. {
  316. #ifdef DEBUG_IOMMU
  317. fprintf(stderr, "dma_context_init(%p, %p, %p, %p)\n",
  318. dma, translate, map, unmap);
  319. #endif
  320. dma->as = as;
  321. dma->translate = translate;
  322. dma->map = map;
  323. dma->unmap = unmap;
  324. }
  325. void *iommu_dma_memory_map(DMAContext *dma, dma_addr_t addr, dma_addr_t *len,
  326. DMADirection dir)
  327. {
  328. int err;
  329. hwaddr paddr, plen;
  330. void *buf;
  331. if (dma->map) {
  332. return dma->map(dma, addr, len, dir);
  333. }
  334. plen = *len;
  335. err = dma->translate(dma, addr, &paddr, &plen, dir);
  336. if (err) {
  337. return NULL;
  338. }
  339. /*
  340. * If this is true, the virtual region is contiguous,
  341. * but the translated physical region isn't. We just
  342. * clamp *len, much like address_space_map() does.
  343. */
  344. if (plen < *len) {
  345. *len = plen;
  346. }
  347. buf = address_space_map(dma->as, paddr, &plen, dir == DMA_DIRECTION_FROM_DEVICE);
  348. *len = plen;
  349. return buf;
  350. }
  351. void iommu_dma_memory_unmap(DMAContext *dma, void *buffer, dma_addr_t len,
  352. DMADirection dir, dma_addr_t access_len)
  353. {
  354. if (dma->unmap) {
  355. dma->unmap(dma, buffer, len, dir, access_len);
  356. return;
  357. }
  358. address_space_unmap(dma->as, buffer, len, dir == DMA_DIRECTION_FROM_DEVICE,
  359. access_len);
  360. }