vm86.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481
  1. /*
  2. * vm86 linux syscall support
  3. *
  4. * Copyright (c) 2003 Fabrice Bellard
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include <stdlib.h>
  20. #include <stdio.h>
  21. #include <stdarg.h>
  22. #include <string.h>
  23. #include <errno.h>
  24. #include <unistd.h>
  25. #include "qemu.h"
  26. //#define DEBUG_VM86
  27. #ifdef DEBUG_VM86
  28. # define LOG_VM86(...) qemu_log(__VA_ARGS__);
  29. #else
  30. # define LOG_VM86(...) do { } while (0)
  31. #endif
  32. #define set_flags(X,new,mask) \
  33. ((X) = ((X) & ~(mask)) | ((new) & (mask)))
  34. #define SAFE_MASK (0xDD5)
  35. #define RETURN_MASK (0xDFF)
  36. static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
  37. {
  38. return (((uint8_t *)bitmap)[nr >> 3] >> (nr & 7)) & 1;
  39. }
  40. static inline void vm_putw(uint32_t segptr, unsigned int reg16, unsigned int val)
  41. {
  42. stw(segptr + (reg16 & 0xffff), val);
  43. }
  44. static inline void vm_putl(uint32_t segptr, unsigned int reg16, unsigned int val)
  45. {
  46. stl(segptr + (reg16 & 0xffff), val);
  47. }
  48. static inline unsigned int vm_getb(uint32_t segptr, unsigned int reg16)
  49. {
  50. return ldub(segptr + (reg16 & 0xffff));
  51. }
  52. static inline unsigned int vm_getw(uint32_t segptr, unsigned int reg16)
  53. {
  54. return lduw(segptr + (reg16 & 0xffff));
  55. }
  56. static inline unsigned int vm_getl(uint32_t segptr, unsigned int reg16)
  57. {
  58. return ldl(segptr + (reg16 & 0xffff));
  59. }
  60. void save_v86_state(CPUX86State *env)
  61. {
  62. TaskState *ts = env->opaque;
  63. struct target_vm86plus_struct * target_v86;
  64. if (!lock_user_struct(VERIFY_WRITE, target_v86, ts->target_v86, 0))
  65. /* FIXME - should return an error */
  66. return;
  67. /* put the VM86 registers in the userspace register structure */
  68. target_v86->regs.eax = tswap32(env->regs[R_EAX]);
  69. target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
  70. target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
  71. target_v86->regs.edx = tswap32(env->regs[R_EDX]);
  72. target_v86->regs.esi = tswap32(env->regs[R_ESI]);
  73. target_v86->regs.edi = tswap32(env->regs[R_EDI]);
  74. target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
  75. target_v86->regs.esp = tswap32(env->regs[R_ESP]);
  76. target_v86->regs.eip = tswap32(env->eip);
  77. target_v86->regs.cs = tswap16(env->segs[R_CS].selector);
  78. target_v86->regs.ss = tswap16(env->segs[R_SS].selector);
  79. target_v86->regs.ds = tswap16(env->segs[R_DS].selector);
  80. target_v86->regs.es = tswap16(env->segs[R_ES].selector);
  81. target_v86->regs.fs = tswap16(env->segs[R_FS].selector);
  82. target_v86->regs.gs = tswap16(env->segs[R_GS].selector);
  83. set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask);
  84. target_v86->regs.eflags = tswap32(env->eflags);
  85. unlock_user_struct(target_v86, ts->target_v86, 1);
  86. LOG_VM86("save_v86_state: eflags=%08x cs:ip=%04x:%04x\n",
  87. env->eflags, env->segs[R_CS].selector, env->eip);
  88. /* restore 32 bit registers */
  89. env->regs[R_EAX] = ts->vm86_saved_regs.eax;
  90. env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
  91. env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
  92. env->regs[R_EDX] = ts->vm86_saved_regs.edx;
  93. env->regs[R_ESI] = ts->vm86_saved_regs.esi;
  94. env->regs[R_EDI] = ts->vm86_saved_regs.edi;
  95. env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
  96. env->regs[R_ESP] = ts->vm86_saved_regs.esp;
  97. env->eflags = ts->vm86_saved_regs.eflags;
  98. env->eip = ts->vm86_saved_regs.eip;
  99. cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
  100. cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
  101. cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
  102. cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
  103. cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
  104. cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
  105. }
  106. /* return from vm86 mode to 32 bit. The vm86() syscall will return
  107. 'retval' */
  108. static inline void return_to_32bit(CPUX86State *env, int retval)
  109. {
  110. LOG_VM86("return_to_32bit: ret=0x%x\n", retval);
  111. save_v86_state(env);
  112. env->regs[R_EAX] = retval;
  113. }
  114. static inline int set_IF(CPUX86State *env)
  115. {
  116. TaskState *ts = env->opaque;
  117. ts->v86flags |= VIF_MASK;
  118. if (ts->v86flags & VIP_MASK) {
  119. return_to_32bit(env, TARGET_VM86_STI);
  120. return 1;
  121. }
  122. return 0;
  123. }
  124. static inline void clear_IF(CPUX86State *env)
  125. {
  126. TaskState *ts = env->opaque;
  127. ts->v86flags &= ~VIF_MASK;
  128. }
  129. static inline void clear_TF(CPUX86State *env)
  130. {
  131. env->eflags &= ~TF_MASK;
  132. }
  133. static inline void clear_AC(CPUX86State *env)
  134. {
  135. env->eflags &= ~AC_MASK;
  136. }
  137. static inline int set_vflags_long(unsigned long eflags, CPUX86State *env)
  138. {
  139. TaskState *ts = env->opaque;
  140. set_flags(ts->v86flags, eflags, ts->v86mask);
  141. set_flags(env->eflags, eflags, SAFE_MASK);
  142. if (eflags & IF_MASK)
  143. return set_IF(env);
  144. else
  145. clear_IF(env);
  146. return 0;
  147. }
  148. static inline int set_vflags_short(unsigned short flags, CPUX86State *env)
  149. {
  150. TaskState *ts = env->opaque;
  151. set_flags(ts->v86flags, flags, ts->v86mask & 0xffff);
  152. set_flags(env->eflags, flags, SAFE_MASK);
  153. if (flags & IF_MASK)
  154. return set_IF(env);
  155. else
  156. clear_IF(env);
  157. return 0;
  158. }
  159. static inline unsigned int get_vflags(CPUX86State *env)
  160. {
  161. TaskState *ts = env->opaque;
  162. unsigned int flags;
  163. flags = env->eflags & RETURN_MASK;
  164. if (ts->v86flags & VIF_MASK)
  165. flags |= IF_MASK;
  166. flags |= IOPL_MASK;
  167. return flags | (ts->v86flags & ts->v86mask);
  168. }
  169. #define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)
  170. /* handle VM86 interrupt (NOTE: the CPU core currently does not
  171. support TSS interrupt revectoring, so this code is always executed) */
  172. static void do_int(CPUX86State *env, int intno)
  173. {
  174. TaskState *ts = env->opaque;
  175. uint32_t int_addr, segoffs, ssp;
  176. unsigned int sp;
  177. if (env->segs[R_CS].selector == TARGET_BIOSSEG)
  178. goto cannot_handle;
  179. if (is_revectored(intno, &ts->vm86plus.int_revectored))
  180. goto cannot_handle;
  181. if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff,
  182. &ts->vm86plus.int21_revectored))
  183. goto cannot_handle;
  184. int_addr = (intno << 2);
  185. segoffs = ldl(int_addr);
  186. if ((segoffs >> 16) == TARGET_BIOSSEG)
  187. goto cannot_handle;
  188. LOG_VM86("VM86: emulating int 0x%x. CS:IP=%04x:%04x\n",
  189. intno, segoffs >> 16, segoffs & 0xffff);
  190. /* save old state */
  191. ssp = env->segs[R_SS].selector << 4;
  192. sp = env->regs[R_ESP] & 0xffff;
  193. vm_putw(ssp, sp - 2, get_vflags(env));
  194. vm_putw(ssp, sp - 4, env->segs[R_CS].selector);
  195. vm_putw(ssp, sp - 6, env->eip);
  196. ADD16(env->regs[R_ESP], -6);
  197. /* goto interrupt handler */
  198. env->eip = segoffs & 0xffff;
  199. cpu_x86_load_seg(env, R_CS, segoffs >> 16);
  200. clear_TF(env);
  201. clear_IF(env);
  202. clear_AC(env);
  203. return;
  204. cannot_handle:
  205. LOG_VM86("VM86: return to 32 bits int 0x%x\n", intno);
  206. return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
  207. }
  208. void handle_vm86_trap(CPUX86State *env, int trapno)
  209. {
  210. if (trapno == 1 || trapno == 3) {
  211. return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8));
  212. } else {
  213. do_int(env, trapno);
  214. }
  215. }
  216. #define CHECK_IF_IN_TRAP() \
  217. if ((ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) && \
  218. (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_TFpendig)) \
  219. newflags |= TF_MASK
  220. #define VM86_FAULT_RETURN \
  221. if ((ts->vm86plus.vm86plus.flags & TARGET_force_return_for_pic) && \
  222. (ts->v86flags & (IF_MASK | VIF_MASK))) \
  223. return_to_32bit(env, TARGET_VM86_PICRETURN); \
  224. return
  225. void handle_vm86_fault(CPUX86State *env)
  226. {
  227. TaskState *ts = env->opaque;
  228. uint32_t csp, ssp;
  229. unsigned int ip, sp, newflags, newip, newcs, opcode, intno;
  230. int data32, pref_done;
  231. csp = env->segs[R_CS].selector << 4;
  232. ip = env->eip & 0xffff;
  233. ssp = env->segs[R_SS].selector << 4;
  234. sp = env->regs[R_ESP] & 0xffff;
  235. LOG_VM86("VM86 exception %04x:%08x\n",
  236. env->segs[R_CS].selector, env->eip);
  237. data32 = 0;
  238. pref_done = 0;
  239. do {
  240. opcode = vm_getb(csp, ip);
  241. ADD16(ip, 1);
  242. switch (opcode) {
  243. case 0x66: /* 32-bit data */ data32=1; break;
  244. case 0x67: /* 32-bit address */ break;
  245. case 0x2e: /* CS */ break;
  246. case 0x3e: /* DS */ break;
  247. case 0x26: /* ES */ break;
  248. case 0x36: /* SS */ break;
  249. case 0x65: /* GS */ break;
  250. case 0x64: /* FS */ break;
  251. case 0xf2: /* repnz */ break;
  252. case 0xf3: /* rep */ break;
  253. default: pref_done = 1;
  254. }
  255. } while (!pref_done);
  256. /* VM86 mode */
  257. switch(opcode) {
  258. case 0x9c: /* pushf */
  259. if (data32) {
  260. vm_putl(ssp, sp - 4, get_vflags(env));
  261. ADD16(env->regs[R_ESP], -4);
  262. } else {
  263. vm_putw(ssp, sp - 2, get_vflags(env));
  264. ADD16(env->regs[R_ESP], -2);
  265. }
  266. env->eip = ip;
  267. VM86_FAULT_RETURN;
  268. case 0x9d: /* popf */
  269. if (data32) {
  270. newflags = vm_getl(ssp, sp);
  271. ADD16(env->regs[R_ESP], 4);
  272. } else {
  273. newflags = vm_getw(ssp, sp);
  274. ADD16(env->regs[R_ESP], 2);
  275. }
  276. env->eip = ip;
  277. CHECK_IF_IN_TRAP();
  278. if (data32) {
  279. if (set_vflags_long(newflags, env))
  280. return;
  281. } else {
  282. if (set_vflags_short(newflags, env))
  283. return;
  284. }
  285. VM86_FAULT_RETURN;
  286. case 0xcd: /* int */
  287. intno = vm_getb(csp, ip);
  288. ADD16(ip, 1);
  289. env->eip = ip;
  290. if (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) {
  291. if ( (ts->vm86plus.vm86plus.vm86dbg_intxxtab[intno >> 3] >>
  292. (intno &7)) & 1) {
  293. return_to_32bit(env, TARGET_VM86_INTx + (intno << 8));
  294. return;
  295. }
  296. }
  297. do_int(env, intno);
  298. break;
  299. case 0xcf: /* iret */
  300. if (data32) {
  301. newip = vm_getl(ssp, sp) & 0xffff;
  302. newcs = vm_getl(ssp, sp + 4) & 0xffff;
  303. newflags = vm_getl(ssp, sp + 8);
  304. ADD16(env->regs[R_ESP], 12);
  305. } else {
  306. newip = vm_getw(ssp, sp);
  307. newcs = vm_getw(ssp, sp + 2);
  308. newflags = vm_getw(ssp, sp + 4);
  309. ADD16(env->regs[R_ESP], 6);
  310. }
  311. env->eip = newip;
  312. cpu_x86_load_seg(env, R_CS, newcs);
  313. CHECK_IF_IN_TRAP();
  314. if (data32) {
  315. if (set_vflags_long(newflags, env))
  316. return;
  317. } else {
  318. if (set_vflags_short(newflags, env))
  319. return;
  320. }
  321. VM86_FAULT_RETURN;
  322. case 0xfa: /* cli */
  323. env->eip = ip;
  324. clear_IF(env);
  325. VM86_FAULT_RETURN;
  326. case 0xfb: /* sti */
  327. env->eip = ip;
  328. if (set_IF(env))
  329. return;
  330. VM86_FAULT_RETURN;
  331. default:
  332. /* real VM86 GPF exception */
  333. return_to_32bit(env, TARGET_VM86_UNKNOWN);
  334. break;
  335. }
  336. }
  337. int do_vm86(CPUX86State *env, long subfunction, abi_ulong vm86_addr)
  338. {
  339. TaskState *ts = env->opaque;
  340. struct target_vm86plus_struct * target_v86;
  341. int ret;
  342. switch (subfunction) {
  343. case TARGET_VM86_REQUEST_IRQ:
  344. case TARGET_VM86_FREE_IRQ:
  345. case TARGET_VM86_GET_IRQ_BITS:
  346. case TARGET_VM86_GET_AND_RESET_IRQ:
  347. gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction);
  348. ret = -TARGET_EINVAL;
  349. goto out;
  350. case TARGET_VM86_PLUS_INSTALL_CHECK:
  351. /* NOTE: on old vm86 stuff this will return the error
  352. from verify_area(), because the subfunction is
  353. interpreted as (invalid) address to vm86_struct.
  354. So the installation check works.
  355. */
  356. ret = 0;
  357. goto out;
  358. }
  359. /* save current CPU regs */
  360. ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */
  361. ts->vm86_saved_regs.ebx = env->regs[R_EBX];
  362. ts->vm86_saved_regs.ecx = env->regs[R_ECX];
  363. ts->vm86_saved_regs.edx = env->regs[R_EDX];
  364. ts->vm86_saved_regs.esi = env->regs[R_ESI];
  365. ts->vm86_saved_regs.edi = env->regs[R_EDI];
  366. ts->vm86_saved_regs.ebp = env->regs[R_EBP];
  367. ts->vm86_saved_regs.esp = env->regs[R_ESP];
  368. ts->vm86_saved_regs.eflags = env->eflags;
  369. ts->vm86_saved_regs.eip = env->eip;
  370. ts->vm86_saved_regs.cs = env->segs[R_CS].selector;
  371. ts->vm86_saved_regs.ss = env->segs[R_SS].selector;
  372. ts->vm86_saved_regs.ds = env->segs[R_DS].selector;
  373. ts->vm86_saved_regs.es = env->segs[R_ES].selector;
  374. ts->vm86_saved_regs.fs = env->segs[R_FS].selector;
  375. ts->vm86_saved_regs.gs = env->segs[R_GS].selector;
  376. ts->target_v86 = vm86_addr;
  377. if (!lock_user_struct(VERIFY_READ, target_v86, vm86_addr, 1))
  378. return -TARGET_EFAULT;
  379. /* build vm86 CPU state */
  380. ts->v86flags = tswap32(target_v86->regs.eflags);
  381. env->eflags = (env->eflags & ~SAFE_MASK) |
  382. (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK;
  383. ts->vm86plus.cpu_type = tswapal(target_v86->cpu_type);
  384. switch (ts->vm86plus.cpu_type) {
  385. case TARGET_CPU_286:
  386. ts->v86mask = 0;
  387. break;
  388. case TARGET_CPU_386:
  389. ts->v86mask = NT_MASK | IOPL_MASK;
  390. break;
  391. case TARGET_CPU_486:
  392. ts->v86mask = AC_MASK | NT_MASK | IOPL_MASK;
  393. break;
  394. default:
  395. ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
  396. break;
  397. }
  398. env->regs[R_EBX] = tswap32(target_v86->regs.ebx);
  399. env->regs[R_ECX] = tswap32(target_v86->regs.ecx);
  400. env->regs[R_EDX] = tswap32(target_v86->regs.edx);
  401. env->regs[R_ESI] = tswap32(target_v86->regs.esi);
  402. env->regs[R_EDI] = tswap32(target_v86->regs.edi);
  403. env->regs[R_EBP] = tswap32(target_v86->regs.ebp);
  404. env->regs[R_ESP] = tswap32(target_v86->regs.esp);
  405. env->eip = tswap32(target_v86->regs.eip);
  406. cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs));
  407. cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss));
  408. cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds));
  409. cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es));
  410. cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs));
  411. cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs));
  412. ret = tswap32(target_v86->regs.eax); /* eax will be restored at
  413. the end of the syscall */
  414. memcpy(&ts->vm86plus.int_revectored,
  415. &target_v86->int_revectored, 32);
  416. memcpy(&ts->vm86plus.int21_revectored,
  417. &target_v86->int21_revectored, 32);
  418. ts->vm86plus.vm86plus.flags = tswapal(target_v86->vm86plus.flags);
  419. memcpy(&ts->vm86plus.vm86plus.vm86dbg_intxxtab,
  420. target_v86->vm86plus.vm86dbg_intxxtab, 32);
  421. unlock_user_struct(target_v86, vm86_addr, 0);
  422. LOG_VM86("do_vm86: cs:ip=%04x:%04x\n",
  423. env->segs[R_CS].selector, env->eip);
  424. /* now the virtual CPU is ready for vm86 execution ! */
  425. out:
  426. return ret;
  427. }