kvm-all.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000
  1. /*
  2. * QEMU KVM support
  3. *
  4. * Copyright IBM, Corp. 2008
  5. * Red Hat, Inc. 2008
  6. *
  7. * Authors:
  8. * Anthony Liguori <aliguori@us.ibm.com>
  9. * Glauber Costa <gcosta@redhat.com>
  10. *
  11. * This work is licensed under the terms of the GNU GPL, version 2 or later.
  12. * See the COPYING file in the top-level directory.
  13. *
  14. */
  15. #include <sys/types.h>
  16. #include <sys/ioctl.h>
  17. #include <sys/mman.h>
  18. #include <stdarg.h>
  19. #include <linux/kvm.h>
  20. #include "qemu-common.h"
  21. #include "qemu-barrier.h"
  22. #include "qemu-option.h"
  23. #include "qemu-config.h"
  24. #include "sysemu.h"
  25. #include "hw/hw.h"
  26. #include "hw/msi.h"
  27. #include "gdbstub.h"
  28. #include "kvm.h"
  29. #include "bswap.h"
  30. #include "memory.h"
  31. #include "exec-memory.h"
  32. #include "event_notifier.h"
  33. /* This check must be after config-host.h is included */
  34. #ifdef CONFIG_EVENTFD
  35. #include <sys/eventfd.h>
  36. #endif
  37. #ifdef CONFIG_VALGRIND_H
  38. #include <valgrind/memcheck.h>
  39. #endif
  40. /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
  41. #define PAGE_SIZE TARGET_PAGE_SIZE
  42. //#define DEBUG_KVM
  43. #ifdef DEBUG_KVM
  44. #define DPRINTF(fmt, ...) \
  45. do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  46. #else
  47. #define DPRINTF(fmt, ...) \
  48. do { } while (0)
  49. #endif
  50. #define KVM_MSI_HASHTAB_SIZE 256
  51. typedef struct KVMSlot
  52. {
  53. target_phys_addr_t start_addr;
  54. ram_addr_t memory_size;
  55. void *ram;
  56. int slot;
  57. int flags;
  58. } KVMSlot;
  59. typedef struct kvm_dirty_log KVMDirtyLog;
  60. struct KVMState
  61. {
  62. KVMSlot slots[32];
  63. int fd;
  64. int vmfd;
  65. int coalesced_mmio;
  66. struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
  67. bool coalesced_flush_in_progress;
  68. int broken_set_mem_region;
  69. int migration_log;
  70. int vcpu_events;
  71. int robust_singlestep;
  72. int debugregs;
  73. #ifdef KVM_CAP_SET_GUEST_DEBUG
  74. struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
  75. #endif
  76. int pit_state2;
  77. int xsave, xcrs;
  78. int many_ioeventfds;
  79. /* The man page (and posix) say ioctl numbers are signed int, but
  80. * they're not. Linux, glibc and *BSD all treat ioctl numbers as
  81. * unsigned, and treating them as signed here can break things */
  82. unsigned irqchip_inject_ioctl;
  83. #ifdef KVM_CAP_IRQ_ROUTING
  84. struct kvm_irq_routing *irq_routes;
  85. int nr_allocated_irq_routes;
  86. uint32_t *used_gsi_bitmap;
  87. unsigned int gsi_count;
  88. QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
  89. bool direct_msi;
  90. #endif
  91. };
  92. KVMState *kvm_state;
  93. bool kvm_kernel_irqchip;
  94. bool kvm_async_interrupts_allowed;
  95. bool kvm_irqfds_allowed;
  96. bool kvm_msi_via_irqfd_allowed;
  97. bool kvm_gsi_routing_allowed;
  98. static const KVMCapabilityInfo kvm_required_capabilites[] = {
  99. KVM_CAP_INFO(USER_MEMORY),
  100. KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
  101. KVM_CAP_LAST_INFO
  102. };
  103. static KVMSlot *kvm_alloc_slot(KVMState *s)
  104. {
  105. int i;
  106. for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
  107. if (s->slots[i].memory_size == 0) {
  108. return &s->slots[i];
  109. }
  110. }
  111. fprintf(stderr, "%s: no free slot available\n", __func__);
  112. abort();
  113. }
  114. static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
  115. target_phys_addr_t start_addr,
  116. target_phys_addr_t end_addr)
  117. {
  118. int i;
  119. for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
  120. KVMSlot *mem = &s->slots[i];
  121. if (start_addr == mem->start_addr &&
  122. end_addr == mem->start_addr + mem->memory_size) {
  123. return mem;
  124. }
  125. }
  126. return NULL;
  127. }
  128. /*
  129. * Find overlapping slot with lowest start address
  130. */
  131. static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
  132. target_phys_addr_t start_addr,
  133. target_phys_addr_t end_addr)
  134. {
  135. KVMSlot *found = NULL;
  136. int i;
  137. for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
  138. KVMSlot *mem = &s->slots[i];
  139. if (mem->memory_size == 0 ||
  140. (found && found->start_addr < mem->start_addr)) {
  141. continue;
  142. }
  143. if (end_addr > mem->start_addr &&
  144. start_addr < mem->start_addr + mem->memory_size) {
  145. found = mem;
  146. }
  147. }
  148. return found;
  149. }
  150. int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
  151. target_phys_addr_t *phys_addr)
  152. {
  153. int i;
  154. for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
  155. KVMSlot *mem = &s->slots[i];
  156. if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
  157. *phys_addr = mem->start_addr + (ram - mem->ram);
  158. return 1;
  159. }
  160. }
  161. return 0;
  162. }
  163. static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
  164. {
  165. struct kvm_userspace_memory_region mem;
  166. mem.slot = slot->slot;
  167. mem.guest_phys_addr = slot->start_addr;
  168. mem.memory_size = slot->memory_size;
  169. mem.userspace_addr = (unsigned long)slot->ram;
  170. mem.flags = slot->flags;
  171. if (s->migration_log) {
  172. mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
  173. }
  174. return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
  175. }
  176. static void kvm_reset_vcpu(void *opaque)
  177. {
  178. CPUArchState *env = opaque;
  179. kvm_arch_reset_vcpu(env);
  180. }
  181. int kvm_init_vcpu(CPUArchState *env)
  182. {
  183. KVMState *s = kvm_state;
  184. long mmap_size;
  185. int ret;
  186. DPRINTF("kvm_init_vcpu\n");
  187. ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
  188. if (ret < 0) {
  189. DPRINTF("kvm_create_vcpu failed\n");
  190. goto err;
  191. }
  192. env->kvm_fd = ret;
  193. env->kvm_state = s;
  194. env->kvm_vcpu_dirty = 1;
  195. mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
  196. if (mmap_size < 0) {
  197. ret = mmap_size;
  198. DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
  199. goto err;
  200. }
  201. env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
  202. env->kvm_fd, 0);
  203. if (env->kvm_run == MAP_FAILED) {
  204. ret = -errno;
  205. DPRINTF("mmap'ing vcpu state failed\n");
  206. goto err;
  207. }
  208. if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
  209. s->coalesced_mmio_ring =
  210. (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
  211. }
  212. ret = kvm_arch_init_vcpu(env);
  213. if (ret == 0) {
  214. qemu_register_reset(kvm_reset_vcpu, env);
  215. kvm_arch_reset_vcpu(env);
  216. }
  217. err:
  218. return ret;
  219. }
  220. /*
  221. * dirty pages logging control
  222. */
  223. static int kvm_mem_flags(KVMState *s, bool log_dirty)
  224. {
  225. return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
  226. }
  227. static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
  228. {
  229. KVMState *s = kvm_state;
  230. int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
  231. int old_flags;
  232. old_flags = mem->flags;
  233. flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
  234. mem->flags = flags;
  235. /* If nothing changed effectively, no need to issue ioctl */
  236. if (s->migration_log) {
  237. flags |= KVM_MEM_LOG_DIRTY_PAGES;
  238. }
  239. if (flags == old_flags) {
  240. return 0;
  241. }
  242. return kvm_set_user_memory_region(s, mem);
  243. }
  244. static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
  245. ram_addr_t size, bool log_dirty)
  246. {
  247. KVMState *s = kvm_state;
  248. KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
  249. if (mem == NULL) {
  250. fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
  251. TARGET_FMT_plx "\n", __func__, phys_addr,
  252. (target_phys_addr_t)(phys_addr + size - 1));
  253. return -EINVAL;
  254. }
  255. return kvm_slot_dirty_pages_log_change(mem, log_dirty);
  256. }
  257. static void kvm_log_start(MemoryListener *listener,
  258. MemoryRegionSection *section)
  259. {
  260. int r;
  261. r = kvm_dirty_pages_log_change(section->offset_within_address_space,
  262. section->size, true);
  263. if (r < 0) {
  264. abort();
  265. }
  266. }
  267. static void kvm_log_stop(MemoryListener *listener,
  268. MemoryRegionSection *section)
  269. {
  270. int r;
  271. r = kvm_dirty_pages_log_change(section->offset_within_address_space,
  272. section->size, false);
  273. if (r < 0) {
  274. abort();
  275. }
  276. }
  277. static int kvm_set_migration_log(int enable)
  278. {
  279. KVMState *s = kvm_state;
  280. KVMSlot *mem;
  281. int i, err;
  282. s->migration_log = enable;
  283. for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
  284. mem = &s->slots[i];
  285. if (!mem->memory_size) {
  286. continue;
  287. }
  288. if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
  289. continue;
  290. }
  291. err = kvm_set_user_memory_region(s, mem);
  292. if (err) {
  293. return err;
  294. }
  295. }
  296. return 0;
  297. }
  298. /* get kvm's dirty pages bitmap and update qemu's */
  299. static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
  300. unsigned long *bitmap)
  301. {
  302. unsigned int i, j;
  303. unsigned long page_number, c;
  304. target_phys_addr_t addr, addr1;
  305. unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
  306. unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
  307. /*
  308. * bitmap-traveling is faster than memory-traveling (for addr...)
  309. * especially when most of the memory is not dirty.
  310. */
  311. for (i = 0; i < len; i++) {
  312. if (bitmap[i] != 0) {
  313. c = leul_to_cpu(bitmap[i]);
  314. do {
  315. j = ffsl(c) - 1;
  316. c &= ~(1ul << j);
  317. page_number = (i * HOST_LONG_BITS + j) * hpratio;
  318. addr1 = page_number * TARGET_PAGE_SIZE;
  319. addr = section->offset_within_region + addr1;
  320. memory_region_set_dirty(section->mr, addr,
  321. TARGET_PAGE_SIZE * hpratio);
  322. } while (c != 0);
  323. }
  324. }
  325. return 0;
  326. }
  327. #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
  328. /**
  329. * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
  330. * This function updates qemu's dirty bitmap using
  331. * memory_region_set_dirty(). This means all bits are set
  332. * to dirty.
  333. *
  334. * @start_add: start of logged region.
  335. * @end_addr: end of logged region.
  336. */
  337. static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
  338. {
  339. KVMState *s = kvm_state;
  340. unsigned long size, allocated_size = 0;
  341. KVMDirtyLog d;
  342. KVMSlot *mem;
  343. int ret = 0;
  344. target_phys_addr_t start_addr = section->offset_within_address_space;
  345. target_phys_addr_t end_addr = start_addr + section->size;
  346. d.dirty_bitmap = NULL;
  347. while (start_addr < end_addr) {
  348. mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
  349. if (mem == NULL) {
  350. break;
  351. }
  352. /* XXX bad kernel interface alert
  353. * For dirty bitmap, kernel allocates array of size aligned to
  354. * bits-per-long. But for case when the kernel is 64bits and
  355. * the userspace is 32bits, userspace can't align to the same
  356. * bits-per-long, since sizeof(long) is different between kernel
  357. * and user space. This way, userspace will provide buffer which
  358. * may be 4 bytes less than the kernel will use, resulting in
  359. * userspace memory corruption (which is not detectable by valgrind
  360. * too, in most cases).
  361. * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
  362. * a hope that sizeof(long) wont become >8 any time soon.
  363. */
  364. size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
  365. /*HOST_LONG_BITS*/ 64) / 8;
  366. if (!d.dirty_bitmap) {
  367. d.dirty_bitmap = g_malloc(size);
  368. } else if (size > allocated_size) {
  369. d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
  370. }
  371. allocated_size = size;
  372. memset(d.dirty_bitmap, 0, allocated_size);
  373. d.slot = mem->slot;
  374. if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
  375. DPRINTF("ioctl failed %d\n", errno);
  376. ret = -1;
  377. break;
  378. }
  379. kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
  380. start_addr = mem->start_addr + mem->memory_size;
  381. }
  382. g_free(d.dirty_bitmap);
  383. return ret;
  384. }
  385. int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
  386. {
  387. int ret = -ENOSYS;
  388. KVMState *s = kvm_state;
  389. if (s->coalesced_mmio) {
  390. struct kvm_coalesced_mmio_zone zone;
  391. zone.addr = start;
  392. zone.size = size;
  393. zone.pad = 0;
  394. ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
  395. }
  396. return ret;
  397. }
  398. int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
  399. {
  400. int ret = -ENOSYS;
  401. KVMState *s = kvm_state;
  402. if (s->coalesced_mmio) {
  403. struct kvm_coalesced_mmio_zone zone;
  404. zone.addr = start;
  405. zone.size = size;
  406. zone.pad = 0;
  407. ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
  408. }
  409. return ret;
  410. }
  411. int kvm_check_extension(KVMState *s, unsigned int extension)
  412. {
  413. int ret;
  414. ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
  415. if (ret < 0) {
  416. ret = 0;
  417. }
  418. return ret;
  419. }
  420. static int kvm_check_many_ioeventfds(void)
  421. {
  422. /* Userspace can use ioeventfd for io notification. This requires a host
  423. * that supports eventfd(2) and an I/O thread; since eventfd does not
  424. * support SIGIO it cannot interrupt the vcpu.
  425. *
  426. * Older kernels have a 6 device limit on the KVM io bus. Find out so we
  427. * can avoid creating too many ioeventfds.
  428. */
  429. #if defined(CONFIG_EVENTFD)
  430. int ioeventfds[7];
  431. int i, ret = 0;
  432. for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
  433. ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
  434. if (ioeventfds[i] < 0) {
  435. break;
  436. }
  437. ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
  438. if (ret < 0) {
  439. close(ioeventfds[i]);
  440. break;
  441. }
  442. }
  443. /* Decide whether many devices are supported or not */
  444. ret = i == ARRAY_SIZE(ioeventfds);
  445. while (i-- > 0) {
  446. kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
  447. close(ioeventfds[i]);
  448. }
  449. return ret;
  450. #else
  451. return 0;
  452. #endif
  453. }
  454. static const KVMCapabilityInfo *
  455. kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
  456. {
  457. while (list->name) {
  458. if (!kvm_check_extension(s, list->value)) {
  459. return list;
  460. }
  461. list++;
  462. }
  463. return NULL;
  464. }
  465. static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
  466. {
  467. KVMState *s = kvm_state;
  468. KVMSlot *mem, old;
  469. int err;
  470. MemoryRegion *mr = section->mr;
  471. bool log_dirty = memory_region_is_logging(mr);
  472. target_phys_addr_t start_addr = section->offset_within_address_space;
  473. ram_addr_t size = section->size;
  474. void *ram = NULL;
  475. unsigned delta;
  476. /* kvm works in page size chunks, but the function may be called
  477. with sub-page size and unaligned start address. */
  478. delta = TARGET_PAGE_ALIGN(size) - size;
  479. if (delta > size) {
  480. return;
  481. }
  482. start_addr += delta;
  483. size -= delta;
  484. size &= TARGET_PAGE_MASK;
  485. if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
  486. return;
  487. }
  488. if (!memory_region_is_ram(mr)) {
  489. return;
  490. }
  491. ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
  492. while (1) {
  493. mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
  494. if (!mem) {
  495. break;
  496. }
  497. if (add && start_addr >= mem->start_addr &&
  498. (start_addr + size <= mem->start_addr + mem->memory_size) &&
  499. (ram - start_addr == mem->ram - mem->start_addr)) {
  500. /* The new slot fits into the existing one and comes with
  501. * identical parameters - update flags and done. */
  502. kvm_slot_dirty_pages_log_change(mem, log_dirty);
  503. return;
  504. }
  505. old = *mem;
  506. if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
  507. kvm_physical_sync_dirty_bitmap(section);
  508. }
  509. /* unregister the overlapping slot */
  510. mem->memory_size = 0;
  511. err = kvm_set_user_memory_region(s, mem);
  512. if (err) {
  513. fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
  514. __func__, strerror(-err));
  515. abort();
  516. }
  517. /* Workaround for older KVM versions: we can't join slots, even not by
  518. * unregistering the previous ones and then registering the larger
  519. * slot. We have to maintain the existing fragmentation. Sigh.
  520. *
  521. * This workaround assumes that the new slot starts at the same
  522. * address as the first existing one. If not or if some overlapping
  523. * slot comes around later, we will fail (not seen in practice so far)
  524. * - and actually require a recent KVM version. */
  525. if (s->broken_set_mem_region &&
  526. old.start_addr == start_addr && old.memory_size < size && add) {
  527. mem = kvm_alloc_slot(s);
  528. mem->memory_size = old.memory_size;
  529. mem->start_addr = old.start_addr;
  530. mem->ram = old.ram;
  531. mem->flags = kvm_mem_flags(s, log_dirty);
  532. err = kvm_set_user_memory_region(s, mem);
  533. if (err) {
  534. fprintf(stderr, "%s: error updating slot: %s\n", __func__,
  535. strerror(-err));
  536. abort();
  537. }
  538. start_addr += old.memory_size;
  539. ram += old.memory_size;
  540. size -= old.memory_size;
  541. continue;
  542. }
  543. /* register prefix slot */
  544. if (old.start_addr < start_addr) {
  545. mem = kvm_alloc_slot(s);
  546. mem->memory_size = start_addr - old.start_addr;
  547. mem->start_addr = old.start_addr;
  548. mem->ram = old.ram;
  549. mem->flags = kvm_mem_flags(s, log_dirty);
  550. err = kvm_set_user_memory_region(s, mem);
  551. if (err) {
  552. fprintf(stderr, "%s: error registering prefix slot: %s\n",
  553. __func__, strerror(-err));
  554. #ifdef TARGET_PPC
  555. fprintf(stderr, "%s: This is probably because your kernel's " \
  556. "PAGE_SIZE is too big. Please try to use 4k " \
  557. "PAGE_SIZE!\n", __func__);
  558. #endif
  559. abort();
  560. }
  561. }
  562. /* register suffix slot */
  563. if (old.start_addr + old.memory_size > start_addr + size) {
  564. ram_addr_t size_delta;
  565. mem = kvm_alloc_slot(s);
  566. mem->start_addr = start_addr + size;
  567. size_delta = mem->start_addr - old.start_addr;
  568. mem->memory_size = old.memory_size - size_delta;
  569. mem->ram = old.ram + size_delta;
  570. mem->flags = kvm_mem_flags(s, log_dirty);
  571. err = kvm_set_user_memory_region(s, mem);
  572. if (err) {
  573. fprintf(stderr, "%s: error registering suffix slot: %s\n",
  574. __func__, strerror(-err));
  575. abort();
  576. }
  577. }
  578. }
  579. /* in case the KVM bug workaround already "consumed" the new slot */
  580. if (!size) {
  581. return;
  582. }
  583. if (!add) {
  584. return;
  585. }
  586. mem = kvm_alloc_slot(s);
  587. mem->memory_size = size;
  588. mem->start_addr = start_addr;
  589. mem->ram = ram;
  590. mem->flags = kvm_mem_flags(s, log_dirty);
  591. err = kvm_set_user_memory_region(s, mem);
  592. if (err) {
  593. fprintf(stderr, "%s: error registering slot: %s\n", __func__,
  594. strerror(-err));
  595. abort();
  596. }
  597. }
  598. static void kvm_begin(MemoryListener *listener)
  599. {
  600. }
  601. static void kvm_commit(MemoryListener *listener)
  602. {
  603. }
  604. static void kvm_region_add(MemoryListener *listener,
  605. MemoryRegionSection *section)
  606. {
  607. kvm_set_phys_mem(section, true);
  608. }
  609. static void kvm_region_del(MemoryListener *listener,
  610. MemoryRegionSection *section)
  611. {
  612. kvm_set_phys_mem(section, false);
  613. }
  614. static void kvm_region_nop(MemoryListener *listener,
  615. MemoryRegionSection *section)
  616. {
  617. }
  618. static void kvm_log_sync(MemoryListener *listener,
  619. MemoryRegionSection *section)
  620. {
  621. int r;
  622. r = kvm_physical_sync_dirty_bitmap(section);
  623. if (r < 0) {
  624. abort();
  625. }
  626. }
  627. static void kvm_log_global_start(struct MemoryListener *listener)
  628. {
  629. int r;
  630. r = kvm_set_migration_log(1);
  631. assert(r >= 0);
  632. }
  633. static void kvm_log_global_stop(struct MemoryListener *listener)
  634. {
  635. int r;
  636. r = kvm_set_migration_log(0);
  637. assert(r >= 0);
  638. }
  639. static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
  640. bool match_data, uint64_t data, int fd)
  641. {
  642. int r;
  643. assert(match_data && section->size <= 8);
  644. r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
  645. data, true, section->size);
  646. if (r < 0) {
  647. abort();
  648. }
  649. }
  650. static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
  651. bool match_data, uint64_t data, int fd)
  652. {
  653. int r;
  654. r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
  655. data, false, section->size);
  656. if (r < 0) {
  657. abort();
  658. }
  659. }
  660. static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
  661. bool match_data, uint64_t data, int fd)
  662. {
  663. int r;
  664. assert(match_data && section->size == 2);
  665. r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
  666. data, true);
  667. if (r < 0) {
  668. abort();
  669. }
  670. }
  671. static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
  672. bool match_data, uint64_t data, int fd)
  673. {
  674. int r;
  675. r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
  676. data, false);
  677. if (r < 0) {
  678. abort();
  679. }
  680. }
  681. static void kvm_eventfd_add(MemoryListener *listener,
  682. MemoryRegionSection *section,
  683. bool match_data, uint64_t data,
  684. EventNotifier *e)
  685. {
  686. if (section->address_space == get_system_memory()) {
  687. kvm_mem_ioeventfd_add(section, match_data, data,
  688. event_notifier_get_fd(e));
  689. } else {
  690. kvm_io_ioeventfd_add(section, match_data, data,
  691. event_notifier_get_fd(e));
  692. }
  693. }
  694. static void kvm_eventfd_del(MemoryListener *listener,
  695. MemoryRegionSection *section,
  696. bool match_data, uint64_t data,
  697. EventNotifier *e)
  698. {
  699. if (section->address_space == get_system_memory()) {
  700. kvm_mem_ioeventfd_del(section, match_data, data,
  701. event_notifier_get_fd(e));
  702. } else {
  703. kvm_io_ioeventfd_del(section, match_data, data,
  704. event_notifier_get_fd(e));
  705. }
  706. }
  707. static MemoryListener kvm_memory_listener = {
  708. .begin = kvm_begin,
  709. .commit = kvm_commit,
  710. .region_add = kvm_region_add,
  711. .region_del = kvm_region_del,
  712. .region_nop = kvm_region_nop,
  713. .log_start = kvm_log_start,
  714. .log_stop = kvm_log_stop,
  715. .log_sync = kvm_log_sync,
  716. .log_global_start = kvm_log_global_start,
  717. .log_global_stop = kvm_log_global_stop,
  718. .eventfd_add = kvm_eventfd_add,
  719. .eventfd_del = kvm_eventfd_del,
  720. .priority = 10,
  721. };
  722. static void kvm_handle_interrupt(CPUArchState *env, int mask)
  723. {
  724. env->interrupt_request |= mask;
  725. if (!qemu_cpu_is_self(env)) {
  726. qemu_cpu_kick(env);
  727. }
  728. }
  729. int kvm_set_irq(KVMState *s, int irq, int level)
  730. {
  731. struct kvm_irq_level event;
  732. int ret;
  733. assert(kvm_async_interrupts_enabled());
  734. event.level = level;
  735. event.irq = irq;
  736. ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
  737. if (ret < 0) {
  738. perror("kvm_set_irq");
  739. abort();
  740. }
  741. return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
  742. }
  743. #ifdef KVM_CAP_IRQ_ROUTING
  744. typedef struct KVMMSIRoute {
  745. struct kvm_irq_routing_entry kroute;
  746. QTAILQ_ENTRY(KVMMSIRoute) entry;
  747. } KVMMSIRoute;
  748. static void set_gsi(KVMState *s, unsigned int gsi)
  749. {
  750. s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
  751. }
  752. static void clear_gsi(KVMState *s, unsigned int gsi)
  753. {
  754. s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
  755. }
  756. static void kvm_init_irq_routing(KVMState *s)
  757. {
  758. int gsi_count, i;
  759. gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
  760. if (gsi_count > 0) {
  761. unsigned int gsi_bits, i;
  762. /* Round up so we can search ints using ffs */
  763. gsi_bits = ALIGN(gsi_count, 32);
  764. s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
  765. s->gsi_count = gsi_count;
  766. /* Mark any over-allocated bits as already in use */
  767. for (i = gsi_count; i < gsi_bits; i++) {
  768. set_gsi(s, i);
  769. }
  770. }
  771. s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
  772. s->nr_allocated_irq_routes = 0;
  773. if (!s->direct_msi) {
  774. for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
  775. QTAILQ_INIT(&s->msi_hashtab[i]);
  776. }
  777. }
  778. kvm_arch_init_irq_routing(s);
  779. }
  780. static void kvm_irqchip_commit_routes(KVMState *s)
  781. {
  782. int ret;
  783. s->irq_routes->flags = 0;
  784. ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
  785. assert(ret == 0);
  786. }
  787. static void kvm_add_routing_entry(KVMState *s,
  788. struct kvm_irq_routing_entry *entry)
  789. {
  790. struct kvm_irq_routing_entry *new;
  791. int n, size;
  792. if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
  793. n = s->nr_allocated_irq_routes * 2;
  794. if (n < 64) {
  795. n = 64;
  796. }
  797. size = sizeof(struct kvm_irq_routing);
  798. size += n * sizeof(*new);
  799. s->irq_routes = g_realloc(s->irq_routes, size);
  800. s->nr_allocated_irq_routes = n;
  801. }
  802. n = s->irq_routes->nr++;
  803. new = &s->irq_routes->entries[n];
  804. memset(new, 0, sizeof(*new));
  805. new->gsi = entry->gsi;
  806. new->type = entry->type;
  807. new->flags = entry->flags;
  808. new->u = entry->u;
  809. set_gsi(s, entry->gsi);
  810. kvm_irqchip_commit_routes(s);
  811. }
  812. void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
  813. {
  814. struct kvm_irq_routing_entry e;
  815. assert(pin < s->gsi_count);
  816. e.gsi = irq;
  817. e.type = KVM_IRQ_ROUTING_IRQCHIP;
  818. e.flags = 0;
  819. e.u.irqchip.irqchip = irqchip;
  820. e.u.irqchip.pin = pin;
  821. kvm_add_routing_entry(s, &e);
  822. }
  823. void kvm_irqchip_release_virq(KVMState *s, int virq)
  824. {
  825. struct kvm_irq_routing_entry *e;
  826. int i;
  827. for (i = 0; i < s->irq_routes->nr; i++) {
  828. e = &s->irq_routes->entries[i];
  829. if (e->gsi == virq) {
  830. s->irq_routes->nr--;
  831. *e = s->irq_routes->entries[s->irq_routes->nr];
  832. }
  833. }
  834. clear_gsi(s, virq);
  835. kvm_irqchip_commit_routes(s);
  836. }
  837. static unsigned int kvm_hash_msi(uint32_t data)
  838. {
  839. /* This is optimized for IA32 MSI layout. However, no other arch shall
  840. * repeat the mistake of not providing a direct MSI injection API. */
  841. return data & 0xff;
  842. }
  843. static void kvm_flush_dynamic_msi_routes(KVMState *s)
  844. {
  845. KVMMSIRoute *route, *next;
  846. unsigned int hash;
  847. for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
  848. QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
  849. kvm_irqchip_release_virq(s, route->kroute.gsi);
  850. QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
  851. g_free(route);
  852. }
  853. }
  854. }
  855. static int kvm_irqchip_get_virq(KVMState *s)
  856. {
  857. uint32_t *word = s->used_gsi_bitmap;
  858. int max_words = ALIGN(s->gsi_count, 32) / 32;
  859. int i, bit;
  860. bool retry = true;
  861. again:
  862. /* Return the lowest unused GSI in the bitmap */
  863. for (i = 0; i < max_words; i++) {
  864. bit = ffs(~word[i]);
  865. if (!bit) {
  866. continue;
  867. }
  868. return bit - 1 + i * 32;
  869. }
  870. if (!s->direct_msi && retry) {
  871. retry = false;
  872. kvm_flush_dynamic_msi_routes(s);
  873. goto again;
  874. }
  875. return -ENOSPC;
  876. }
  877. static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
  878. {
  879. unsigned int hash = kvm_hash_msi(msg.data);
  880. KVMMSIRoute *route;
  881. QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
  882. if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
  883. route->kroute.u.msi.address_hi == (msg.address >> 32) &&
  884. route->kroute.u.msi.data == msg.data) {
  885. return route;
  886. }
  887. }
  888. return NULL;
  889. }
  890. int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
  891. {
  892. struct kvm_msi msi;
  893. KVMMSIRoute *route;
  894. if (s->direct_msi) {
  895. msi.address_lo = (uint32_t)msg.address;
  896. msi.address_hi = msg.address >> 32;
  897. msi.data = msg.data;
  898. msi.flags = 0;
  899. memset(msi.pad, 0, sizeof(msi.pad));
  900. return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
  901. }
  902. route = kvm_lookup_msi_route(s, msg);
  903. if (!route) {
  904. int virq;
  905. virq = kvm_irqchip_get_virq(s);
  906. if (virq < 0) {
  907. return virq;
  908. }
  909. route = g_malloc(sizeof(KVMMSIRoute));
  910. route->kroute.gsi = virq;
  911. route->kroute.type = KVM_IRQ_ROUTING_MSI;
  912. route->kroute.flags = 0;
  913. route->kroute.u.msi.address_lo = (uint32_t)msg.address;
  914. route->kroute.u.msi.address_hi = msg.address >> 32;
  915. route->kroute.u.msi.data = msg.data;
  916. kvm_add_routing_entry(s, &route->kroute);
  917. QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
  918. entry);
  919. }
  920. assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
  921. return kvm_set_irq(s, route->kroute.gsi, 1);
  922. }
  923. int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
  924. {
  925. struct kvm_irq_routing_entry kroute;
  926. int virq;
  927. if (!kvm_gsi_routing_enabled()) {
  928. return -ENOSYS;
  929. }
  930. virq = kvm_irqchip_get_virq(s);
  931. if (virq < 0) {
  932. return virq;
  933. }
  934. kroute.gsi = virq;
  935. kroute.type = KVM_IRQ_ROUTING_MSI;
  936. kroute.flags = 0;
  937. kroute.u.msi.address_lo = (uint32_t)msg.address;
  938. kroute.u.msi.address_hi = msg.address >> 32;
  939. kroute.u.msi.data = msg.data;
  940. kvm_add_routing_entry(s, &kroute);
  941. return virq;
  942. }
  943. static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
  944. {
  945. struct kvm_irqfd irqfd = {
  946. .fd = fd,
  947. .gsi = virq,
  948. .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
  949. };
  950. if (!kvm_irqfds_enabled()) {
  951. return -ENOSYS;
  952. }
  953. return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
  954. }
  955. #else /* !KVM_CAP_IRQ_ROUTING */
  956. static void kvm_init_irq_routing(KVMState *s)
  957. {
  958. }
  959. void kvm_irqchip_release_virq(KVMState *s, int virq)
  960. {
  961. }
  962. int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
  963. {
  964. abort();
  965. }
  966. int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
  967. {
  968. return -ENOSYS;
  969. }
  970. static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
  971. {
  972. abort();
  973. }
  974. #endif /* !KVM_CAP_IRQ_ROUTING */
  975. int kvm_irqchip_add_irqfd(KVMState *s, int fd, int virq)
  976. {
  977. return kvm_irqchip_assign_irqfd(s, fd, virq, true);
  978. }
  979. int kvm_irqchip_add_irq_notifier(KVMState *s, EventNotifier *n, int virq)
  980. {
  981. return kvm_irqchip_add_irqfd(s, event_notifier_get_fd(n), virq);
  982. }
  983. int kvm_irqchip_remove_irqfd(KVMState *s, int fd, int virq)
  984. {
  985. return kvm_irqchip_assign_irqfd(s, fd, virq, false);
  986. }
  987. int kvm_irqchip_remove_irq_notifier(KVMState *s, EventNotifier *n, int virq)
  988. {
  989. return kvm_irqchip_remove_irqfd(s, event_notifier_get_fd(n), virq);
  990. }
  991. static int kvm_irqchip_create(KVMState *s)
  992. {
  993. QemuOptsList *list = qemu_find_opts("machine");
  994. int ret;
  995. if (QTAILQ_EMPTY(&list->head) ||
  996. !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
  997. "kernel_irqchip", true) ||
  998. !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
  999. return 0;
  1000. }
  1001. ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
  1002. if (ret < 0) {
  1003. fprintf(stderr, "Create kernel irqchip failed\n");
  1004. return ret;
  1005. }
  1006. s->irqchip_inject_ioctl = KVM_IRQ_LINE;
  1007. if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
  1008. s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
  1009. }
  1010. kvm_kernel_irqchip = true;
  1011. /* If we have an in-kernel IRQ chip then we must have asynchronous
  1012. * interrupt delivery (though the reverse is not necessarily true)
  1013. */
  1014. kvm_async_interrupts_allowed = true;
  1015. kvm_init_irq_routing(s);
  1016. return 0;
  1017. }
  1018. static int kvm_max_vcpus(KVMState *s)
  1019. {
  1020. int ret;
  1021. /* Find number of supported CPUs using the recommended
  1022. * procedure from the kernel API documentation to cope with
  1023. * older kernels that may be missing capabilities.
  1024. */
  1025. ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
  1026. if (ret) {
  1027. return ret;
  1028. }
  1029. ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
  1030. if (ret) {
  1031. return ret;
  1032. }
  1033. return 4;
  1034. }
  1035. int kvm_init(void)
  1036. {
  1037. static const char upgrade_note[] =
  1038. "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
  1039. "(see http://sourceforge.net/projects/kvm).\n";
  1040. KVMState *s;
  1041. const KVMCapabilityInfo *missing_cap;
  1042. int ret;
  1043. int i;
  1044. int max_vcpus;
  1045. s = g_malloc0(sizeof(KVMState));
  1046. /*
  1047. * On systems where the kernel can support different base page
  1048. * sizes, host page size may be different from TARGET_PAGE_SIZE,
  1049. * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
  1050. * page size for the system though.
  1051. */
  1052. assert(TARGET_PAGE_SIZE <= getpagesize());
  1053. #ifdef KVM_CAP_SET_GUEST_DEBUG
  1054. QTAILQ_INIT(&s->kvm_sw_breakpoints);
  1055. #endif
  1056. for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
  1057. s->slots[i].slot = i;
  1058. }
  1059. s->vmfd = -1;
  1060. s->fd = qemu_open("/dev/kvm", O_RDWR);
  1061. if (s->fd == -1) {
  1062. fprintf(stderr, "Could not access KVM kernel module: %m\n");
  1063. ret = -errno;
  1064. goto err;
  1065. }
  1066. ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
  1067. if (ret < KVM_API_VERSION) {
  1068. if (ret > 0) {
  1069. ret = -EINVAL;
  1070. }
  1071. fprintf(stderr, "kvm version too old\n");
  1072. goto err;
  1073. }
  1074. if (ret > KVM_API_VERSION) {
  1075. ret = -EINVAL;
  1076. fprintf(stderr, "kvm version not supported\n");
  1077. goto err;
  1078. }
  1079. max_vcpus = kvm_max_vcpus(s);
  1080. if (smp_cpus > max_vcpus) {
  1081. ret = -EINVAL;
  1082. fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
  1083. "supported by KVM (%d)\n", smp_cpus, max_vcpus);
  1084. goto err;
  1085. }
  1086. s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
  1087. if (s->vmfd < 0) {
  1088. #ifdef TARGET_S390X
  1089. fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
  1090. "your host kernel command line\n");
  1091. #endif
  1092. ret = s->vmfd;
  1093. goto err;
  1094. }
  1095. missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
  1096. if (!missing_cap) {
  1097. missing_cap =
  1098. kvm_check_extension_list(s, kvm_arch_required_capabilities);
  1099. }
  1100. if (missing_cap) {
  1101. ret = -EINVAL;
  1102. fprintf(stderr, "kvm does not support %s\n%s",
  1103. missing_cap->name, upgrade_note);
  1104. goto err;
  1105. }
  1106. s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
  1107. s->broken_set_mem_region = 1;
  1108. ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
  1109. if (ret > 0) {
  1110. s->broken_set_mem_region = 0;
  1111. }
  1112. #ifdef KVM_CAP_VCPU_EVENTS
  1113. s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
  1114. #endif
  1115. s->robust_singlestep =
  1116. kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
  1117. #ifdef KVM_CAP_DEBUGREGS
  1118. s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
  1119. #endif
  1120. #ifdef KVM_CAP_XSAVE
  1121. s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
  1122. #endif
  1123. #ifdef KVM_CAP_XCRS
  1124. s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
  1125. #endif
  1126. #ifdef KVM_CAP_PIT_STATE2
  1127. s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
  1128. #endif
  1129. #ifdef KVM_CAP_IRQ_ROUTING
  1130. s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
  1131. #endif
  1132. ret = kvm_arch_init(s);
  1133. if (ret < 0) {
  1134. goto err;
  1135. }
  1136. ret = kvm_irqchip_create(s);
  1137. if (ret < 0) {
  1138. goto err;
  1139. }
  1140. kvm_state = s;
  1141. memory_listener_register(&kvm_memory_listener, NULL);
  1142. s->many_ioeventfds = kvm_check_many_ioeventfds();
  1143. cpu_interrupt_handler = kvm_handle_interrupt;
  1144. return 0;
  1145. err:
  1146. if (s->vmfd >= 0) {
  1147. close(s->vmfd);
  1148. }
  1149. if (s->fd != -1) {
  1150. close(s->fd);
  1151. }
  1152. g_free(s);
  1153. return ret;
  1154. }
  1155. static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
  1156. uint32_t count)
  1157. {
  1158. int i;
  1159. uint8_t *ptr = data;
  1160. for (i = 0; i < count; i++) {
  1161. if (direction == KVM_EXIT_IO_IN) {
  1162. switch (size) {
  1163. case 1:
  1164. stb_p(ptr, cpu_inb(port));
  1165. break;
  1166. case 2:
  1167. stw_p(ptr, cpu_inw(port));
  1168. break;
  1169. case 4:
  1170. stl_p(ptr, cpu_inl(port));
  1171. break;
  1172. }
  1173. } else {
  1174. switch (size) {
  1175. case 1:
  1176. cpu_outb(port, ldub_p(ptr));
  1177. break;
  1178. case 2:
  1179. cpu_outw(port, lduw_p(ptr));
  1180. break;
  1181. case 4:
  1182. cpu_outl(port, ldl_p(ptr));
  1183. break;
  1184. }
  1185. }
  1186. ptr += size;
  1187. }
  1188. }
  1189. static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
  1190. {
  1191. fprintf(stderr, "KVM internal error.");
  1192. if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
  1193. int i;
  1194. fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
  1195. for (i = 0; i < run->internal.ndata; ++i) {
  1196. fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
  1197. i, (uint64_t)run->internal.data[i]);
  1198. }
  1199. } else {
  1200. fprintf(stderr, "\n");
  1201. }
  1202. if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
  1203. fprintf(stderr, "emulation failure\n");
  1204. if (!kvm_arch_stop_on_emulation_error(env)) {
  1205. cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
  1206. return EXCP_INTERRUPT;
  1207. }
  1208. }
  1209. /* FIXME: Should trigger a qmp message to let management know
  1210. * something went wrong.
  1211. */
  1212. return -1;
  1213. }
  1214. void kvm_flush_coalesced_mmio_buffer(void)
  1215. {
  1216. KVMState *s = kvm_state;
  1217. if (s->coalesced_flush_in_progress) {
  1218. return;
  1219. }
  1220. s->coalesced_flush_in_progress = true;
  1221. if (s->coalesced_mmio_ring) {
  1222. struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
  1223. while (ring->first != ring->last) {
  1224. struct kvm_coalesced_mmio *ent;
  1225. ent = &ring->coalesced_mmio[ring->first];
  1226. cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
  1227. smp_wmb();
  1228. ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
  1229. }
  1230. }
  1231. s->coalesced_flush_in_progress = false;
  1232. }
  1233. static void do_kvm_cpu_synchronize_state(void *_env)
  1234. {
  1235. CPUArchState *env = _env;
  1236. if (!env->kvm_vcpu_dirty) {
  1237. kvm_arch_get_registers(env);
  1238. env->kvm_vcpu_dirty = 1;
  1239. }
  1240. }
  1241. void kvm_cpu_synchronize_state(CPUArchState *env)
  1242. {
  1243. if (!env->kvm_vcpu_dirty) {
  1244. run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
  1245. }
  1246. }
  1247. void kvm_cpu_synchronize_post_reset(CPUArchState *env)
  1248. {
  1249. kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
  1250. env->kvm_vcpu_dirty = 0;
  1251. }
  1252. void kvm_cpu_synchronize_post_init(CPUArchState *env)
  1253. {
  1254. kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
  1255. env->kvm_vcpu_dirty = 0;
  1256. }
  1257. int kvm_cpu_exec(CPUArchState *env)
  1258. {
  1259. struct kvm_run *run = env->kvm_run;
  1260. int ret, run_ret;
  1261. DPRINTF("kvm_cpu_exec()\n");
  1262. if (kvm_arch_process_async_events(env)) {
  1263. env->exit_request = 0;
  1264. return EXCP_HLT;
  1265. }
  1266. do {
  1267. if (env->kvm_vcpu_dirty) {
  1268. kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
  1269. env->kvm_vcpu_dirty = 0;
  1270. }
  1271. kvm_arch_pre_run(env, run);
  1272. if (env->exit_request) {
  1273. DPRINTF("interrupt exit requested\n");
  1274. /*
  1275. * KVM requires us to reenter the kernel after IO exits to complete
  1276. * instruction emulation. This self-signal will ensure that we
  1277. * leave ASAP again.
  1278. */
  1279. qemu_cpu_kick_self();
  1280. }
  1281. qemu_mutex_unlock_iothread();
  1282. run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
  1283. qemu_mutex_lock_iothread();
  1284. kvm_arch_post_run(env, run);
  1285. kvm_flush_coalesced_mmio_buffer();
  1286. if (run_ret < 0) {
  1287. if (run_ret == -EINTR || run_ret == -EAGAIN) {
  1288. DPRINTF("io window exit\n");
  1289. ret = EXCP_INTERRUPT;
  1290. break;
  1291. }
  1292. fprintf(stderr, "error: kvm run failed %s\n",
  1293. strerror(-run_ret));
  1294. abort();
  1295. }
  1296. switch (run->exit_reason) {
  1297. case KVM_EXIT_IO:
  1298. DPRINTF("handle_io\n");
  1299. kvm_handle_io(run->io.port,
  1300. (uint8_t *)run + run->io.data_offset,
  1301. run->io.direction,
  1302. run->io.size,
  1303. run->io.count);
  1304. ret = 0;
  1305. break;
  1306. case KVM_EXIT_MMIO:
  1307. DPRINTF("handle_mmio\n");
  1308. cpu_physical_memory_rw(run->mmio.phys_addr,
  1309. run->mmio.data,
  1310. run->mmio.len,
  1311. run->mmio.is_write);
  1312. ret = 0;
  1313. break;
  1314. case KVM_EXIT_IRQ_WINDOW_OPEN:
  1315. DPRINTF("irq_window_open\n");
  1316. ret = EXCP_INTERRUPT;
  1317. break;
  1318. case KVM_EXIT_SHUTDOWN:
  1319. DPRINTF("shutdown\n");
  1320. qemu_system_reset_request();
  1321. ret = EXCP_INTERRUPT;
  1322. break;
  1323. case KVM_EXIT_UNKNOWN:
  1324. fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
  1325. (uint64_t)run->hw.hardware_exit_reason);
  1326. ret = -1;
  1327. break;
  1328. case KVM_EXIT_INTERNAL_ERROR:
  1329. ret = kvm_handle_internal_error(env, run);
  1330. break;
  1331. default:
  1332. DPRINTF("kvm_arch_handle_exit\n");
  1333. ret = kvm_arch_handle_exit(env, run);
  1334. break;
  1335. }
  1336. } while (ret == 0);
  1337. if (ret < 0) {
  1338. cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
  1339. vm_stop(RUN_STATE_INTERNAL_ERROR);
  1340. }
  1341. env->exit_request = 0;
  1342. return ret;
  1343. }
  1344. int kvm_ioctl(KVMState *s, int type, ...)
  1345. {
  1346. int ret;
  1347. void *arg;
  1348. va_list ap;
  1349. va_start(ap, type);
  1350. arg = va_arg(ap, void *);
  1351. va_end(ap);
  1352. ret = ioctl(s->fd, type, arg);
  1353. if (ret == -1) {
  1354. ret = -errno;
  1355. }
  1356. return ret;
  1357. }
  1358. int kvm_vm_ioctl(KVMState *s, int type, ...)
  1359. {
  1360. int ret;
  1361. void *arg;
  1362. va_list ap;
  1363. va_start(ap, type);
  1364. arg = va_arg(ap, void *);
  1365. va_end(ap);
  1366. ret = ioctl(s->vmfd, type, arg);
  1367. if (ret == -1) {
  1368. ret = -errno;
  1369. }
  1370. return ret;
  1371. }
  1372. int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
  1373. {
  1374. int ret;
  1375. void *arg;
  1376. va_list ap;
  1377. va_start(ap, type);
  1378. arg = va_arg(ap, void *);
  1379. va_end(ap);
  1380. ret = ioctl(env->kvm_fd, type, arg);
  1381. if (ret == -1) {
  1382. ret = -errno;
  1383. }
  1384. return ret;
  1385. }
  1386. int kvm_has_sync_mmu(void)
  1387. {
  1388. return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
  1389. }
  1390. int kvm_has_vcpu_events(void)
  1391. {
  1392. return kvm_state->vcpu_events;
  1393. }
  1394. int kvm_has_robust_singlestep(void)
  1395. {
  1396. return kvm_state->robust_singlestep;
  1397. }
  1398. int kvm_has_debugregs(void)
  1399. {
  1400. return kvm_state->debugregs;
  1401. }
  1402. int kvm_has_xsave(void)
  1403. {
  1404. return kvm_state->xsave;
  1405. }
  1406. int kvm_has_xcrs(void)
  1407. {
  1408. return kvm_state->xcrs;
  1409. }
  1410. int kvm_has_pit_state2(void)
  1411. {
  1412. return kvm_state->pit_state2;
  1413. }
  1414. int kvm_has_many_ioeventfds(void)
  1415. {
  1416. if (!kvm_enabled()) {
  1417. return 0;
  1418. }
  1419. return kvm_state->many_ioeventfds;
  1420. }
  1421. int kvm_has_gsi_routing(void)
  1422. {
  1423. #ifdef KVM_CAP_IRQ_ROUTING
  1424. return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
  1425. #else
  1426. return false;
  1427. #endif
  1428. }
  1429. void *kvm_vmalloc(ram_addr_t size)
  1430. {
  1431. #ifdef TARGET_S390X
  1432. void *mem;
  1433. mem = kvm_arch_vmalloc(size);
  1434. if (mem) {
  1435. return mem;
  1436. }
  1437. #endif
  1438. return qemu_vmalloc(size);
  1439. }
  1440. void kvm_setup_guest_memory(void *start, size_t size)
  1441. {
  1442. #ifdef CONFIG_VALGRIND_H
  1443. VALGRIND_MAKE_MEM_DEFINED(start, size);
  1444. #endif
  1445. if (!kvm_has_sync_mmu()) {
  1446. int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
  1447. if (ret) {
  1448. perror("qemu_madvise");
  1449. fprintf(stderr,
  1450. "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
  1451. exit(1);
  1452. }
  1453. }
  1454. }
  1455. #ifdef KVM_CAP_SET_GUEST_DEBUG
  1456. struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
  1457. target_ulong pc)
  1458. {
  1459. struct kvm_sw_breakpoint *bp;
  1460. QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
  1461. if (bp->pc == pc) {
  1462. return bp;
  1463. }
  1464. }
  1465. return NULL;
  1466. }
  1467. int kvm_sw_breakpoints_active(CPUArchState *env)
  1468. {
  1469. return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
  1470. }
  1471. struct kvm_set_guest_debug_data {
  1472. struct kvm_guest_debug dbg;
  1473. CPUArchState *env;
  1474. int err;
  1475. };
  1476. static void kvm_invoke_set_guest_debug(void *data)
  1477. {
  1478. struct kvm_set_guest_debug_data *dbg_data = data;
  1479. CPUArchState *env = dbg_data->env;
  1480. dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
  1481. }
  1482. int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
  1483. {
  1484. struct kvm_set_guest_debug_data data;
  1485. data.dbg.control = reinject_trap;
  1486. if (env->singlestep_enabled) {
  1487. data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
  1488. }
  1489. kvm_arch_update_guest_debug(env, &data.dbg);
  1490. data.env = env;
  1491. run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
  1492. return data.err;
  1493. }
  1494. int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
  1495. target_ulong len, int type)
  1496. {
  1497. struct kvm_sw_breakpoint *bp;
  1498. CPUArchState *env;
  1499. int err;
  1500. if (type == GDB_BREAKPOINT_SW) {
  1501. bp = kvm_find_sw_breakpoint(current_env, addr);
  1502. if (bp) {
  1503. bp->use_count++;
  1504. return 0;
  1505. }
  1506. bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
  1507. if (!bp) {
  1508. return -ENOMEM;
  1509. }
  1510. bp->pc = addr;
  1511. bp->use_count = 1;
  1512. err = kvm_arch_insert_sw_breakpoint(current_env, bp);
  1513. if (err) {
  1514. g_free(bp);
  1515. return err;
  1516. }
  1517. QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
  1518. bp, entry);
  1519. } else {
  1520. err = kvm_arch_insert_hw_breakpoint(addr, len, type);
  1521. if (err) {
  1522. return err;
  1523. }
  1524. }
  1525. for (env = first_cpu; env != NULL; env = env->next_cpu) {
  1526. err = kvm_update_guest_debug(env, 0);
  1527. if (err) {
  1528. return err;
  1529. }
  1530. }
  1531. return 0;
  1532. }
  1533. int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
  1534. target_ulong len, int type)
  1535. {
  1536. struct kvm_sw_breakpoint *bp;
  1537. CPUArchState *env;
  1538. int err;
  1539. if (type == GDB_BREAKPOINT_SW) {
  1540. bp = kvm_find_sw_breakpoint(current_env, addr);
  1541. if (!bp) {
  1542. return -ENOENT;
  1543. }
  1544. if (bp->use_count > 1) {
  1545. bp->use_count--;
  1546. return 0;
  1547. }
  1548. err = kvm_arch_remove_sw_breakpoint(current_env, bp);
  1549. if (err) {
  1550. return err;
  1551. }
  1552. QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
  1553. g_free(bp);
  1554. } else {
  1555. err = kvm_arch_remove_hw_breakpoint(addr, len, type);
  1556. if (err) {
  1557. return err;
  1558. }
  1559. }
  1560. for (env = first_cpu; env != NULL; env = env->next_cpu) {
  1561. err = kvm_update_guest_debug(env, 0);
  1562. if (err) {
  1563. return err;
  1564. }
  1565. }
  1566. return 0;
  1567. }
  1568. void kvm_remove_all_breakpoints(CPUArchState *current_env)
  1569. {
  1570. struct kvm_sw_breakpoint *bp, *next;
  1571. KVMState *s = current_env->kvm_state;
  1572. CPUArchState *env;
  1573. QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
  1574. if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
  1575. /* Try harder to find a CPU that currently sees the breakpoint. */
  1576. for (env = first_cpu; env != NULL; env = env->next_cpu) {
  1577. if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
  1578. break;
  1579. }
  1580. }
  1581. }
  1582. }
  1583. kvm_arch_remove_all_hw_breakpoints();
  1584. for (env = first_cpu; env != NULL; env = env->next_cpu) {
  1585. kvm_update_guest_debug(env, 0);
  1586. }
  1587. }
  1588. #else /* !KVM_CAP_SET_GUEST_DEBUG */
  1589. int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
  1590. {
  1591. return -EINVAL;
  1592. }
  1593. int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
  1594. target_ulong len, int type)
  1595. {
  1596. return -EINVAL;
  1597. }
  1598. int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
  1599. target_ulong len, int type)
  1600. {
  1601. return -EINVAL;
  1602. }
  1603. void kvm_remove_all_breakpoints(CPUArchState *current_env)
  1604. {
  1605. }
  1606. #endif /* !KVM_CAP_SET_GUEST_DEBUG */
  1607. int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
  1608. {
  1609. struct kvm_signal_mask *sigmask;
  1610. int r;
  1611. if (!sigset) {
  1612. return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
  1613. }
  1614. sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
  1615. sigmask->len = 8;
  1616. memcpy(sigmask->sigset, sigset, sizeof(*sigset));
  1617. r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
  1618. g_free(sigmask);
  1619. return r;
  1620. }
  1621. int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
  1622. uint32_t size)
  1623. {
  1624. int ret;
  1625. struct kvm_ioeventfd iofd;
  1626. iofd.datamatch = val;
  1627. iofd.addr = addr;
  1628. iofd.len = size;
  1629. iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
  1630. iofd.fd = fd;
  1631. if (!kvm_enabled()) {
  1632. return -ENOSYS;
  1633. }
  1634. if (!assign) {
  1635. iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
  1636. }
  1637. ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
  1638. if (ret < 0) {
  1639. return -errno;
  1640. }
  1641. return 0;
  1642. }
  1643. int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
  1644. {
  1645. struct kvm_ioeventfd kick = {
  1646. .datamatch = val,
  1647. .addr = addr,
  1648. .len = 2,
  1649. .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
  1650. .fd = fd,
  1651. };
  1652. int r;
  1653. if (!kvm_enabled()) {
  1654. return -ENOSYS;
  1655. }
  1656. if (!assign) {
  1657. kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
  1658. }
  1659. r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
  1660. if (r < 0) {
  1661. return r;
  1662. }
  1663. return 0;
  1664. }
  1665. int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
  1666. {
  1667. return kvm_arch_on_sigbus_vcpu(env, code, addr);
  1668. }
  1669. int kvm_on_sigbus(int code, void *addr)
  1670. {
  1671. return kvm_arch_on_sigbus(code, addr);
  1672. }