strongarm.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622
  1. /*
  2. * StrongARM SA-1100/SA-1110 emulation
  3. *
  4. * Copyright (C) 2011 Dmitry Eremin-Solenikov
  5. *
  6. * Largely based on StrongARM emulation:
  7. * Copyright (c) 2006 Openedhand Ltd.
  8. * Written by Andrzej Zaborowski <balrog@zabor.org>
  9. *
  10. * UART code based on QEMU 16550A UART emulation
  11. * Copyright (c) 2003-2004 Fabrice Bellard
  12. * Copyright (c) 2008 Citrix Systems, Inc.
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License version 2 as
  16. * published by the Free Software Foundation.
  17. *
  18. * This program is distributed in the hope that it will be useful,
  19. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  21. * GNU General Public License for more details.
  22. *
  23. * You should have received a copy of the GNU General Public License along
  24. * with this program; if not, see <http://www.gnu.org/licenses/>.
  25. *
  26. * Contributions after 2012-01-13 are licensed under the terms of the
  27. * GNU GPL, version 2 or (at your option) any later version.
  28. */
  29. #include "sysbus.h"
  30. #include "strongarm.h"
  31. #include "qemu-error.h"
  32. #include "arm-misc.h"
  33. #include "sysemu.h"
  34. #include "ssi.h"
  35. //#define DEBUG
  36. /*
  37. TODO
  38. - Implement cp15, c14 ?
  39. - Implement cp15, c15 !!! (idle used in L)
  40. - Implement idle mode handling/DIM
  41. - Implement sleep mode/Wake sources
  42. - Implement reset control
  43. - Implement memory control regs
  44. - PCMCIA handling
  45. - Maybe support MBGNT/MBREQ
  46. - DMA channels
  47. - GPCLK
  48. - IrDA
  49. - MCP
  50. - Enhance UART with modem signals
  51. */
  52. #ifdef DEBUG
  53. # define DPRINTF(format, ...) printf(format , ## __VA_ARGS__)
  54. #else
  55. # define DPRINTF(format, ...) do { } while (0)
  56. #endif
  57. static struct {
  58. target_phys_addr_t io_base;
  59. int irq;
  60. } sa_serial[] = {
  61. { 0x80010000, SA_PIC_UART1 },
  62. { 0x80030000, SA_PIC_UART2 },
  63. { 0x80050000, SA_PIC_UART3 },
  64. { 0, 0 }
  65. };
  66. /* Interrupt Controller */
  67. typedef struct {
  68. SysBusDevice busdev;
  69. MemoryRegion iomem;
  70. qemu_irq irq;
  71. qemu_irq fiq;
  72. uint32_t pending;
  73. uint32_t enabled;
  74. uint32_t is_fiq;
  75. uint32_t int_idle;
  76. } StrongARMPICState;
  77. #define ICIP 0x00
  78. #define ICMR 0x04
  79. #define ICLR 0x08
  80. #define ICFP 0x10
  81. #define ICPR 0x20
  82. #define ICCR 0x0c
  83. #define SA_PIC_SRCS 32
  84. static void strongarm_pic_update(void *opaque)
  85. {
  86. StrongARMPICState *s = opaque;
  87. /* FIXME: reflect DIM */
  88. qemu_set_irq(s->fiq, s->pending & s->enabled & s->is_fiq);
  89. qemu_set_irq(s->irq, s->pending & s->enabled & ~s->is_fiq);
  90. }
  91. static void strongarm_pic_set_irq(void *opaque, int irq, int level)
  92. {
  93. StrongARMPICState *s = opaque;
  94. if (level) {
  95. s->pending |= 1 << irq;
  96. } else {
  97. s->pending &= ~(1 << irq);
  98. }
  99. strongarm_pic_update(s);
  100. }
  101. static uint64_t strongarm_pic_mem_read(void *opaque, target_phys_addr_t offset,
  102. unsigned size)
  103. {
  104. StrongARMPICState *s = opaque;
  105. switch (offset) {
  106. case ICIP:
  107. return s->pending & ~s->is_fiq & s->enabled;
  108. case ICMR:
  109. return s->enabled;
  110. case ICLR:
  111. return s->is_fiq;
  112. case ICCR:
  113. return s->int_idle == 0;
  114. case ICFP:
  115. return s->pending & s->is_fiq & s->enabled;
  116. case ICPR:
  117. return s->pending;
  118. default:
  119. printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
  120. __func__, offset);
  121. return 0;
  122. }
  123. }
  124. static void strongarm_pic_mem_write(void *opaque, target_phys_addr_t offset,
  125. uint64_t value, unsigned size)
  126. {
  127. StrongARMPICState *s = opaque;
  128. switch (offset) {
  129. case ICMR:
  130. s->enabled = value;
  131. break;
  132. case ICLR:
  133. s->is_fiq = value;
  134. break;
  135. case ICCR:
  136. s->int_idle = (value & 1) ? 0 : ~0;
  137. break;
  138. default:
  139. printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
  140. __func__, offset);
  141. break;
  142. }
  143. strongarm_pic_update(s);
  144. }
  145. static const MemoryRegionOps strongarm_pic_ops = {
  146. .read = strongarm_pic_mem_read,
  147. .write = strongarm_pic_mem_write,
  148. .endianness = DEVICE_NATIVE_ENDIAN,
  149. };
  150. static int strongarm_pic_initfn(SysBusDevice *dev)
  151. {
  152. StrongARMPICState *s = FROM_SYSBUS(StrongARMPICState, dev);
  153. qdev_init_gpio_in(&dev->qdev, strongarm_pic_set_irq, SA_PIC_SRCS);
  154. memory_region_init_io(&s->iomem, &strongarm_pic_ops, s, "pic", 0x1000);
  155. sysbus_init_mmio(dev, &s->iomem);
  156. sysbus_init_irq(dev, &s->irq);
  157. sysbus_init_irq(dev, &s->fiq);
  158. return 0;
  159. }
  160. static int strongarm_pic_post_load(void *opaque, int version_id)
  161. {
  162. strongarm_pic_update(opaque);
  163. return 0;
  164. }
  165. static VMStateDescription vmstate_strongarm_pic_regs = {
  166. .name = "strongarm_pic",
  167. .version_id = 0,
  168. .minimum_version_id = 0,
  169. .minimum_version_id_old = 0,
  170. .post_load = strongarm_pic_post_load,
  171. .fields = (VMStateField[]) {
  172. VMSTATE_UINT32(pending, StrongARMPICState),
  173. VMSTATE_UINT32(enabled, StrongARMPICState),
  174. VMSTATE_UINT32(is_fiq, StrongARMPICState),
  175. VMSTATE_UINT32(int_idle, StrongARMPICState),
  176. VMSTATE_END_OF_LIST(),
  177. },
  178. };
  179. static void strongarm_pic_class_init(ObjectClass *klass, void *data)
  180. {
  181. DeviceClass *dc = DEVICE_CLASS(klass);
  182. SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
  183. k->init = strongarm_pic_initfn;
  184. dc->desc = "StrongARM PIC";
  185. dc->vmsd = &vmstate_strongarm_pic_regs;
  186. }
  187. static TypeInfo strongarm_pic_info = {
  188. .name = "strongarm_pic",
  189. .parent = TYPE_SYS_BUS_DEVICE,
  190. .instance_size = sizeof(StrongARMPICState),
  191. .class_init = strongarm_pic_class_init,
  192. };
  193. /* Real-Time Clock */
  194. #define RTAR 0x00 /* RTC Alarm register */
  195. #define RCNR 0x04 /* RTC Counter register */
  196. #define RTTR 0x08 /* RTC Timer Trim register */
  197. #define RTSR 0x10 /* RTC Status register */
  198. #define RTSR_AL (1 << 0) /* RTC Alarm detected */
  199. #define RTSR_HZ (1 << 1) /* RTC 1Hz detected */
  200. #define RTSR_ALE (1 << 2) /* RTC Alarm enable */
  201. #define RTSR_HZE (1 << 3) /* RTC 1Hz enable */
  202. /* 16 LSB of RTTR are clockdiv for internal trim logic,
  203. * trim delete isn't emulated, so
  204. * f = 32 768 / (RTTR_trim + 1) */
  205. typedef struct {
  206. SysBusDevice busdev;
  207. MemoryRegion iomem;
  208. uint32_t rttr;
  209. uint32_t rtsr;
  210. uint32_t rtar;
  211. uint32_t last_rcnr;
  212. int64_t last_hz;
  213. QEMUTimer *rtc_alarm;
  214. QEMUTimer *rtc_hz;
  215. qemu_irq rtc_irq;
  216. qemu_irq rtc_hz_irq;
  217. } StrongARMRTCState;
  218. static inline void strongarm_rtc_int_update(StrongARMRTCState *s)
  219. {
  220. qemu_set_irq(s->rtc_irq, s->rtsr & RTSR_AL);
  221. qemu_set_irq(s->rtc_hz_irq, s->rtsr & RTSR_HZ);
  222. }
  223. static void strongarm_rtc_hzupdate(StrongARMRTCState *s)
  224. {
  225. int64_t rt = qemu_get_clock_ms(rtc_clock);
  226. s->last_rcnr += ((rt - s->last_hz) << 15) /
  227. (1000 * ((s->rttr & 0xffff) + 1));
  228. s->last_hz = rt;
  229. }
  230. static inline void strongarm_rtc_timer_update(StrongARMRTCState *s)
  231. {
  232. if ((s->rtsr & RTSR_HZE) && !(s->rtsr & RTSR_HZ)) {
  233. qemu_mod_timer(s->rtc_hz, s->last_hz + 1000);
  234. } else {
  235. qemu_del_timer(s->rtc_hz);
  236. }
  237. if ((s->rtsr & RTSR_ALE) && !(s->rtsr & RTSR_AL)) {
  238. qemu_mod_timer(s->rtc_alarm, s->last_hz +
  239. (((s->rtar - s->last_rcnr) * 1000 *
  240. ((s->rttr & 0xffff) + 1)) >> 15));
  241. } else {
  242. qemu_del_timer(s->rtc_alarm);
  243. }
  244. }
  245. static inline void strongarm_rtc_alarm_tick(void *opaque)
  246. {
  247. StrongARMRTCState *s = opaque;
  248. s->rtsr |= RTSR_AL;
  249. strongarm_rtc_timer_update(s);
  250. strongarm_rtc_int_update(s);
  251. }
  252. static inline void strongarm_rtc_hz_tick(void *opaque)
  253. {
  254. StrongARMRTCState *s = opaque;
  255. s->rtsr |= RTSR_HZ;
  256. strongarm_rtc_timer_update(s);
  257. strongarm_rtc_int_update(s);
  258. }
  259. static uint64_t strongarm_rtc_read(void *opaque, target_phys_addr_t addr,
  260. unsigned size)
  261. {
  262. StrongARMRTCState *s = opaque;
  263. switch (addr) {
  264. case RTTR:
  265. return s->rttr;
  266. case RTSR:
  267. return s->rtsr;
  268. case RTAR:
  269. return s->rtar;
  270. case RCNR:
  271. return s->last_rcnr +
  272. ((qemu_get_clock_ms(rtc_clock) - s->last_hz) << 15) /
  273. (1000 * ((s->rttr & 0xffff) + 1));
  274. default:
  275. printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
  276. return 0;
  277. }
  278. }
  279. static void strongarm_rtc_write(void *opaque, target_phys_addr_t addr,
  280. uint64_t value, unsigned size)
  281. {
  282. StrongARMRTCState *s = opaque;
  283. uint32_t old_rtsr;
  284. switch (addr) {
  285. case RTTR:
  286. strongarm_rtc_hzupdate(s);
  287. s->rttr = value;
  288. strongarm_rtc_timer_update(s);
  289. break;
  290. case RTSR:
  291. old_rtsr = s->rtsr;
  292. s->rtsr = (value & (RTSR_ALE | RTSR_HZE)) |
  293. (s->rtsr & ~(value & (RTSR_AL | RTSR_HZ)));
  294. if (s->rtsr != old_rtsr) {
  295. strongarm_rtc_timer_update(s);
  296. }
  297. strongarm_rtc_int_update(s);
  298. break;
  299. case RTAR:
  300. s->rtar = value;
  301. strongarm_rtc_timer_update(s);
  302. break;
  303. case RCNR:
  304. strongarm_rtc_hzupdate(s);
  305. s->last_rcnr = value;
  306. strongarm_rtc_timer_update(s);
  307. break;
  308. default:
  309. printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
  310. }
  311. }
  312. static const MemoryRegionOps strongarm_rtc_ops = {
  313. .read = strongarm_rtc_read,
  314. .write = strongarm_rtc_write,
  315. .endianness = DEVICE_NATIVE_ENDIAN,
  316. };
  317. static int strongarm_rtc_init(SysBusDevice *dev)
  318. {
  319. StrongARMRTCState *s = FROM_SYSBUS(StrongARMRTCState, dev);
  320. struct tm tm;
  321. s->rttr = 0x0;
  322. s->rtsr = 0;
  323. qemu_get_timedate(&tm, 0);
  324. s->last_rcnr = (uint32_t) mktimegm(&tm);
  325. s->last_hz = qemu_get_clock_ms(rtc_clock);
  326. s->rtc_alarm = qemu_new_timer_ms(rtc_clock, strongarm_rtc_alarm_tick, s);
  327. s->rtc_hz = qemu_new_timer_ms(rtc_clock, strongarm_rtc_hz_tick, s);
  328. sysbus_init_irq(dev, &s->rtc_irq);
  329. sysbus_init_irq(dev, &s->rtc_hz_irq);
  330. memory_region_init_io(&s->iomem, &strongarm_rtc_ops, s, "rtc", 0x10000);
  331. sysbus_init_mmio(dev, &s->iomem);
  332. return 0;
  333. }
  334. static void strongarm_rtc_pre_save(void *opaque)
  335. {
  336. StrongARMRTCState *s = opaque;
  337. strongarm_rtc_hzupdate(s);
  338. }
  339. static int strongarm_rtc_post_load(void *opaque, int version_id)
  340. {
  341. StrongARMRTCState *s = opaque;
  342. strongarm_rtc_timer_update(s);
  343. strongarm_rtc_int_update(s);
  344. return 0;
  345. }
  346. static const VMStateDescription vmstate_strongarm_rtc_regs = {
  347. .name = "strongarm-rtc",
  348. .version_id = 0,
  349. .minimum_version_id = 0,
  350. .minimum_version_id_old = 0,
  351. .pre_save = strongarm_rtc_pre_save,
  352. .post_load = strongarm_rtc_post_load,
  353. .fields = (VMStateField[]) {
  354. VMSTATE_UINT32(rttr, StrongARMRTCState),
  355. VMSTATE_UINT32(rtsr, StrongARMRTCState),
  356. VMSTATE_UINT32(rtar, StrongARMRTCState),
  357. VMSTATE_UINT32(last_rcnr, StrongARMRTCState),
  358. VMSTATE_INT64(last_hz, StrongARMRTCState),
  359. VMSTATE_END_OF_LIST(),
  360. },
  361. };
  362. static void strongarm_rtc_sysbus_class_init(ObjectClass *klass, void *data)
  363. {
  364. DeviceClass *dc = DEVICE_CLASS(klass);
  365. SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
  366. k->init = strongarm_rtc_init;
  367. dc->desc = "StrongARM RTC Controller";
  368. dc->vmsd = &vmstate_strongarm_rtc_regs;
  369. }
  370. static TypeInfo strongarm_rtc_sysbus_info = {
  371. .name = "strongarm-rtc",
  372. .parent = TYPE_SYS_BUS_DEVICE,
  373. .instance_size = sizeof(StrongARMRTCState),
  374. .class_init = strongarm_rtc_sysbus_class_init,
  375. };
  376. /* GPIO */
  377. #define GPLR 0x00
  378. #define GPDR 0x04
  379. #define GPSR 0x08
  380. #define GPCR 0x0c
  381. #define GRER 0x10
  382. #define GFER 0x14
  383. #define GEDR 0x18
  384. #define GAFR 0x1c
  385. typedef struct StrongARMGPIOInfo StrongARMGPIOInfo;
  386. struct StrongARMGPIOInfo {
  387. SysBusDevice busdev;
  388. MemoryRegion iomem;
  389. qemu_irq handler[28];
  390. qemu_irq irqs[11];
  391. qemu_irq irqX;
  392. uint32_t ilevel;
  393. uint32_t olevel;
  394. uint32_t dir;
  395. uint32_t rising;
  396. uint32_t falling;
  397. uint32_t status;
  398. uint32_t gpsr;
  399. uint32_t gafr;
  400. uint32_t prev_level;
  401. };
  402. static void strongarm_gpio_irq_update(StrongARMGPIOInfo *s)
  403. {
  404. int i;
  405. for (i = 0; i < 11; i++) {
  406. qemu_set_irq(s->irqs[i], s->status & (1 << i));
  407. }
  408. qemu_set_irq(s->irqX, (s->status & ~0x7ff));
  409. }
  410. static void strongarm_gpio_set(void *opaque, int line, int level)
  411. {
  412. StrongARMGPIOInfo *s = opaque;
  413. uint32_t mask;
  414. mask = 1 << line;
  415. if (level) {
  416. s->status |= s->rising & mask &
  417. ~s->ilevel & ~s->dir;
  418. s->ilevel |= mask;
  419. } else {
  420. s->status |= s->falling & mask &
  421. s->ilevel & ~s->dir;
  422. s->ilevel &= ~mask;
  423. }
  424. if (s->status & mask) {
  425. strongarm_gpio_irq_update(s);
  426. }
  427. }
  428. static void strongarm_gpio_handler_update(StrongARMGPIOInfo *s)
  429. {
  430. uint32_t level, diff;
  431. int bit;
  432. level = s->olevel & s->dir;
  433. for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
  434. bit = ffs(diff) - 1;
  435. qemu_set_irq(s->handler[bit], (level >> bit) & 1);
  436. }
  437. s->prev_level = level;
  438. }
  439. static uint64_t strongarm_gpio_read(void *opaque, target_phys_addr_t offset,
  440. unsigned size)
  441. {
  442. StrongARMGPIOInfo *s = opaque;
  443. switch (offset) {
  444. case GPDR: /* GPIO Pin-Direction registers */
  445. return s->dir;
  446. case GPSR: /* GPIO Pin-Output Set registers */
  447. DPRINTF("%s: Read from a write-only register 0x" TARGET_FMT_plx "\n",
  448. __func__, offset);
  449. return s->gpsr; /* Return last written value. */
  450. case GPCR: /* GPIO Pin-Output Clear registers */
  451. DPRINTF("%s: Read from a write-only register 0x" TARGET_FMT_plx "\n",
  452. __func__, offset);
  453. return 31337; /* Specified as unpredictable in the docs. */
  454. case GRER: /* GPIO Rising-Edge Detect Enable registers */
  455. return s->rising;
  456. case GFER: /* GPIO Falling-Edge Detect Enable registers */
  457. return s->falling;
  458. case GAFR: /* GPIO Alternate Function registers */
  459. return s->gafr;
  460. case GPLR: /* GPIO Pin-Level registers */
  461. return (s->olevel & s->dir) |
  462. (s->ilevel & ~s->dir);
  463. case GEDR: /* GPIO Edge Detect Status registers */
  464. return s->status;
  465. default:
  466. printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
  467. }
  468. return 0;
  469. }
  470. static void strongarm_gpio_write(void *opaque, target_phys_addr_t offset,
  471. uint64_t value, unsigned size)
  472. {
  473. StrongARMGPIOInfo *s = opaque;
  474. switch (offset) {
  475. case GPDR: /* GPIO Pin-Direction registers */
  476. s->dir = value;
  477. strongarm_gpio_handler_update(s);
  478. break;
  479. case GPSR: /* GPIO Pin-Output Set registers */
  480. s->olevel |= value;
  481. strongarm_gpio_handler_update(s);
  482. s->gpsr = value;
  483. break;
  484. case GPCR: /* GPIO Pin-Output Clear registers */
  485. s->olevel &= ~value;
  486. strongarm_gpio_handler_update(s);
  487. break;
  488. case GRER: /* GPIO Rising-Edge Detect Enable registers */
  489. s->rising = value;
  490. break;
  491. case GFER: /* GPIO Falling-Edge Detect Enable registers */
  492. s->falling = value;
  493. break;
  494. case GAFR: /* GPIO Alternate Function registers */
  495. s->gafr = value;
  496. break;
  497. case GEDR: /* GPIO Edge Detect Status registers */
  498. s->status &= ~value;
  499. strongarm_gpio_irq_update(s);
  500. break;
  501. default:
  502. printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
  503. }
  504. }
  505. static const MemoryRegionOps strongarm_gpio_ops = {
  506. .read = strongarm_gpio_read,
  507. .write = strongarm_gpio_write,
  508. .endianness = DEVICE_NATIVE_ENDIAN,
  509. };
  510. static DeviceState *strongarm_gpio_init(target_phys_addr_t base,
  511. DeviceState *pic)
  512. {
  513. DeviceState *dev;
  514. int i;
  515. dev = qdev_create(NULL, "strongarm-gpio");
  516. qdev_init_nofail(dev);
  517. sysbus_mmio_map(sysbus_from_qdev(dev), 0, base);
  518. for (i = 0; i < 12; i++)
  519. sysbus_connect_irq(sysbus_from_qdev(dev), i,
  520. qdev_get_gpio_in(pic, SA_PIC_GPIO0_EDGE + i));
  521. return dev;
  522. }
  523. static int strongarm_gpio_initfn(SysBusDevice *dev)
  524. {
  525. StrongARMGPIOInfo *s;
  526. int i;
  527. s = FROM_SYSBUS(StrongARMGPIOInfo, dev);
  528. qdev_init_gpio_in(&dev->qdev, strongarm_gpio_set, 28);
  529. qdev_init_gpio_out(&dev->qdev, s->handler, 28);
  530. memory_region_init_io(&s->iomem, &strongarm_gpio_ops, s, "gpio", 0x1000);
  531. sysbus_init_mmio(dev, &s->iomem);
  532. for (i = 0; i < 11; i++) {
  533. sysbus_init_irq(dev, &s->irqs[i]);
  534. }
  535. sysbus_init_irq(dev, &s->irqX);
  536. return 0;
  537. }
  538. static const VMStateDescription vmstate_strongarm_gpio_regs = {
  539. .name = "strongarm-gpio",
  540. .version_id = 0,
  541. .minimum_version_id = 0,
  542. .minimum_version_id_old = 0,
  543. .fields = (VMStateField[]) {
  544. VMSTATE_UINT32(ilevel, StrongARMGPIOInfo),
  545. VMSTATE_UINT32(olevel, StrongARMGPIOInfo),
  546. VMSTATE_UINT32(dir, StrongARMGPIOInfo),
  547. VMSTATE_UINT32(rising, StrongARMGPIOInfo),
  548. VMSTATE_UINT32(falling, StrongARMGPIOInfo),
  549. VMSTATE_UINT32(status, StrongARMGPIOInfo),
  550. VMSTATE_UINT32(gafr, StrongARMGPIOInfo),
  551. VMSTATE_END_OF_LIST(),
  552. },
  553. };
  554. static void strongarm_gpio_class_init(ObjectClass *klass, void *data)
  555. {
  556. DeviceClass *dc = DEVICE_CLASS(klass);
  557. SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
  558. k->init = strongarm_gpio_initfn;
  559. dc->desc = "StrongARM GPIO controller";
  560. }
  561. static TypeInfo strongarm_gpio_info = {
  562. .name = "strongarm-gpio",
  563. .parent = TYPE_SYS_BUS_DEVICE,
  564. .instance_size = sizeof(StrongARMGPIOInfo),
  565. .class_init = strongarm_gpio_class_init,
  566. };
  567. /* Peripheral Pin Controller */
  568. #define PPDR 0x00
  569. #define PPSR 0x04
  570. #define PPAR 0x08
  571. #define PSDR 0x0c
  572. #define PPFR 0x10
  573. typedef struct StrongARMPPCInfo StrongARMPPCInfo;
  574. struct StrongARMPPCInfo {
  575. SysBusDevice busdev;
  576. MemoryRegion iomem;
  577. qemu_irq handler[28];
  578. uint32_t ilevel;
  579. uint32_t olevel;
  580. uint32_t dir;
  581. uint32_t ppar;
  582. uint32_t psdr;
  583. uint32_t ppfr;
  584. uint32_t prev_level;
  585. };
  586. static void strongarm_ppc_set(void *opaque, int line, int level)
  587. {
  588. StrongARMPPCInfo *s = opaque;
  589. if (level) {
  590. s->ilevel |= 1 << line;
  591. } else {
  592. s->ilevel &= ~(1 << line);
  593. }
  594. }
  595. static void strongarm_ppc_handler_update(StrongARMPPCInfo *s)
  596. {
  597. uint32_t level, diff;
  598. int bit;
  599. level = s->olevel & s->dir;
  600. for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
  601. bit = ffs(diff) - 1;
  602. qemu_set_irq(s->handler[bit], (level >> bit) & 1);
  603. }
  604. s->prev_level = level;
  605. }
  606. static uint64_t strongarm_ppc_read(void *opaque, target_phys_addr_t offset,
  607. unsigned size)
  608. {
  609. StrongARMPPCInfo *s = opaque;
  610. switch (offset) {
  611. case PPDR: /* PPC Pin Direction registers */
  612. return s->dir | ~0x3fffff;
  613. case PPSR: /* PPC Pin State registers */
  614. return (s->olevel & s->dir) |
  615. (s->ilevel & ~s->dir) |
  616. ~0x3fffff;
  617. case PPAR:
  618. return s->ppar | ~0x41000;
  619. case PSDR:
  620. return s->psdr;
  621. case PPFR:
  622. return s->ppfr | ~0x7f001;
  623. default:
  624. printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
  625. }
  626. return 0;
  627. }
  628. static void strongarm_ppc_write(void *opaque, target_phys_addr_t offset,
  629. uint64_t value, unsigned size)
  630. {
  631. StrongARMPPCInfo *s = opaque;
  632. switch (offset) {
  633. case PPDR: /* PPC Pin Direction registers */
  634. s->dir = value & 0x3fffff;
  635. strongarm_ppc_handler_update(s);
  636. break;
  637. case PPSR: /* PPC Pin State registers */
  638. s->olevel = value & s->dir & 0x3fffff;
  639. strongarm_ppc_handler_update(s);
  640. break;
  641. case PPAR:
  642. s->ppar = value & 0x41000;
  643. break;
  644. case PSDR:
  645. s->psdr = value & 0x3fffff;
  646. break;
  647. case PPFR:
  648. s->ppfr = value & 0x7f001;
  649. break;
  650. default:
  651. printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
  652. }
  653. }
  654. static const MemoryRegionOps strongarm_ppc_ops = {
  655. .read = strongarm_ppc_read,
  656. .write = strongarm_ppc_write,
  657. .endianness = DEVICE_NATIVE_ENDIAN,
  658. };
  659. static int strongarm_ppc_init(SysBusDevice *dev)
  660. {
  661. StrongARMPPCInfo *s;
  662. s = FROM_SYSBUS(StrongARMPPCInfo, dev);
  663. qdev_init_gpio_in(&dev->qdev, strongarm_ppc_set, 22);
  664. qdev_init_gpio_out(&dev->qdev, s->handler, 22);
  665. memory_region_init_io(&s->iomem, &strongarm_ppc_ops, s, "ppc", 0x1000);
  666. sysbus_init_mmio(dev, &s->iomem);
  667. return 0;
  668. }
  669. static const VMStateDescription vmstate_strongarm_ppc_regs = {
  670. .name = "strongarm-ppc",
  671. .version_id = 0,
  672. .minimum_version_id = 0,
  673. .minimum_version_id_old = 0,
  674. .fields = (VMStateField[]) {
  675. VMSTATE_UINT32(ilevel, StrongARMPPCInfo),
  676. VMSTATE_UINT32(olevel, StrongARMPPCInfo),
  677. VMSTATE_UINT32(dir, StrongARMPPCInfo),
  678. VMSTATE_UINT32(ppar, StrongARMPPCInfo),
  679. VMSTATE_UINT32(psdr, StrongARMPPCInfo),
  680. VMSTATE_UINT32(ppfr, StrongARMPPCInfo),
  681. VMSTATE_END_OF_LIST(),
  682. },
  683. };
  684. static void strongarm_ppc_class_init(ObjectClass *klass, void *data)
  685. {
  686. DeviceClass *dc = DEVICE_CLASS(klass);
  687. SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
  688. k->init = strongarm_ppc_init;
  689. dc->desc = "StrongARM PPC controller";
  690. }
  691. static TypeInfo strongarm_ppc_info = {
  692. .name = "strongarm-ppc",
  693. .parent = TYPE_SYS_BUS_DEVICE,
  694. .instance_size = sizeof(StrongARMPPCInfo),
  695. .class_init = strongarm_ppc_class_init,
  696. };
  697. /* UART Ports */
  698. #define UTCR0 0x00
  699. #define UTCR1 0x04
  700. #define UTCR2 0x08
  701. #define UTCR3 0x0c
  702. #define UTDR 0x14
  703. #define UTSR0 0x1c
  704. #define UTSR1 0x20
  705. #define UTCR0_PE (1 << 0) /* Parity enable */
  706. #define UTCR0_OES (1 << 1) /* Even parity */
  707. #define UTCR0_SBS (1 << 2) /* 2 stop bits */
  708. #define UTCR0_DSS (1 << 3) /* 8-bit data */
  709. #define UTCR3_RXE (1 << 0) /* Rx enable */
  710. #define UTCR3_TXE (1 << 1) /* Tx enable */
  711. #define UTCR3_BRK (1 << 2) /* Force Break */
  712. #define UTCR3_RIE (1 << 3) /* Rx int enable */
  713. #define UTCR3_TIE (1 << 4) /* Tx int enable */
  714. #define UTCR3_LBM (1 << 5) /* Loopback */
  715. #define UTSR0_TFS (1 << 0) /* Tx FIFO nearly empty */
  716. #define UTSR0_RFS (1 << 1) /* Rx FIFO nearly full */
  717. #define UTSR0_RID (1 << 2) /* Receiver Idle */
  718. #define UTSR0_RBB (1 << 3) /* Receiver begin break */
  719. #define UTSR0_REB (1 << 4) /* Receiver end break */
  720. #define UTSR0_EIF (1 << 5) /* Error in FIFO */
  721. #define UTSR1_RNE (1 << 1) /* Receive FIFO not empty */
  722. #define UTSR1_TNF (1 << 2) /* Transmit FIFO not full */
  723. #define UTSR1_PRE (1 << 3) /* Parity error */
  724. #define UTSR1_FRE (1 << 4) /* Frame error */
  725. #define UTSR1_ROR (1 << 5) /* Receive Over Run */
  726. #define RX_FIFO_PRE (1 << 8)
  727. #define RX_FIFO_FRE (1 << 9)
  728. #define RX_FIFO_ROR (1 << 10)
  729. typedef struct {
  730. SysBusDevice busdev;
  731. MemoryRegion iomem;
  732. CharDriverState *chr;
  733. qemu_irq irq;
  734. uint8_t utcr0;
  735. uint16_t brd;
  736. uint8_t utcr3;
  737. uint8_t utsr0;
  738. uint8_t utsr1;
  739. uint8_t tx_fifo[8];
  740. uint8_t tx_start;
  741. uint8_t tx_len;
  742. uint16_t rx_fifo[12]; /* value + error flags in high bits */
  743. uint8_t rx_start;
  744. uint8_t rx_len;
  745. uint64_t char_transmit_time; /* time to transmit a char in ticks*/
  746. bool wait_break_end;
  747. QEMUTimer *rx_timeout_timer;
  748. QEMUTimer *tx_timer;
  749. } StrongARMUARTState;
  750. static void strongarm_uart_update_status(StrongARMUARTState *s)
  751. {
  752. uint16_t utsr1 = 0;
  753. if (s->tx_len != 8) {
  754. utsr1 |= UTSR1_TNF;
  755. }
  756. if (s->rx_len != 0) {
  757. uint16_t ent = s->rx_fifo[s->rx_start];
  758. utsr1 |= UTSR1_RNE;
  759. if (ent & RX_FIFO_PRE) {
  760. s->utsr1 |= UTSR1_PRE;
  761. }
  762. if (ent & RX_FIFO_FRE) {
  763. s->utsr1 |= UTSR1_FRE;
  764. }
  765. if (ent & RX_FIFO_ROR) {
  766. s->utsr1 |= UTSR1_ROR;
  767. }
  768. }
  769. s->utsr1 = utsr1;
  770. }
  771. static void strongarm_uart_update_int_status(StrongARMUARTState *s)
  772. {
  773. uint16_t utsr0 = s->utsr0 &
  774. (UTSR0_REB | UTSR0_RBB | UTSR0_RID);
  775. int i;
  776. if ((s->utcr3 & UTCR3_TXE) &&
  777. (s->utcr3 & UTCR3_TIE) &&
  778. s->tx_len <= 4) {
  779. utsr0 |= UTSR0_TFS;
  780. }
  781. if ((s->utcr3 & UTCR3_RXE) &&
  782. (s->utcr3 & UTCR3_RIE) &&
  783. s->rx_len > 4) {
  784. utsr0 |= UTSR0_RFS;
  785. }
  786. for (i = 0; i < s->rx_len && i < 4; i++)
  787. if (s->rx_fifo[(s->rx_start + i) % 12] & ~0xff) {
  788. utsr0 |= UTSR0_EIF;
  789. break;
  790. }
  791. s->utsr0 = utsr0;
  792. qemu_set_irq(s->irq, utsr0);
  793. }
  794. static void strongarm_uart_update_parameters(StrongARMUARTState *s)
  795. {
  796. int speed, parity, data_bits, stop_bits, frame_size;
  797. QEMUSerialSetParams ssp;
  798. /* Start bit. */
  799. frame_size = 1;
  800. if (s->utcr0 & UTCR0_PE) {
  801. /* Parity bit. */
  802. frame_size++;
  803. if (s->utcr0 & UTCR0_OES) {
  804. parity = 'E';
  805. } else {
  806. parity = 'O';
  807. }
  808. } else {
  809. parity = 'N';
  810. }
  811. if (s->utcr0 & UTCR0_SBS) {
  812. stop_bits = 2;
  813. } else {
  814. stop_bits = 1;
  815. }
  816. data_bits = (s->utcr0 & UTCR0_DSS) ? 8 : 7;
  817. frame_size += data_bits + stop_bits;
  818. speed = 3686400 / 16 / (s->brd + 1);
  819. ssp.speed = speed;
  820. ssp.parity = parity;
  821. ssp.data_bits = data_bits;
  822. ssp.stop_bits = stop_bits;
  823. s->char_transmit_time = (get_ticks_per_sec() / speed) * frame_size;
  824. if (s->chr) {
  825. qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
  826. }
  827. DPRINTF(stderr, "%s speed=%d parity=%c data=%d stop=%d\n", s->chr->label,
  828. speed, parity, data_bits, stop_bits);
  829. }
  830. static void strongarm_uart_rx_to(void *opaque)
  831. {
  832. StrongARMUARTState *s = opaque;
  833. if (s->rx_len) {
  834. s->utsr0 |= UTSR0_RID;
  835. strongarm_uart_update_int_status(s);
  836. }
  837. }
  838. static void strongarm_uart_rx_push(StrongARMUARTState *s, uint16_t c)
  839. {
  840. if ((s->utcr3 & UTCR3_RXE) == 0) {
  841. /* rx disabled */
  842. return;
  843. }
  844. if (s->wait_break_end) {
  845. s->utsr0 |= UTSR0_REB;
  846. s->wait_break_end = false;
  847. }
  848. if (s->rx_len < 12) {
  849. s->rx_fifo[(s->rx_start + s->rx_len) % 12] = c;
  850. s->rx_len++;
  851. } else
  852. s->rx_fifo[(s->rx_start + 11) % 12] |= RX_FIFO_ROR;
  853. }
  854. static int strongarm_uart_can_receive(void *opaque)
  855. {
  856. StrongARMUARTState *s = opaque;
  857. if (s->rx_len == 12) {
  858. return 0;
  859. }
  860. /* It's best not to get more than 2/3 of RX FIFO, so advertise that much */
  861. if (s->rx_len < 8) {
  862. return 8 - s->rx_len;
  863. }
  864. return 1;
  865. }
  866. static void strongarm_uart_receive(void *opaque, const uint8_t *buf, int size)
  867. {
  868. StrongARMUARTState *s = opaque;
  869. int i;
  870. for (i = 0; i < size; i++) {
  871. strongarm_uart_rx_push(s, buf[i]);
  872. }
  873. /* call the timeout receive callback in 3 char transmit time */
  874. qemu_mod_timer(s->rx_timeout_timer,
  875. qemu_get_clock_ns(vm_clock) + s->char_transmit_time * 3);
  876. strongarm_uart_update_status(s);
  877. strongarm_uart_update_int_status(s);
  878. }
  879. static void strongarm_uart_event(void *opaque, int event)
  880. {
  881. StrongARMUARTState *s = opaque;
  882. if (event == CHR_EVENT_BREAK) {
  883. s->utsr0 |= UTSR0_RBB;
  884. strongarm_uart_rx_push(s, RX_FIFO_FRE);
  885. s->wait_break_end = true;
  886. strongarm_uart_update_status(s);
  887. strongarm_uart_update_int_status(s);
  888. }
  889. }
  890. static void strongarm_uart_tx(void *opaque)
  891. {
  892. StrongARMUARTState *s = opaque;
  893. uint64_t new_xmit_ts = qemu_get_clock_ns(vm_clock);
  894. if (s->utcr3 & UTCR3_LBM) /* loopback */ {
  895. strongarm_uart_receive(s, &s->tx_fifo[s->tx_start], 1);
  896. } else if (s->chr) {
  897. qemu_chr_fe_write(s->chr, &s->tx_fifo[s->tx_start], 1);
  898. }
  899. s->tx_start = (s->tx_start + 1) % 8;
  900. s->tx_len--;
  901. if (s->tx_len) {
  902. qemu_mod_timer(s->tx_timer, new_xmit_ts + s->char_transmit_time);
  903. }
  904. strongarm_uart_update_status(s);
  905. strongarm_uart_update_int_status(s);
  906. }
  907. static uint64_t strongarm_uart_read(void *opaque, target_phys_addr_t addr,
  908. unsigned size)
  909. {
  910. StrongARMUARTState *s = opaque;
  911. uint16_t ret;
  912. switch (addr) {
  913. case UTCR0:
  914. return s->utcr0;
  915. case UTCR1:
  916. return s->brd >> 8;
  917. case UTCR2:
  918. return s->brd & 0xff;
  919. case UTCR3:
  920. return s->utcr3;
  921. case UTDR:
  922. if (s->rx_len != 0) {
  923. ret = s->rx_fifo[s->rx_start];
  924. s->rx_start = (s->rx_start + 1) % 12;
  925. s->rx_len--;
  926. strongarm_uart_update_status(s);
  927. strongarm_uart_update_int_status(s);
  928. return ret;
  929. }
  930. return 0;
  931. case UTSR0:
  932. return s->utsr0;
  933. case UTSR1:
  934. return s->utsr1;
  935. default:
  936. printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
  937. return 0;
  938. }
  939. }
  940. static void strongarm_uart_write(void *opaque, target_phys_addr_t addr,
  941. uint64_t value, unsigned size)
  942. {
  943. StrongARMUARTState *s = opaque;
  944. switch (addr) {
  945. case UTCR0:
  946. s->utcr0 = value & 0x7f;
  947. strongarm_uart_update_parameters(s);
  948. break;
  949. case UTCR1:
  950. s->brd = (s->brd & 0xff) | ((value & 0xf) << 8);
  951. strongarm_uart_update_parameters(s);
  952. break;
  953. case UTCR2:
  954. s->brd = (s->brd & 0xf00) | (value & 0xff);
  955. strongarm_uart_update_parameters(s);
  956. break;
  957. case UTCR3:
  958. s->utcr3 = value & 0x3f;
  959. if ((s->utcr3 & UTCR3_RXE) == 0) {
  960. s->rx_len = 0;
  961. }
  962. if ((s->utcr3 & UTCR3_TXE) == 0) {
  963. s->tx_len = 0;
  964. }
  965. strongarm_uart_update_status(s);
  966. strongarm_uart_update_int_status(s);
  967. break;
  968. case UTDR:
  969. if ((s->utcr3 & UTCR3_TXE) && s->tx_len != 8) {
  970. s->tx_fifo[(s->tx_start + s->tx_len) % 8] = value;
  971. s->tx_len++;
  972. strongarm_uart_update_status(s);
  973. strongarm_uart_update_int_status(s);
  974. if (s->tx_len == 1) {
  975. strongarm_uart_tx(s);
  976. }
  977. }
  978. break;
  979. case UTSR0:
  980. s->utsr0 = s->utsr0 & ~(value &
  981. (UTSR0_REB | UTSR0_RBB | UTSR0_RID));
  982. strongarm_uart_update_int_status(s);
  983. break;
  984. default:
  985. printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
  986. }
  987. }
  988. static const MemoryRegionOps strongarm_uart_ops = {
  989. .read = strongarm_uart_read,
  990. .write = strongarm_uart_write,
  991. .endianness = DEVICE_NATIVE_ENDIAN,
  992. };
  993. static int strongarm_uart_init(SysBusDevice *dev)
  994. {
  995. StrongARMUARTState *s = FROM_SYSBUS(StrongARMUARTState, dev);
  996. memory_region_init_io(&s->iomem, &strongarm_uart_ops, s, "uart", 0x10000);
  997. sysbus_init_mmio(dev, &s->iomem);
  998. sysbus_init_irq(dev, &s->irq);
  999. s->rx_timeout_timer = qemu_new_timer_ns(vm_clock, strongarm_uart_rx_to, s);
  1000. s->tx_timer = qemu_new_timer_ns(vm_clock, strongarm_uart_tx, s);
  1001. if (s->chr) {
  1002. qemu_chr_add_handlers(s->chr,
  1003. strongarm_uart_can_receive,
  1004. strongarm_uart_receive,
  1005. strongarm_uart_event,
  1006. s);
  1007. }
  1008. return 0;
  1009. }
  1010. static void strongarm_uart_reset(DeviceState *dev)
  1011. {
  1012. StrongARMUARTState *s = DO_UPCAST(StrongARMUARTState, busdev.qdev, dev);
  1013. s->utcr0 = UTCR0_DSS; /* 8 data, no parity */
  1014. s->brd = 23; /* 9600 */
  1015. /* enable send & recv - this actually violates spec */
  1016. s->utcr3 = UTCR3_TXE | UTCR3_RXE;
  1017. s->rx_len = s->tx_len = 0;
  1018. strongarm_uart_update_parameters(s);
  1019. strongarm_uart_update_status(s);
  1020. strongarm_uart_update_int_status(s);
  1021. }
  1022. static int strongarm_uart_post_load(void *opaque, int version_id)
  1023. {
  1024. StrongARMUARTState *s = opaque;
  1025. strongarm_uart_update_parameters(s);
  1026. strongarm_uart_update_status(s);
  1027. strongarm_uart_update_int_status(s);
  1028. /* tx and restart timer */
  1029. if (s->tx_len) {
  1030. strongarm_uart_tx(s);
  1031. }
  1032. /* restart rx timeout timer */
  1033. if (s->rx_len) {
  1034. qemu_mod_timer(s->rx_timeout_timer,
  1035. qemu_get_clock_ns(vm_clock) + s->char_transmit_time * 3);
  1036. }
  1037. return 0;
  1038. }
  1039. static const VMStateDescription vmstate_strongarm_uart_regs = {
  1040. .name = "strongarm-uart",
  1041. .version_id = 0,
  1042. .minimum_version_id = 0,
  1043. .minimum_version_id_old = 0,
  1044. .post_load = strongarm_uart_post_load,
  1045. .fields = (VMStateField[]) {
  1046. VMSTATE_UINT8(utcr0, StrongARMUARTState),
  1047. VMSTATE_UINT16(brd, StrongARMUARTState),
  1048. VMSTATE_UINT8(utcr3, StrongARMUARTState),
  1049. VMSTATE_UINT8(utsr0, StrongARMUARTState),
  1050. VMSTATE_UINT8_ARRAY(tx_fifo, StrongARMUARTState, 8),
  1051. VMSTATE_UINT8(tx_start, StrongARMUARTState),
  1052. VMSTATE_UINT8(tx_len, StrongARMUARTState),
  1053. VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMUARTState, 12),
  1054. VMSTATE_UINT8(rx_start, StrongARMUARTState),
  1055. VMSTATE_UINT8(rx_len, StrongARMUARTState),
  1056. VMSTATE_BOOL(wait_break_end, StrongARMUARTState),
  1057. VMSTATE_END_OF_LIST(),
  1058. },
  1059. };
  1060. static Property strongarm_uart_properties[] = {
  1061. DEFINE_PROP_CHR("chardev", StrongARMUARTState, chr),
  1062. DEFINE_PROP_END_OF_LIST(),
  1063. };
  1064. static void strongarm_uart_class_init(ObjectClass *klass, void *data)
  1065. {
  1066. DeviceClass *dc = DEVICE_CLASS(klass);
  1067. SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
  1068. k->init = strongarm_uart_init;
  1069. dc->desc = "StrongARM UART controller";
  1070. dc->reset = strongarm_uart_reset;
  1071. dc->vmsd = &vmstate_strongarm_uart_regs;
  1072. dc->props = strongarm_uart_properties;
  1073. }
  1074. static TypeInfo strongarm_uart_info = {
  1075. .name = "strongarm-uart",
  1076. .parent = TYPE_SYS_BUS_DEVICE,
  1077. .instance_size = sizeof(StrongARMUARTState),
  1078. .class_init = strongarm_uart_class_init,
  1079. };
  1080. /* Synchronous Serial Ports */
  1081. typedef struct {
  1082. SysBusDevice busdev;
  1083. MemoryRegion iomem;
  1084. qemu_irq irq;
  1085. SSIBus *bus;
  1086. uint16_t sscr[2];
  1087. uint16_t sssr;
  1088. uint16_t rx_fifo[8];
  1089. uint8_t rx_level;
  1090. uint8_t rx_start;
  1091. } StrongARMSSPState;
  1092. #define SSCR0 0x60 /* SSP Control register 0 */
  1093. #define SSCR1 0x64 /* SSP Control register 1 */
  1094. #define SSDR 0x6c /* SSP Data register */
  1095. #define SSSR 0x74 /* SSP Status register */
  1096. /* Bitfields for above registers */
  1097. #define SSCR0_SPI(x) (((x) & 0x30) == 0x00)
  1098. #define SSCR0_SSP(x) (((x) & 0x30) == 0x10)
  1099. #define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20)
  1100. #define SSCR0_PSP(x) (((x) & 0x30) == 0x30)
  1101. #define SSCR0_SSE (1 << 7)
  1102. #define SSCR0_DSS(x) (((x) & 0xf) + 1)
  1103. #define SSCR1_RIE (1 << 0)
  1104. #define SSCR1_TIE (1 << 1)
  1105. #define SSCR1_LBM (1 << 2)
  1106. #define SSSR_TNF (1 << 2)
  1107. #define SSSR_RNE (1 << 3)
  1108. #define SSSR_TFS (1 << 5)
  1109. #define SSSR_RFS (1 << 6)
  1110. #define SSSR_ROR (1 << 7)
  1111. #define SSSR_RW 0x0080
  1112. static void strongarm_ssp_int_update(StrongARMSSPState *s)
  1113. {
  1114. int level = 0;
  1115. level |= (s->sssr & SSSR_ROR);
  1116. level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE);
  1117. level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE);
  1118. qemu_set_irq(s->irq, level);
  1119. }
  1120. static void strongarm_ssp_fifo_update(StrongARMSSPState *s)
  1121. {
  1122. s->sssr &= ~SSSR_TFS;
  1123. s->sssr &= ~SSSR_TNF;
  1124. if (s->sscr[0] & SSCR0_SSE) {
  1125. if (s->rx_level >= 4) {
  1126. s->sssr |= SSSR_RFS;
  1127. } else {
  1128. s->sssr &= ~SSSR_RFS;
  1129. }
  1130. if (s->rx_level) {
  1131. s->sssr |= SSSR_RNE;
  1132. } else {
  1133. s->sssr &= ~SSSR_RNE;
  1134. }
  1135. /* TX FIFO is never filled, so it is always in underrun
  1136. condition if SSP is enabled */
  1137. s->sssr |= SSSR_TFS;
  1138. s->sssr |= SSSR_TNF;
  1139. }
  1140. strongarm_ssp_int_update(s);
  1141. }
  1142. static uint64_t strongarm_ssp_read(void *opaque, target_phys_addr_t addr,
  1143. unsigned size)
  1144. {
  1145. StrongARMSSPState *s = opaque;
  1146. uint32_t retval;
  1147. switch (addr) {
  1148. case SSCR0:
  1149. return s->sscr[0];
  1150. case SSCR1:
  1151. return s->sscr[1];
  1152. case SSSR:
  1153. return s->sssr;
  1154. case SSDR:
  1155. if (~s->sscr[0] & SSCR0_SSE) {
  1156. return 0xffffffff;
  1157. }
  1158. if (s->rx_level < 1) {
  1159. printf("%s: SSP Rx Underrun\n", __func__);
  1160. return 0xffffffff;
  1161. }
  1162. s->rx_level--;
  1163. retval = s->rx_fifo[s->rx_start++];
  1164. s->rx_start &= 0x7;
  1165. strongarm_ssp_fifo_update(s);
  1166. return retval;
  1167. default:
  1168. printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
  1169. break;
  1170. }
  1171. return 0;
  1172. }
  1173. static void strongarm_ssp_write(void *opaque, target_phys_addr_t addr,
  1174. uint64_t value, unsigned size)
  1175. {
  1176. StrongARMSSPState *s = opaque;
  1177. switch (addr) {
  1178. case SSCR0:
  1179. s->sscr[0] = value & 0xffbf;
  1180. if ((s->sscr[0] & SSCR0_SSE) && SSCR0_DSS(value) < 4) {
  1181. printf("%s: Wrong data size: %i bits\n", __func__,
  1182. (int)SSCR0_DSS(value));
  1183. }
  1184. if (!(value & SSCR0_SSE)) {
  1185. s->sssr = 0;
  1186. s->rx_level = 0;
  1187. }
  1188. strongarm_ssp_fifo_update(s);
  1189. break;
  1190. case SSCR1:
  1191. s->sscr[1] = value & 0x2f;
  1192. if (value & SSCR1_LBM) {
  1193. printf("%s: Attempt to use SSP LBM mode\n", __func__);
  1194. }
  1195. strongarm_ssp_fifo_update(s);
  1196. break;
  1197. case SSSR:
  1198. s->sssr &= ~(value & SSSR_RW);
  1199. strongarm_ssp_int_update(s);
  1200. break;
  1201. case SSDR:
  1202. if (SSCR0_UWIRE(s->sscr[0])) {
  1203. value &= 0xff;
  1204. } else
  1205. /* Note how 32bits overflow does no harm here */
  1206. value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
  1207. /* Data goes from here to the Tx FIFO and is shifted out from
  1208. * there directly to the slave, no need to buffer it.
  1209. */
  1210. if (s->sscr[0] & SSCR0_SSE) {
  1211. uint32_t readval;
  1212. if (s->sscr[1] & SSCR1_LBM) {
  1213. readval = value;
  1214. } else {
  1215. readval = ssi_transfer(s->bus, value);
  1216. }
  1217. if (s->rx_level < 0x08) {
  1218. s->rx_fifo[(s->rx_start + s->rx_level++) & 0x7] = readval;
  1219. } else {
  1220. s->sssr |= SSSR_ROR;
  1221. }
  1222. }
  1223. strongarm_ssp_fifo_update(s);
  1224. break;
  1225. default:
  1226. printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
  1227. break;
  1228. }
  1229. }
  1230. static const MemoryRegionOps strongarm_ssp_ops = {
  1231. .read = strongarm_ssp_read,
  1232. .write = strongarm_ssp_write,
  1233. .endianness = DEVICE_NATIVE_ENDIAN,
  1234. };
  1235. static int strongarm_ssp_post_load(void *opaque, int version_id)
  1236. {
  1237. StrongARMSSPState *s = opaque;
  1238. strongarm_ssp_fifo_update(s);
  1239. return 0;
  1240. }
  1241. static int strongarm_ssp_init(SysBusDevice *dev)
  1242. {
  1243. StrongARMSSPState *s = FROM_SYSBUS(StrongARMSSPState, dev);
  1244. sysbus_init_irq(dev, &s->irq);
  1245. memory_region_init_io(&s->iomem, &strongarm_ssp_ops, s, "ssp", 0x1000);
  1246. sysbus_init_mmio(dev, &s->iomem);
  1247. s->bus = ssi_create_bus(&dev->qdev, "ssi");
  1248. return 0;
  1249. }
  1250. static void strongarm_ssp_reset(DeviceState *dev)
  1251. {
  1252. StrongARMSSPState *s = DO_UPCAST(StrongARMSSPState, busdev.qdev, dev);
  1253. s->sssr = 0x03; /* 3 bit data, SPI, disabled */
  1254. s->rx_start = 0;
  1255. s->rx_level = 0;
  1256. }
  1257. static const VMStateDescription vmstate_strongarm_ssp_regs = {
  1258. .name = "strongarm-ssp",
  1259. .version_id = 0,
  1260. .minimum_version_id = 0,
  1261. .minimum_version_id_old = 0,
  1262. .post_load = strongarm_ssp_post_load,
  1263. .fields = (VMStateField[]) {
  1264. VMSTATE_UINT16_ARRAY(sscr, StrongARMSSPState, 2),
  1265. VMSTATE_UINT16(sssr, StrongARMSSPState),
  1266. VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMSSPState, 8),
  1267. VMSTATE_UINT8(rx_start, StrongARMSSPState),
  1268. VMSTATE_UINT8(rx_level, StrongARMSSPState),
  1269. VMSTATE_END_OF_LIST(),
  1270. },
  1271. };
  1272. static void strongarm_ssp_class_init(ObjectClass *klass, void *data)
  1273. {
  1274. DeviceClass *dc = DEVICE_CLASS(klass);
  1275. SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
  1276. k->init = strongarm_ssp_init;
  1277. dc->desc = "StrongARM SSP controller";
  1278. dc->reset = strongarm_ssp_reset;
  1279. dc->vmsd = &vmstate_strongarm_ssp_regs;
  1280. }
  1281. static TypeInfo strongarm_ssp_info = {
  1282. .name = "strongarm-ssp",
  1283. .parent = TYPE_SYS_BUS_DEVICE,
  1284. .instance_size = sizeof(StrongARMSSPState),
  1285. .class_init = strongarm_ssp_class_init,
  1286. };
  1287. /* Main CPU functions */
  1288. StrongARMState *sa1110_init(MemoryRegion *sysmem,
  1289. unsigned int sdram_size, const char *rev)
  1290. {
  1291. StrongARMState *s;
  1292. qemu_irq *pic;
  1293. int i;
  1294. s = g_malloc0(sizeof(StrongARMState));
  1295. if (!rev) {
  1296. rev = "sa1110-b5";
  1297. }
  1298. if (strncmp(rev, "sa1110", 6)) {
  1299. error_report("Machine requires a SA1110 processor.");
  1300. exit(1);
  1301. }
  1302. s->cpu = cpu_arm_init(rev);
  1303. if (!s->cpu) {
  1304. error_report("Unable to find CPU definition");
  1305. exit(1);
  1306. }
  1307. memory_region_init_ram(&s->sdram, "strongarm.sdram", sdram_size);
  1308. vmstate_register_ram_global(&s->sdram);
  1309. memory_region_add_subregion(sysmem, SA_SDCS0, &s->sdram);
  1310. pic = arm_pic_init_cpu(s->cpu);
  1311. s->pic = sysbus_create_varargs("strongarm_pic", 0x90050000,
  1312. pic[ARM_PIC_CPU_IRQ], pic[ARM_PIC_CPU_FIQ], NULL);
  1313. sysbus_create_varargs("pxa25x-timer", 0x90000000,
  1314. qdev_get_gpio_in(s->pic, SA_PIC_OSTC0),
  1315. qdev_get_gpio_in(s->pic, SA_PIC_OSTC1),
  1316. qdev_get_gpio_in(s->pic, SA_PIC_OSTC2),
  1317. qdev_get_gpio_in(s->pic, SA_PIC_OSTC3),
  1318. NULL);
  1319. sysbus_create_simple("strongarm-rtc", 0x90010000,
  1320. qdev_get_gpio_in(s->pic, SA_PIC_RTC_ALARM));
  1321. s->gpio = strongarm_gpio_init(0x90040000, s->pic);
  1322. s->ppc = sysbus_create_varargs("strongarm-ppc", 0x90060000, NULL);
  1323. for (i = 0; sa_serial[i].io_base; i++) {
  1324. DeviceState *dev = qdev_create(NULL, "strongarm-uart");
  1325. qdev_prop_set_chr(dev, "chardev", serial_hds[i]);
  1326. qdev_init_nofail(dev);
  1327. sysbus_mmio_map(sysbus_from_qdev(dev), 0,
  1328. sa_serial[i].io_base);
  1329. sysbus_connect_irq(sysbus_from_qdev(dev), 0,
  1330. qdev_get_gpio_in(s->pic, sa_serial[i].irq));
  1331. }
  1332. s->ssp = sysbus_create_varargs("strongarm-ssp", 0x80070000,
  1333. qdev_get_gpio_in(s->pic, SA_PIC_SSP), NULL);
  1334. s->ssp_bus = (SSIBus *)qdev_get_child_bus(s->ssp, "ssi");
  1335. return s;
  1336. }
  1337. static void strongarm_register_types(void)
  1338. {
  1339. type_register_static(&strongarm_pic_info);
  1340. type_register_static(&strongarm_rtc_sysbus_info);
  1341. type_register_static(&strongarm_gpio_info);
  1342. type_register_static(&strongarm_ppc_info);
  1343. type_register_static(&strongarm_uart_info);
  1344. type_register_static(&strongarm_ssp_info);
  1345. }
  1346. type_init(strongarm_register_types)