slavio_intctl.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471
  1. /*
  2. * QEMU Sparc SLAVIO interrupt controller emulation
  3. *
  4. * Copyright (c) 2003-2005 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "sun4m.h"
  25. #include "monitor.h"
  26. #include "sysbus.h"
  27. #include "trace.h"
  28. //#define DEBUG_IRQ_COUNT
  29. /*
  30. * Registers of interrupt controller in sun4m.
  31. *
  32. * This is the interrupt controller part of chip STP2001 (Slave I/O), also
  33. * produced as NCR89C105. See
  34. * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
  35. *
  36. * There is a system master controller and one for each cpu.
  37. *
  38. */
  39. #define MAX_CPUS 16
  40. #define MAX_PILS 16
  41. struct SLAVIO_INTCTLState;
  42. typedef struct SLAVIO_CPUINTCTLState {
  43. MemoryRegion iomem;
  44. struct SLAVIO_INTCTLState *master;
  45. uint32_t intreg_pending;
  46. uint32_t cpu;
  47. uint32_t irl_out;
  48. } SLAVIO_CPUINTCTLState;
  49. typedef struct SLAVIO_INTCTLState {
  50. SysBusDevice busdev;
  51. MemoryRegion iomem;
  52. #ifdef DEBUG_IRQ_COUNT
  53. uint64_t irq_count[32];
  54. #endif
  55. qemu_irq cpu_irqs[MAX_CPUS][MAX_PILS];
  56. SLAVIO_CPUINTCTLState slaves[MAX_CPUS];
  57. uint32_t intregm_pending;
  58. uint32_t intregm_disabled;
  59. uint32_t target_cpu;
  60. } SLAVIO_INTCTLState;
  61. #define INTCTL_MAXADDR 0xf
  62. #define INTCTL_SIZE (INTCTL_MAXADDR + 1)
  63. #define INTCTLM_SIZE 0x14
  64. #define MASTER_IRQ_MASK ~0x0fa2007f
  65. #define MASTER_DISABLE 0x80000000
  66. #define CPU_SOFTIRQ_MASK 0xfffe0000
  67. #define CPU_IRQ_INT15_IN (1 << 15)
  68. #define CPU_IRQ_TIMER_IN (1 << 14)
  69. static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs);
  70. // per-cpu interrupt controller
  71. static uint64_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr,
  72. unsigned size)
  73. {
  74. SLAVIO_CPUINTCTLState *s = opaque;
  75. uint32_t saddr, ret;
  76. saddr = addr >> 2;
  77. switch (saddr) {
  78. case 0:
  79. ret = s->intreg_pending;
  80. break;
  81. default:
  82. ret = 0;
  83. break;
  84. }
  85. trace_slavio_intctl_mem_readl(s->cpu, addr, ret);
  86. return ret;
  87. }
  88. static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr,
  89. uint64_t val, unsigned size)
  90. {
  91. SLAVIO_CPUINTCTLState *s = opaque;
  92. uint32_t saddr;
  93. saddr = addr >> 2;
  94. trace_slavio_intctl_mem_writel(s->cpu, addr, val);
  95. switch (saddr) {
  96. case 1: // clear pending softints
  97. val &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN;
  98. s->intreg_pending &= ~val;
  99. slavio_check_interrupts(s->master, 1);
  100. trace_slavio_intctl_mem_writel_clear(s->cpu, val, s->intreg_pending);
  101. break;
  102. case 2: // set softint
  103. val &= CPU_SOFTIRQ_MASK;
  104. s->intreg_pending |= val;
  105. slavio_check_interrupts(s->master, 1);
  106. trace_slavio_intctl_mem_writel_set(s->cpu, val, s->intreg_pending);
  107. break;
  108. default:
  109. break;
  110. }
  111. }
  112. static const MemoryRegionOps slavio_intctl_mem_ops = {
  113. .read = slavio_intctl_mem_readl,
  114. .write = slavio_intctl_mem_writel,
  115. .endianness = DEVICE_NATIVE_ENDIAN,
  116. .valid = {
  117. .min_access_size = 4,
  118. .max_access_size = 4,
  119. },
  120. };
  121. // master system interrupt controller
  122. static uint64_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr,
  123. unsigned size)
  124. {
  125. SLAVIO_INTCTLState *s = opaque;
  126. uint32_t saddr, ret;
  127. saddr = addr >> 2;
  128. switch (saddr) {
  129. case 0:
  130. ret = s->intregm_pending & ~MASTER_DISABLE;
  131. break;
  132. case 1:
  133. ret = s->intregm_disabled & MASTER_IRQ_MASK;
  134. break;
  135. case 4:
  136. ret = s->target_cpu;
  137. break;
  138. default:
  139. ret = 0;
  140. break;
  141. }
  142. trace_slavio_intctlm_mem_readl(addr, ret);
  143. return ret;
  144. }
  145. static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr,
  146. uint64_t val, unsigned size)
  147. {
  148. SLAVIO_INTCTLState *s = opaque;
  149. uint32_t saddr;
  150. saddr = addr >> 2;
  151. trace_slavio_intctlm_mem_writel(addr, val);
  152. switch (saddr) {
  153. case 2: // clear (enable)
  154. // Force clear unused bits
  155. val &= MASTER_IRQ_MASK;
  156. s->intregm_disabled &= ~val;
  157. trace_slavio_intctlm_mem_writel_enable(val, s->intregm_disabled);
  158. slavio_check_interrupts(s, 1);
  159. break;
  160. case 3: // set (disable; doesn't affect pending)
  161. // Force clear unused bits
  162. val &= MASTER_IRQ_MASK;
  163. s->intregm_disabled |= val;
  164. slavio_check_interrupts(s, 1);
  165. trace_slavio_intctlm_mem_writel_disable(val, s->intregm_disabled);
  166. break;
  167. case 4:
  168. s->target_cpu = val & (MAX_CPUS - 1);
  169. slavio_check_interrupts(s, 1);
  170. trace_slavio_intctlm_mem_writel_target(s->target_cpu);
  171. break;
  172. default:
  173. break;
  174. }
  175. }
  176. static const MemoryRegionOps slavio_intctlm_mem_ops = {
  177. .read = slavio_intctlm_mem_readl,
  178. .write = slavio_intctlm_mem_writel,
  179. .endianness = DEVICE_NATIVE_ENDIAN,
  180. .valid = {
  181. .min_access_size = 4,
  182. .max_access_size = 4,
  183. },
  184. };
  185. void slavio_pic_info(Monitor *mon, DeviceState *dev)
  186. {
  187. SysBusDevice *sd;
  188. SLAVIO_INTCTLState *s;
  189. int i;
  190. sd = sysbus_from_qdev(dev);
  191. s = FROM_SYSBUS(SLAVIO_INTCTLState, sd);
  192. for (i = 0; i < MAX_CPUS; i++) {
  193. monitor_printf(mon, "per-cpu %d: pending 0x%08x\n", i,
  194. s->slaves[i].intreg_pending);
  195. }
  196. monitor_printf(mon, "master: pending 0x%08x, disabled 0x%08x\n",
  197. s->intregm_pending, s->intregm_disabled);
  198. }
  199. void slavio_irq_info(Monitor *mon, DeviceState *dev)
  200. {
  201. #ifndef DEBUG_IRQ_COUNT
  202. monitor_printf(mon, "irq statistic code not compiled.\n");
  203. #else
  204. SysBusDevice *sd;
  205. SLAVIO_INTCTLState *s;
  206. int i;
  207. int64_t count;
  208. sd = sysbus_from_qdev(dev);
  209. s = FROM_SYSBUS(SLAVIO_INTCTLState, sd);
  210. monitor_printf(mon, "IRQ statistics:\n");
  211. for (i = 0; i < 32; i++) {
  212. count = s->irq_count[i];
  213. if (count > 0)
  214. monitor_printf(mon, "%2d: %" PRId64 "\n", i, count);
  215. }
  216. #endif
  217. }
  218. static const uint32_t intbit_to_level[] = {
  219. 2, 3, 5, 7, 9, 11, 13, 2, 3, 5, 7, 9, 11, 13, 12, 12,
  220. 6, 13, 4, 10, 8, 9, 11, 0, 0, 0, 0, 15, 15, 15, 15, 0,
  221. };
  222. static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs)
  223. {
  224. uint32_t pending = s->intregm_pending, pil_pending;
  225. unsigned int i, j;
  226. pending &= ~s->intregm_disabled;
  227. trace_slavio_check_interrupts(pending, s->intregm_disabled);
  228. for (i = 0; i < MAX_CPUS; i++) {
  229. pil_pending = 0;
  230. /* If we are the current interrupt target, get hard interrupts */
  231. if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
  232. (i == s->target_cpu)) {
  233. for (j = 0; j < 32; j++) {
  234. if ((pending & (1 << j)) && intbit_to_level[j]) {
  235. pil_pending |= 1 << intbit_to_level[j];
  236. }
  237. }
  238. }
  239. /* Calculate current pending hard interrupts for display */
  240. s->slaves[i].intreg_pending &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN |
  241. CPU_IRQ_TIMER_IN;
  242. if (i == s->target_cpu) {
  243. for (j = 0; j < 32; j++) {
  244. if ((s->intregm_pending & (1 << j)) && intbit_to_level[j]) {
  245. s->slaves[i].intreg_pending |= 1 << intbit_to_level[j];
  246. }
  247. }
  248. }
  249. /* Level 15 and CPU timer interrupts are only masked when
  250. the MASTER_DISABLE bit is set */
  251. if (!(s->intregm_disabled & MASTER_DISABLE)) {
  252. pil_pending |= s->slaves[i].intreg_pending &
  253. (CPU_IRQ_INT15_IN | CPU_IRQ_TIMER_IN);
  254. }
  255. /* Add soft interrupts */
  256. pil_pending |= (s->slaves[i].intreg_pending & CPU_SOFTIRQ_MASK) >> 16;
  257. if (set_irqs) {
  258. /* Since there is not really an interrupt 0 (and pil_pending
  259. * and irl_out bit zero are thus always zero) there is no need
  260. * to do anything with cpu_irqs[i][0] and it is OK not to do
  261. * the j=0 iteration of this loop.
  262. */
  263. for (j = MAX_PILS-1; j > 0; j--) {
  264. if (pil_pending & (1 << j)) {
  265. if (!(s->slaves[i].irl_out & (1 << j))) {
  266. qemu_irq_raise(s->cpu_irqs[i][j]);
  267. }
  268. } else {
  269. if (s->slaves[i].irl_out & (1 << j)) {
  270. qemu_irq_lower(s->cpu_irqs[i][j]);
  271. }
  272. }
  273. }
  274. }
  275. s->slaves[i].irl_out = pil_pending;
  276. }
  277. }
  278. /*
  279. * "irq" here is the bit number in the system interrupt register to
  280. * separate serial and keyboard interrupts sharing a level.
  281. */
  282. static void slavio_set_irq(void *opaque, int irq, int level)
  283. {
  284. SLAVIO_INTCTLState *s = opaque;
  285. uint32_t mask = 1 << irq;
  286. uint32_t pil = intbit_to_level[irq];
  287. unsigned int i;
  288. trace_slavio_set_irq(s->target_cpu, irq, pil, level);
  289. if (pil > 0) {
  290. if (level) {
  291. #ifdef DEBUG_IRQ_COUNT
  292. s->irq_count[pil]++;
  293. #endif
  294. s->intregm_pending |= mask;
  295. if (pil == 15) {
  296. for (i = 0; i < MAX_CPUS; i++) {
  297. s->slaves[i].intreg_pending |= 1 << pil;
  298. }
  299. }
  300. } else {
  301. s->intregm_pending &= ~mask;
  302. if (pil == 15) {
  303. for (i = 0; i < MAX_CPUS; i++) {
  304. s->slaves[i].intreg_pending &= ~(1 << pil);
  305. }
  306. }
  307. }
  308. slavio_check_interrupts(s, 1);
  309. }
  310. }
  311. static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
  312. {
  313. SLAVIO_INTCTLState *s = opaque;
  314. trace_slavio_set_timer_irq_cpu(cpu, level);
  315. if (level) {
  316. s->slaves[cpu].intreg_pending |= CPU_IRQ_TIMER_IN;
  317. } else {
  318. s->slaves[cpu].intreg_pending &= ~CPU_IRQ_TIMER_IN;
  319. }
  320. slavio_check_interrupts(s, 1);
  321. }
  322. static void slavio_set_irq_all(void *opaque, int irq, int level)
  323. {
  324. if (irq < 32) {
  325. slavio_set_irq(opaque, irq, level);
  326. } else {
  327. slavio_set_timer_irq_cpu(opaque, irq - 32, level);
  328. }
  329. }
  330. static int vmstate_intctl_post_load(void *opaque, int version_id)
  331. {
  332. SLAVIO_INTCTLState *s = opaque;
  333. slavio_check_interrupts(s, 0);
  334. return 0;
  335. }
  336. static const VMStateDescription vmstate_intctl_cpu = {
  337. .name ="slavio_intctl_cpu",
  338. .version_id = 1,
  339. .minimum_version_id = 1,
  340. .minimum_version_id_old = 1,
  341. .fields = (VMStateField []) {
  342. VMSTATE_UINT32(intreg_pending, SLAVIO_CPUINTCTLState),
  343. VMSTATE_END_OF_LIST()
  344. }
  345. };
  346. static const VMStateDescription vmstate_intctl = {
  347. .name ="slavio_intctl",
  348. .version_id = 1,
  349. .minimum_version_id = 1,
  350. .minimum_version_id_old = 1,
  351. .post_load = vmstate_intctl_post_load,
  352. .fields = (VMStateField []) {
  353. VMSTATE_STRUCT_ARRAY(slaves, SLAVIO_INTCTLState, MAX_CPUS, 1,
  354. vmstate_intctl_cpu, SLAVIO_CPUINTCTLState),
  355. VMSTATE_UINT32(intregm_pending, SLAVIO_INTCTLState),
  356. VMSTATE_UINT32(intregm_disabled, SLAVIO_INTCTLState),
  357. VMSTATE_UINT32(target_cpu, SLAVIO_INTCTLState),
  358. VMSTATE_END_OF_LIST()
  359. }
  360. };
  361. static void slavio_intctl_reset(DeviceState *d)
  362. {
  363. SLAVIO_INTCTLState *s = container_of(d, SLAVIO_INTCTLState, busdev.qdev);
  364. int i;
  365. for (i = 0; i < MAX_CPUS; i++) {
  366. s->slaves[i].intreg_pending = 0;
  367. s->slaves[i].irl_out = 0;
  368. }
  369. s->intregm_disabled = ~MASTER_IRQ_MASK;
  370. s->intregm_pending = 0;
  371. s->target_cpu = 0;
  372. slavio_check_interrupts(s, 0);
  373. }
  374. static int slavio_intctl_init1(SysBusDevice *dev)
  375. {
  376. SLAVIO_INTCTLState *s = FROM_SYSBUS(SLAVIO_INTCTLState, dev);
  377. unsigned int i, j;
  378. char slave_name[45];
  379. qdev_init_gpio_in(&dev->qdev, slavio_set_irq_all, 32 + MAX_CPUS);
  380. memory_region_init_io(&s->iomem, &slavio_intctlm_mem_ops, s,
  381. "master-interrupt-controller", INTCTLM_SIZE);
  382. sysbus_init_mmio(dev, &s->iomem);
  383. for (i = 0; i < MAX_CPUS; i++) {
  384. snprintf(slave_name, sizeof(slave_name),
  385. "slave-interrupt-controller-%i", i);
  386. for (j = 0; j < MAX_PILS; j++) {
  387. sysbus_init_irq(dev, &s->cpu_irqs[i][j]);
  388. }
  389. memory_region_init_io(&s->slaves[i].iomem, &slavio_intctl_mem_ops,
  390. &s->slaves[i], slave_name, INTCTL_SIZE);
  391. sysbus_init_mmio(dev, &s->slaves[i].iomem);
  392. s->slaves[i].cpu = i;
  393. s->slaves[i].master = s;
  394. }
  395. return 0;
  396. }
  397. static void slavio_intctl_class_init(ObjectClass *klass, void *data)
  398. {
  399. DeviceClass *dc = DEVICE_CLASS(klass);
  400. SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
  401. k->init = slavio_intctl_init1;
  402. dc->reset = slavio_intctl_reset;
  403. dc->vmsd = &vmstate_intctl;
  404. }
  405. static TypeInfo slavio_intctl_info = {
  406. .name = "slavio_intctl",
  407. .parent = TYPE_SYS_BUS_DEVICE,
  408. .instance_size = sizeof(SLAVIO_INTCTLState),
  409. .class_init = slavio_intctl_class_init,
  410. };
  411. static void slavio_intctl_register_types(void)
  412. {
  413. type_register_static(&slavio_intctl_info);
  414. }
  415. type_init(slavio_intctl_register_types)