nand.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789
  1. /*
  2. * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
  3. * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
  4. * Samsung Electronic.
  5. *
  6. * Copyright (c) 2006 Openedhand Ltd.
  7. * Written by Andrzej Zaborowski <balrog@zabor.org>
  8. *
  9. * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
  10. * datasheet from Micron Technology and "NAND02G-B2C" datasheet
  11. * from ST Microelectronics.
  12. *
  13. * This code is licensed under the GNU GPL v2.
  14. *
  15. * Contributions after 2012-01-13 are licensed under the terms of the
  16. * GNU GPL, version 2 or (at your option) any later version.
  17. */
  18. #ifndef NAND_IO
  19. # include "hw.h"
  20. # include "flash.h"
  21. # include "blockdev.h"
  22. # include "sysbus.h"
  23. #include "qemu-error.h"
  24. # define NAND_CMD_READ0 0x00
  25. # define NAND_CMD_READ1 0x01
  26. # define NAND_CMD_READ2 0x50
  27. # define NAND_CMD_LPREAD2 0x30
  28. # define NAND_CMD_NOSERIALREAD2 0x35
  29. # define NAND_CMD_RANDOMREAD1 0x05
  30. # define NAND_CMD_RANDOMREAD2 0xe0
  31. # define NAND_CMD_READID 0x90
  32. # define NAND_CMD_RESET 0xff
  33. # define NAND_CMD_PAGEPROGRAM1 0x80
  34. # define NAND_CMD_PAGEPROGRAM2 0x10
  35. # define NAND_CMD_CACHEPROGRAM2 0x15
  36. # define NAND_CMD_BLOCKERASE1 0x60
  37. # define NAND_CMD_BLOCKERASE2 0xd0
  38. # define NAND_CMD_READSTATUS 0x70
  39. # define NAND_CMD_COPYBACKPRG1 0x85
  40. # define NAND_IOSTATUS_ERROR (1 << 0)
  41. # define NAND_IOSTATUS_PLANE0 (1 << 1)
  42. # define NAND_IOSTATUS_PLANE1 (1 << 2)
  43. # define NAND_IOSTATUS_PLANE2 (1 << 3)
  44. # define NAND_IOSTATUS_PLANE3 (1 << 4)
  45. # define NAND_IOSTATUS_BUSY (1 << 6)
  46. # define NAND_IOSTATUS_UNPROTCT (1 << 7)
  47. # define MAX_PAGE 0x800
  48. # define MAX_OOB 0x40
  49. typedef struct NANDFlashState NANDFlashState;
  50. struct NANDFlashState {
  51. SysBusDevice busdev;
  52. uint8_t manf_id, chip_id;
  53. uint8_t buswidth; /* in BYTES */
  54. int size, pages;
  55. int page_shift, oob_shift, erase_shift, addr_shift;
  56. uint8_t *storage;
  57. BlockDriverState *bdrv;
  58. int mem_oob;
  59. uint8_t cle, ale, ce, wp, gnd;
  60. uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
  61. uint8_t *ioaddr;
  62. int iolen;
  63. uint32_t cmd;
  64. uint64_t addr;
  65. int addrlen;
  66. int status;
  67. int offset;
  68. void (*blk_write)(NANDFlashState *s);
  69. void (*blk_erase)(NANDFlashState *s);
  70. void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
  71. uint32_t ioaddr_vmstate;
  72. };
  73. static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
  74. {
  75. /* Like memcpy() but we logical-AND the data into the destination */
  76. int i;
  77. for (i = 0; i < n; i++) {
  78. dest[i] &= src[i];
  79. }
  80. }
  81. # define NAND_NO_AUTOINCR 0x00000001
  82. # define NAND_BUSWIDTH_16 0x00000002
  83. # define NAND_NO_PADDING 0x00000004
  84. # define NAND_CACHEPRG 0x00000008
  85. # define NAND_COPYBACK 0x00000010
  86. # define NAND_IS_AND 0x00000020
  87. # define NAND_4PAGE_ARRAY 0x00000040
  88. # define NAND_NO_READRDY 0x00000100
  89. # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
  90. # define NAND_IO
  91. # define PAGE(addr) ((addr) >> ADDR_SHIFT)
  92. # define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
  93. # define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
  94. # define OOB_SHIFT (PAGE_SHIFT - 5)
  95. # define OOB_SIZE (1 << OOB_SHIFT)
  96. # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
  97. # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
  98. # define PAGE_SIZE 256
  99. # define PAGE_SHIFT 8
  100. # define PAGE_SECTORS 1
  101. # define ADDR_SHIFT 8
  102. # include "nand.c"
  103. # define PAGE_SIZE 512
  104. # define PAGE_SHIFT 9
  105. # define PAGE_SECTORS 1
  106. # define ADDR_SHIFT 8
  107. # include "nand.c"
  108. # define PAGE_SIZE 2048
  109. # define PAGE_SHIFT 11
  110. # define PAGE_SECTORS 4
  111. # define ADDR_SHIFT 16
  112. # include "nand.c"
  113. /* Information based on Linux drivers/mtd/nand/nand_ids.c */
  114. static const struct {
  115. int size;
  116. int width;
  117. int page_shift;
  118. int erase_shift;
  119. uint32_t options;
  120. } nand_flash_ids[0x100] = {
  121. [0 ... 0xff] = { 0 },
  122. [0x6e] = { 1, 8, 8, 4, 0 },
  123. [0x64] = { 2, 8, 8, 4, 0 },
  124. [0x6b] = { 4, 8, 9, 4, 0 },
  125. [0xe8] = { 1, 8, 8, 4, 0 },
  126. [0xec] = { 1, 8, 8, 4, 0 },
  127. [0xea] = { 2, 8, 8, 4, 0 },
  128. [0xd5] = { 4, 8, 9, 4, 0 },
  129. [0xe3] = { 4, 8, 9, 4, 0 },
  130. [0xe5] = { 4, 8, 9, 4, 0 },
  131. [0xd6] = { 8, 8, 9, 4, 0 },
  132. [0x39] = { 8, 8, 9, 4, 0 },
  133. [0xe6] = { 8, 8, 9, 4, 0 },
  134. [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
  135. [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
  136. [0x33] = { 16, 8, 9, 5, 0 },
  137. [0x73] = { 16, 8, 9, 5, 0 },
  138. [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
  139. [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
  140. [0x35] = { 32, 8, 9, 5, 0 },
  141. [0x75] = { 32, 8, 9, 5, 0 },
  142. [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
  143. [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
  144. [0x36] = { 64, 8, 9, 5, 0 },
  145. [0x76] = { 64, 8, 9, 5, 0 },
  146. [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
  147. [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
  148. [0x78] = { 128, 8, 9, 5, 0 },
  149. [0x39] = { 128, 8, 9, 5, 0 },
  150. [0x79] = { 128, 8, 9, 5, 0 },
  151. [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
  152. [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
  153. [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
  154. [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
  155. [0x71] = { 256, 8, 9, 5, 0 },
  156. /*
  157. * These are the new chips with large page size. The pagesize and the
  158. * erasesize is determined from the extended id bytes
  159. */
  160. # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
  161. # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
  162. /* 512 Megabit */
  163. [0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
  164. [0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
  165. [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
  166. [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
  167. /* 1 Gigabit */
  168. [0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
  169. [0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
  170. [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
  171. [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
  172. /* 2 Gigabit */
  173. [0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
  174. [0xda] = { 256, 8, 0, 0, LP_OPTIONS },
  175. [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
  176. [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
  177. /* 4 Gigabit */
  178. [0xac] = { 512, 8, 0, 0, LP_OPTIONS },
  179. [0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
  180. [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
  181. [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
  182. /* 8 Gigabit */
  183. [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
  184. [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
  185. [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
  186. [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
  187. /* 16 Gigabit */
  188. [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
  189. [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
  190. [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
  191. [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
  192. };
  193. static void nand_reset(DeviceState *dev)
  194. {
  195. NANDFlashState *s = FROM_SYSBUS(NANDFlashState, sysbus_from_qdev(dev));
  196. s->cmd = NAND_CMD_READ0;
  197. s->addr = 0;
  198. s->addrlen = 0;
  199. s->iolen = 0;
  200. s->offset = 0;
  201. s->status &= NAND_IOSTATUS_UNPROTCT;
  202. }
  203. static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
  204. {
  205. s->ioaddr[s->iolen++] = value;
  206. for (value = s->buswidth; --value;) {
  207. s->ioaddr[s->iolen++] = 0;
  208. }
  209. }
  210. static void nand_command(NANDFlashState *s)
  211. {
  212. unsigned int offset;
  213. switch (s->cmd) {
  214. case NAND_CMD_READ0:
  215. s->iolen = 0;
  216. break;
  217. case NAND_CMD_READID:
  218. s->ioaddr = s->io;
  219. s->iolen = 0;
  220. nand_pushio_byte(s, s->manf_id);
  221. nand_pushio_byte(s, s->chip_id);
  222. nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
  223. if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
  224. /* Page Size, Block Size, Spare Size; bit 6 indicates
  225. * 8 vs 16 bit width NAND.
  226. */
  227. nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
  228. } else {
  229. nand_pushio_byte(s, 0xc0); /* Multi-plane */
  230. }
  231. break;
  232. case NAND_CMD_RANDOMREAD2:
  233. case NAND_CMD_NOSERIALREAD2:
  234. if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
  235. break;
  236. offset = s->addr & ((1 << s->addr_shift) - 1);
  237. s->blk_load(s, s->addr, offset);
  238. if (s->gnd)
  239. s->iolen = (1 << s->page_shift) - offset;
  240. else
  241. s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
  242. break;
  243. case NAND_CMD_RESET:
  244. nand_reset(&s->busdev.qdev);
  245. break;
  246. case NAND_CMD_PAGEPROGRAM1:
  247. s->ioaddr = s->io;
  248. s->iolen = 0;
  249. break;
  250. case NAND_CMD_PAGEPROGRAM2:
  251. if (s->wp) {
  252. s->blk_write(s);
  253. }
  254. break;
  255. case NAND_CMD_BLOCKERASE1:
  256. break;
  257. case NAND_CMD_BLOCKERASE2:
  258. if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
  259. s->addr <<= 16;
  260. else
  261. s->addr <<= 8;
  262. if (s->wp) {
  263. s->blk_erase(s);
  264. }
  265. break;
  266. case NAND_CMD_READSTATUS:
  267. s->ioaddr = s->io;
  268. s->iolen = 0;
  269. nand_pushio_byte(s, s->status);
  270. break;
  271. default:
  272. printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
  273. }
  274. }
  275. static void nand_pre_save(void *opaque)
  276. {
  277. NANDFlashState *s = opaque;
  278. s->ioaddr_vmstate = s->ioaddr - s->io;
  279. }
  280. static int nand_post_load(void *opaque, int version_id)
  281. {
  282. NANDFlashState *s = opaque;
  283. if (s->ioaddr_vmstate > sizeof(s->io)) {
  284. return -EINVAL;
  285. }
  286. s->ioaddr = s->io + s->ioaddr_vmstate;
  287. return 0;
  288. }
  289. static const VMStateDescription vmstate_nand = {
  290. .name = "nand",
  291. .version_id = 1,
  292. .minimum_version_id = 1,
  293. .minimum_version_id_old = 1,
  294. .pre_save = nand_pre_save,
  295. .post_load = nand_post_load,
  296. .fields = (VMStateField[]) {
  297. VMSTATE_UINT8(cle, NANDFlashState),
  298. VMSTATE_UINT8(ale, NANDFlashState),
  299. VMSTATE_UINT8(ce, NANDFlashState),
  300. VMSTATE_UINT8(wp, NANDFlashState),
  301. VMSTATE_UINT8(gnd, NANDFlashState),
  302. VMSTATE_BUFFER(io, NANDFlashState),
  303. VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
  304. VMSTATE_INT32(iolen, NANDFlashState),
  305. VMSTATE_UINT32(cmd, NANDFlashState),
  306. VMSTATE_UINT64(addr, NANDFlashState),
  307. VMSTATE_INT32(addrlen, NANDFlashState),
  308. VMSTATE_INT32(status, NANDFlashState),
  309. VMSTATE_INT32(offset, NANDFlashState),
  310. /* XXX: do we want to save s->storage too? */
  311. VMSTATE_END_OF_LIST()
  312. }
  313. };
  314. static int nand_device_init(SysBusDevice *dev)
  315. {
  316. int pagesize;
  317. NANDFlashState *s = FROM_SYSBUS(NANDFlashState, dev);
  318. s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
  319. s->size = nand_flash_ids[s->chip_id].size << 20;
  320. if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
  321. s->page_shift = 11;
  322. s->erase_shift = 6;
  323. } else {
  324. s->page_shift = nand_flash_ids[s->chip_id].page_shift;
  325. s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
  326. }
  327. switch (1 << s->page_shift) {
  328. case 256:
  329. nand_init_256(s);
  330. break;
  331. case 512:
  332. nand_init_512(s);
  333. break;
  334. case 2048:
  335. nand_init_2048(s);
  336. break;
  337. default:
  338. error_report("Unsupported NAND block size");
  339. return -1;
  340. }
  341. pagesize = 1 << s->oob_shift;
  342. s->mem_oob = 1;
  343. if (s->bdrv) {
  344. if (bdrv_is_read_only(s->bdrv)) {
  345. error_report("Can't use a read-only drive");
  346. return -1;
  347. }
  348. if (bdrv_getlength(s->bdrv) >=
  349. (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
  350. pagesize = 0;
  351. s->mem_oob = 0;
  352. }
  353. } else {
  354. pagesize += 1 << s->page_shift;
  355. }
  356. if (pagesize) {
  357. s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
  358. 0xff, s->pages * pagesize);
  359. }
  360. /* Give s->ioaddr a sane value in case we save state before it is used. */
  361. s->ioaddr = s->io;
  362. return 0;
  363. }
  364. static Property nand_properties[] = {
  365. DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
  366. DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
  367. DEFINE_PROP_DRIVE("drive", NANDFlashState, bdrv),
  368. DEFINE_PROP_END_OF_LIST(),
  369. };
  370. static void nand_class_init(ObjectClass *klass, void *data)
  371. {
  372. DeviceClass *dc = DEVICE_CLASS(klass);
  373. SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
  374. k->init = nand_device_init;
  375. dc->reset = nand_reset;
  376. dc->vmsd = &vmstate_nand;
  377. dc->props = nand_properties;
  378. }
  379. static TypeInfo nand_info = {
  380. .name = "nand",
  381. .parent = TYPE_SYS_BUS_DEVICE,
  382. .instance_size = sizeof(NANDFlashState),
  383. .class_init = nand_class_init,
  384. };
  385. static void nand_register_types(void)
  386. {
  387. type_register_static(&nand_info);
  388. }
  389. /*
  390. * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
  391. * outputs are R/B and eight I/O pins.
  392. *
  393. * CE, WP and R/B are active low.
  394. */
  395. void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
  396. uint8_t ce, uint8_t wp, uint8_t gnd)
  397. {
  398. NANDFlashState *s = (NANDFlashState *) dev;
  399. s->cle = cle;
  400. s->ale = ale;
  401. s->ce = ce;
  402. s->wp = wp;
  403. s->gnd = gnd;
  404. if (wp)
  405. s->status |= NAND_IOSTATUS_UNPROTCT;
  406. else
  407. s->status &= ~NAND_IOSTATUS_UNPROTCT;
  408. }
  409. void nand_getpins(DeviceState *dev, int *rb)
  410. {
  411. *rb = 1;
  412. }
  413. void nand_setio(DeviceState *dev, uint32_t value)
  414. {
  415. int i;
  416. NANDFlashState *s = (NANDFlashState *) dev;
  417. if (!s->ce && s->cle) {
  418. if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
  419. if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
  420. return;
  421. if (value == NAND_CMD_RANDOMREAD1) {
  422. s->addr &= ~((1 << s->addr_shift) - 1);
  423. s->addrlen = 0;
  424. return;
  425. }
  426. }
  427. if (value == NAND_CMD_READ0)
  428. s->offset = 0;
  429. else if (value == NAND_CMD_READ1) {
  430. s->offset = 0x100;
  431. value = NAND_CMD_READ0;
  432. }
  433. else if (value == NAND_CMD_READ2) {
  434. s->offset = 1 << s->page_shift;
  435. value = NAND_CMD_READ0;
  436. }
  437. s->cmd = value;
  438. if (s->cmd == NAND_CMD_READSTATUS ||
  439. s->cmd == NAND_CMD_PAGEPROGRAM2 ||
  440. s->cmd == NAND_CMD_BLOCKERASE1 ||
  441. s->cmd == NAND_CMD_BLOCKERASE2 ||
  442. s->cmd == NAND_CMD_NOSERIALREAD2 ||
  443. s->cmd == NAND_CMD_RANDOMREAD2 ||
  444. s->cmd == NAND_CMD_RESET)
  445. nand_command(s);
  446. if (s->cmd != NAND_CMD_RANDOMREAD2) {
  447. s->addrlen = 0;
  448. }
  449. }
  450. if (s->ale) {
  451. unsigned int shift = s->addrlen * 8;
  452. unsigned int mask = ~(0xff << shift);
  453. unsigned int v = value << shift;
  454. s->addr = (s->addr & mask) | v;
  455. s->addrlen ++;
  456. switch (s->addrlen) {
  457. case 1:
  458. if (s->cmd == NAND_CMD_READID) {
  459. nand_command(s);
  460. }
  461. break;
  462. case 2: /* fix cache address as a byte address */
  463. s->addr <<= (s->buswidth - 1);
  464. break;
  465. case 3:
  466. if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
  467. (s->cmd == NAND_CMD_READ0 ||
  468. s->cmd == NAND_CMD_PAGEPROGRAM1)) {
  469. nand_command(s);
  470. }
  471. break;
  472. case 4:
  473. if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
  474. nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
  475. (s->cmd == NAND_CMD_READ0 ||
  476. s->cmd == NAND_CMD_PAGEPROGRAM1)) {
  477. nand_command(s);
  478. }
  479. break;
  480. case 5:
  481. if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
  482. nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
  483. (s->cmd == NAND_CMD_READ0 ||
  484. s->cmd == NAND_CMD_PAGEPROGRAM1)) {
  485. nand_command(s);
  486. }
  487. break;
  488. default:
  489. break;
  490. }
  491. }
  492. if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
  493. if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
  494. for (i = s->buswidth; i--; value >>= 8) {
  495. s->io[s->iolen ++] = (uint8_t) (value & 0xff);
  496. }
  497. }
  498. } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
  499. if ((s->addr & ((1 << s->addr_shift) - 1)) <
  500. (1 << s->page_shift) + (1 << s->oob_shift)) {
  501. for (i = s->buswidth; i--; s->addr++, value >>= 8) {
  502. s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
  503. (uint8_t) (value & 0xff);
  504. }
  505. }
  506. }
  507. }
  508. uint32_t nand_getio(DeviceState *dev)
  509. {
  510. int offset;
  511. uint32_t x = 0;
  512. NANDFlashState *s = (NANDFlashState *) dev;
  513. /* Allow sequential reading */
  514. if (!s->iolen && s->cmd == NAND_CMD_READ0) {
  515. offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
  516. s->offset = 0;
  517. s->blk_load(s, s->addr, offset);
  518. if (s->gnd)
  519. s->iolen = (1 << s->page_shift) - offset;
  520. else
  521. s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
  522. }
  523. if (s->ce || s->iolen <= 0)
  524. return 0;
  525. for (offset = s->buswidth; offset--;) {
  526. x |= s->ioaddr[offset] << (offset << 3);
  527. }
  528. /* after receiving READ STATUS command all subsequent reads will
  529. * return the status register value until another command is issued
  530. */
  531. if (s->cmd != NAND_CMD_READSTATUS) {
  532. s->addr += s->buswidth;
  533. s->ioaddr += s->buswidth;
  534. s->iolen -= s->buswidth;
  535. }
  536. return x;
  537. }
  538. uint32_t nand_getbuswidth(DeviceState *dev)
  539. {
  540. NANDFlashState *s = (NANDFlashState *) dev;
  541. return s->buswidth << 3;
  542. }
  543. DeviceState *nand_init(BlockDriverState *bdrv, int manf_id, int chip_id)
  544. {
  545. DeviceState *dev;
  546. if (nand_flash_ids[chip_id].size == 0) {
  547. hw_error("%s: Unsupported NAND chip ID.\n", __FUNCTION__);
  548. }
  549. dev = qdev_create(NULL, "nand");
  550. qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
  551. qdev_prop_set_uint8(dev, "chip_id", chip_id);
  552. if (bdrv) {
  553. qdev_prop_set_drive_nofail(dev, "drive", bdrv);
  554. }
  555. qdev_init_nofail(dev);
  556. return dev;
  557. }
  558. type_init(nand_register_types)
  559. #else
  560. /* Program a single page */
  561. static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
  562. {
  563. uint64_t off, page, sector, soff;
  564. uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
  565. if (PAGE(s->addr) >= s->pages)
  566. return;
  567. if (!s->bdrv) {
  568. mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
  569. s->offset, s->io, s->iolen);
  570. } else if (s->mem_oob) {
  571. sector = SECTOR(s->addr);
  572. off = (s->addr & PAGE_MASK) + s->offset;
  573. soff = SECTOR_OFFSET(s->addr);
  574. if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS) < 0) {
  575. printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
  576. return;
  577. }
  578. mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
  579. if (off + s->iolen > PAGE_SIZE) {
  580. page = PAGE(s->addr);
  581. mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
  582. MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
  583. }
  584. if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS) < 0) {
  585. printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
  586. }
  587. } else {
  588. off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
  589. sector = off >> 9;
  590. soff = off & 0x1ff;
  591. if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) < 0) {
  592. printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
  593. return;
  594. }
  595. mem_and(iobuf + soff, s->io, s->iolen);
  596. if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) < 0) {
  597. printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
  598. }
  599. }
  600. s->offset = 0;
  601. }
  602. /* Erase a single block */
  603. static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
  604. {
  605. uint64_t i, page, addr;
  606. uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
  607. addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
  608. if (PAGE(addr) >= s->pages)
  609. return;
  610. if (!s->bdrv) {
  611. memset(s->storage + PAGE_START(addr),
  612. 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
  613. } else if (s->mem_oob) {
  614. memset(s->storage + (PAGE(addr) << OOB_SHIFT),
  615. 0xff, OOB_SIZE << s->erase_shift);
  616. i = SECTOR(addr);
  617. page = SECTOR(addr + (ADDR_SHIFT + s->erase_shift));
  618. for (; i < page; i ++)
  619. if (bdrv_write(s->bdrv, i, iobuf, 1) < 0) {
  620. printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
  621. }
  622. } else {
  623. addr = PAGE_START(addr);
  624. page = addr >> 9;
  625. if (bdrv_read(s->bdrv, page, iobuf, 1) < 0) {
  626. printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
  627. }
  628. memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
  629. if (bdrv_write(s->bdrv, page, iobuf, 1) < 0) {
  630. printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
  631. }
  632. memset(iobuf, 0xff, 0x200);
  633. i = (addr & ~0x1ff) + 0x200;
  634. for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
  635. i < addr; i += 0x200)
  636. if (bdrv_write(s->bdrv, i >> 9, iobuf, 1) < 0) {
  637. printf("%s: write error in sector %" PRIu64 "\n",
  638. __func__, i >> 9);
  639. }
  640. page = i >> 9;
  641. if (bdrv_read(s->bdrv, page, iobuf, 1) < 0) {
  642. printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
  643. }
  644. memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
  645. if (bdrv_write(s->bdrv, page, iobuf, 1) < 0) {
  646. printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
  647. }
  648. }
  649. }
  650. static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
  651. uint64_t addr, int offset)
  652. {
  653. if (PAGE(addr) >= s->pages)
  654. return;
  655. if (s->bdrv) {
  656. if (s->mem_oob) {
  657. if (bdrv_read(s->bdrv, SECTOR(addr), s->io, PAGE_SECTORS) < 0) {
  658. printf("%s: read error in sector %" PRIu64 "\n",
  659. __func__, SECTOR(addr));
  660. }
  661. memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
  662. s->storage + (PAGE(s->addr) << OOB_SHIFT),
  663. OOB_SIZE);
  664. s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
  665. } else {
  666. if (bdrv_read(s->bdrv, PAGE_START(addr) >> 9,
  667. s->io, (PAGE_SECTORS + 2)) < 0) {
  668. printf("%s: read error in sector %" PRIu64 "\n",
  669. __func__, PAGE_START(addr) >> 9);
  670. }
  671. s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
  672. }
  673. } else {
  674. memcpy(s->io, s->storage + PAGE_START(s->addr) +
  675. offset, PAGE_SIZE + OOB_SIZE - offset);
  676. s->ioaddr = s->io;
  677. }
  678. }
  679. static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
  680. {
  681. s->oob_shift = PAGE_SHIFT - 5;
  682. s->pages = s->size >> PAGE_SHIFT;
  683. s->addr_shift = ADDR_SHIFT;
  684. s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
  685. s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
  686. s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
  687. }
  688. # undef PAGE_SIZE
  689. # undef PAGE_SHIFT
  690. # undef PAGE_SECTORS
  691. # undef ADDR_SHIFT
  692. #endif /* NAND_IO */