mcf_uart.c 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306
  1. /*
  2. * ColdFire UART emulation.
  3. *
  4. * Copyright (c) 2007 CodeSourcery.
  5. *
  6. * This code is licensed under the GPL
  7. */
  8. #include "hw.h"
  9. #include "mcf.h"
  10. #include "qemu-char.h"
  11. #include "exec-memory.h"
  12. typedef struct {
  13. MemoryRegion iomem;
  14. uint8_t mr[2];
  15. uint8_t sr;
  16. uint8_t isr;
  17. uint8_t imr;
  18. uint8_t bg1;
  19. uint8_t bg2;
  20. uint8_t fifo[4];
  21. uint8_t tb;
  22. int current_mr;
  23. int fifo_len;
  24. int tx_enabled;
  25. int rx_enabled;
  26. qemu_irq irq;
  27. CharDriverState *chr;
  28. } mcf_uart_state;
  29. /* UART Status Register bits. */
  30. #define MCF_UART_RxRDY 0x01
  31. #define MCF_UART_FFULL 0x02
  32. #define MCF_UART_TxRDY 0x04
  33. #define MCF_UART_TxEMP 0x08
  34. #define MCF_UART_OE 0x10
  35. #define MCF_UART_PE 0x20
  36. #define MCF_UART_FE 0x40
  37. #define MCF_UART_RB 0x80
  38. /* Interrupt flags. */
  39. #define MCF_UART_TxINT 0x01
  40. #define MCF_UART_RxINT 0x02
  41. #define MCF_UART_DBINT 0x04
  42. #define MCF_UART_COSINT 0x80
  43. /* UMR1 flags. */
  44. #define MCF_UART_BC0 0x01
  45. #define MCF_UART_BC1 0x02
  46. #define MCF_UART_PT 0x04
  47. #define MCF_UART_PM0 0x08
  48. #define MCF_UART_PM1 0x10
  49. #define MCF_UART_ERR 0x20
  50. #define MCF_UART_RxIRQ 0x40
  51. #define MCF_UART_RxRTS 0x80
  52. static void mcf_uart_update(mcf_uart_state *s)
  53. {
  54. s->isr &= ~(MCF_UART_TxINT | MCF_UART_RxINT);
  55. if (s->sr & MCF_UART_TxRDY)
  56. s->isr |= MCF_UART_TxINT;
  57. if ((s->sr & ((s->mr[0] & MCF_UART_RxIRQ)
  58. ? MCF_UART_FFULL : MCF_UART_RxRDY)) != 0)
  59. s->isr |= MCF_UART_RxINT;
  60. qemu_set_irq(s->irq, (s->isr & s->imr) != 0);
  61. }
  62. uint64_t mcf_uart_read(void *opaque, target_phys_addr_t addr,
  63. unsigned size)
  64. {
  65. mcf_uart_state *s = (mcf_uart_state *)opaque;
  66. switch (addr & 0x3f) {
  67. case 0x00:
  68. return s->mr[s->current_mr];
  69. case 0x04:
  70. return s->sr;
  71. case 0x0c:
  72. {
  73. uint8_t val;
  74. int i;
  75. if (s->fifo_len == 0)
  76. return 0;
  77. val = s->fifo[0];
  78. s->fifo_len--;
  79. for (i = 0; i < s->fifo_len; i++)
  80. s->fifo[i] = s->fifo[i + 1];
  81. s->sr &= ~MCF_UART_FFULL;
  82. if (s->fifo_len == 0)
  83. s->sr &= ~MCF_UART_RxRDY;
  84. mcf_uart_update(s);
  85. qemu_chr_accept_input(s->chr);
  86. return val;
  87. }
  88. case 0x10:
  89. /* TODO: Implement IPCR. */
  90. return 0;
  91. case 0x14:
  92. return s->isr;
  93. case 0x18:
  94. return s->bg1;
  95. case 0x1c:
  96. return s->bg2;
  97. default:
  98. return 0;
  99. }
  100. }
  101. /* Update TxRDY flag and set data if present and enabled. */
  102. static void mcf_uart_do_tx(mcf_uart_state *s)
  103. {
  104. if (s->tx_enabled && (s->sr & MCF_UART_TxEMP) == 0) {
  105. if (s->chr)
  106. qemu_chr_fe_write(s->chr, (unsigned char *)&s->tb, 1);
  107. s->sr |= MCF_UART_TxEMP;
  108. }
  109. if (s->tx_enabled) {
  110. s->sr |= MCF_UART_TxRDY;
  111. } else {
  112. s->sr &= ~MCF_UART_TxRDY;
  113. }
  114. }
  115. static void mcf_do_command(mcf_uart_state *s, uint8_t cmd)
  116. {
  117. /* Misc command. */
  118. switch ((cmd >> 4) & 3) {
  119. case 0: /* No-op. */
  120. break;
  121. case 1: /* Reset mode register pointer. */
  122. s->current_mr = 0;
  123. break;
  124. case 2: /* Reset receiver. */
  125. s->rx_enabled = 0;
  126. s->fifo_len = 0;
  127. s->sr &= ~(MCF_UART_RxRDY | MCF_UART_FFULL);
  128. break;
  129. case 3: /* Reset transmitter. */
  130. s->tx_enabled = 0;
  131. s->sr |= MCF_UART_TxEMP;
  132. s->sr &= ~MCF_UART_TxRDY;
  133. break;
  134. case 4: /* Reset error status. */
  135. break;
  136. case 5: /* Reset break-change interrupt. */
  137. s->isr &= ~MCF_UART_DBINT;
  138. break;
  139. case 6: /* Start break. */
  140. case 7: /* Stop break. */
  141. break;
  142. }
  143. /* Transmitter command. */
  144. switch ((cmd >> 2) & 3) {
  145. case 0: /* No-op. */
  146. break;
  147. case 1: /* Enable. */
  148. s->tx_enabled = 1;
  149. mcf_uart_do_tx(s);
  150. break;
  151. case 2: /* Disable. */
  152. s->tx_enabled = 0;
  153. mcf_uart_do_tx(s);
  154. break;
  155. case 3: /* Reserved. */
  156. fprintf(stderr, "mcf_uart: Bad TX command\n");
  157. break;
  158. }
  159. /* Receiver command. */
  160. switch (cmd & 3) {
  161. case 0: /* No-op. */
  162. break;
  163. case 1: /* Enable. */
  164. s->rx_enabled = 1;
  165. break;
  166. case 2:
  167. s->rx_enabled = 0;
  168. break;
  169. case 3: /* Reserved. */
  170. fprintf(stderr, "mcf_uart: Bad RX command\n");
  171. break;
  172. }
  173. }
  174. void mcf_uart_write(void *opaque, target_phys_addr_t addr,
  175. uint64_t val, unsigned size)
  176. {
  177. mcf_uart_state *s = (mcf_uart_state *)opaque;
  178. switch (addr & 0x3f) {
  179. case 0x00:
  180. s->mr[s->current_mr] = val;
  181. s->current_mr = 1;
  182. break;
  183. case 0x04:
  184. /* CSR is ignored. */
  185. break;
  186. case 0x08: /* Command Register. */
  187. mcf_do_command(s, val);
  188. break;
  189. case 0x0c: /* Transmit Buffer. */
  190. s->sr &= ~MCF_UART_TxEMP;
  191. s->tb = val;
  192. mcf_uart_do_tx(s);
  193. break;
  194. case 0x10:
  195. /* ACR is ignored. */
  196. break;
  197. case 0x14:
  198. s->imr = val;
  199. break;
  200. default:
  201. break;
  202. }
  203. mcf_uart_update(s);
  204. }
  205. static void mcf_uart_reset(mcf_uart_state *s)
  206. {
  207. s->fifo_len = 0;
  208. s->mr[0] = 0;
  209. s->mr[1] = 0;
  210. s->sr = MCF_UART_TxEMP;
  211. s->tx_enabled = 0;
  212. s->rx_enabled = 0;
  213. s->isr = 0;
  214. s->imr = 0;
  215. }
  216. static void mcf_uart_push_byte(mcf_uart_state *s, uint8_t data)
  217. {
  218. /* Break events overwrite the last byte if the fifo is full. */
  219. if (s->fifo_len == 4)
  220. s->fifo_len--;
  221. s->fifo[s->fifo_len] = data;
  222. s->fifo_len++;
  223. s->sr |= MCF_UART_RxRDY;
  224. if (s->fifo_len == 4)
  225. s->sr |= MCF_UART_FFULL;
  226. mcf_uart_update(s);
  227. }
  228. static void mcf_uart_event(void *opaque, int event)
  229. {
  230. mcf_uart_state *s = (mcf_uart_state *)opaque;
  231. switch (event) {
  232. case CHR_EVENT_BREAK:
  233. s->isr |= MCF_UART_DBINT;
  234. mcf_uart_push_byte(s, 0);
  235. break;
  236. default:
  237. break;
  238. }
  239. }
  240. static int mcf_uart_can_receive(void *opaque)
  241. {
  242. mcf_uart_state *s = (mcf_uart_state *)opaque;
  243. return s->rx_enabled && (s->sr & MCF_UART_FFULL) == 0;
  244. }
  245. static void mcf_uart_receive(void *opaque, const uint8_t *buf, int size)
  246. {
  247. mcf_uart_state *s = (mcf_uart_state *)opaque;
  248. mcf_uart_push_byte(s, buf[0]);
  249. }
  250. void *mcf_uart_init(qemu_irq irq, CharDriverState *chr)
  251. {
  252. mcf_uart_state *s;
  253. s = g_malloc0(sizeof(mcf_uart_state));
  254. s->chr = chr;
  255. s->irq = irq;
  256. if (chr) {
  257. qemu_chr_add_handlers(chr, mcf_uart_can_receive, mcf_uart_receive,
  258. mcf_uart_event, s);
  259. }
  260. mcf_uart_reset(s);
  261. return s;
  262. }
  263. static const MemoryRegionOps mcf_uart_ops = {
  264. .read = mcf_uart_read,
  265. .write = mcf_uart_write,
  266. .endianness = DEVICE_NATIVE_ENDIAN,
  267. };
  268. void mcf_uart_mm_init(MemoryRegion *sysmem,
  269. target_phys_addr_t base,
  270. qemu_irq irq,
  271. CharDriverState *chr)
  272. {
  273. mcf_uart_state *s;
  274. s = mcf_uart_init(irq, chr);
  275. memory_region_init_io(&s->iomem, &mcf_uart_ops, s, "uart", 0x40);
  276. memory_region_add_subregion(sysmem, base, &s->iomem);
  277. }