lm32_boards.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309
  1. /*
  2. * QEMU models for LatticeMico32 uclinux and evr32 boards.
  3. *
  4. * Copyright (c) 2010 Michael Walle <michael@walle.cc>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "sysbus.h"
  20. #include "hw.h"
  21. #include "net.h"
  22. #include "flash.h"
  23. #include "devices.h"
  24. #include "boards.h"
  25. #include "loader.h"
  26. #include "blockdev.h"
  27. #include "elf.h"
  28. #include "lm32_hwsetup.h"
  29. #include "lm32.h"
  30. #include "exec-memory.h"
  31. typedef struct {
  32. LM32CPU *cpu;
  33. target_phys_addr_t bootstrap_pc;
  34. target_phys_addr_t flash_base;
  35. target_phys_addr_t hwsetup_base;
  36. target_phys_addr_t initrd_base;
  37. size_t initrd_size;
  38. target_phys_addr_t cmdline_base;
  39. } ResetInfo;
  40. static void cpu_irq_handler(void *opaque, int irq, int level)
  41. {
  42. CPULM32State *env = opaque;
  43. if (level) {
  44. cpu_interrupt(env, CPU_INTERRUPT_HARD);
  45. } else {
  46. cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
  47. }
  48. }
  49. static void main_cpu_reset(void *opaque)
  50. {
  51. ResetInfo *reset_info = opaque;
  52. CPULM32State *env = &reset_info->cpu->env;
  53. cpu_reset(CPU(reset_info->cpu));
  54. /* init defaults */
  55. env->pc = (uint32_t)reset_info->bootstrap_pc;
  56. env->regs[R_R1] = (uint32_t)reset_info->hwsetup_base;
  57. env->regs[R_R2] = (uint32_t)reset_info->cmdline_base;
  58. env->regs[R_R3] = (uint32_t)reset_info->initrd_base;
  59. env->regs[R_R4] = (uint32_t)(reset_info->initrd_base +
  60. reset_info->initrd_size);
  61. env->eba = reset_info->flash_base;
  62. env->deba = reset_info->flash_base;
  63. }
  64. static void lm32_evr_init(ram_addr_t ram_size_not_used,
  65. const char *boot_device,
  66. const char *kernel_filename,
  67. const char *kernel_cmdline,
  68. const char *initrd_filename, const char *cpu_model)
  69. {
  70. LM32CPU *cpu;
  71. CPULM32State *env;
  72. DriveInfo *dinfo;
  73. MemoryRegion *address_space_mem = get_system_memory();
  74. MemoryRegion *phys_ram = g_new(MemoryRegion, 1);
  75. qemu_irq *cpu_irq, irq[32];
  76. ResetInfo *reset_info;
  77. int i;
  78. /* memory map */
  79. target_phys_addr_t flash_base = 0x04000000;
  80. size_t flash_sector_size = 256 * 1024;
  81. size_t flash_size = 32 * 1024 * 1024;
  82. target_phys_addr_t ram_base = 0x08000000;
  83. size_t ram_size = 64 * 1024 * 1024;
  84. target_phys_addr_t timer0_base = 0x80002000;
  85. target_phys_addr_t uart0_base = 0x80006000;
  86. target_phys_addr_t timer1_base = 0x8000a000;
  87. int uart0_irq = 0;
  88. int timer0_irq = 1;
  89. int timer1_irq = 3;
  90. reset_info = g_malloc0(sizeof(ResetInfo));
  91. if (cpu_model == NULL) {
  92. cpu_model = "lm32-full";
  93. }
  94. cpu = cpu_lm32_init(cpu_model);
  95. env = &cpu->env;
  96. reset_info->cpu = cpu;
  97. reset_info->flash_base = flash_base;
  98. memory_region_init_ram(phys_ram, "lm32_evr.sdram", ram_size);
  99. vmstate_register_ram_global(phys_ram);
  100. memory_region_add_subregion(address_space_mem, ram_base, phys_ram);
  101. dinfo = drive_get(IF_PFLASH, 0, 0);
  102. /* Spansion S29NS128P */
  103. pflash_cfi02_register(flash_base, NULL, "lm32_evr.flash", flash_size,
  104. dinfo ? dinfo->bdrv : NULL, flash_sector_size,
  105. flash_size / flash_sector_size, 1, 2,
  106. 0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
  107. /* create irq lines */
  108. cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
  109. env->pic_state = lm32_pic_init(*cpu_irq);
  110. for (i = 0; i < 32; i++) {
  111. irq[i] = qdev_get_gpio_in(env->pic_state, i);
  112. }
  113. sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
  114. sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
  115. sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
  116. /* make sure juart isn't the first chardev */
  117. env->juart_state = lm32_juart_init();
  118. reset_info->bootstrap_pc = flash_base;
  119. if (kernel_filename) {
  120. uint64_t entry;
  121. int kernel_size;
  122. kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
  123. 1, ELF_MACHINE, 0);
  124. reset_info->bootstrap_pc = entry;
  125. if (kernel_size < 0) {
  126. kernel_size = load_image_targphys(kernel_filename, ram_base,
  127. ram_size);
  128. reset_info->bootstrap_pc = ram_base;
  129. }
  130. if (kernel_size < 0) {
  131. fprintf(stderr, "qemu: could not load kernel '%s'\n",
  132. kernel_filename);
  133. exit(1);
  134. }
  135. }
  136. qemu_register_reset(main_cpu_reset, reset_info);
  137. }
  138. static void lm32_uclinux_init(ram_addr_t ram_size_not_used,
  139. const char *boot_device,
  140. const char *kernel_filename,
  141. const char *kernel_cmdline,
  142. const char *initrd_filename, const char *cpu_model)
  143. {
  144. LM32CPU *cpu;
  145. CPULM32State *env;
  146. DriveInfo *dinfo;
  147. MemoryRegion *address_space_mem = get_system_memory();
  148. MemoryRegion *phys_ram = g_new(MemoryRegion, 1);
  149. qemu_irq *cpu_irq, irq[32];
  150. HWSetup *hw;
  151. ResetInfo *reset_info;
  152. int i;
  153. /* memory map */
  154. target_phys_addr_t flash_base = 0x04000000;
  155. size_t flash_sector_size = 256 * 1024;
  156. size_t flash_size = 32 * 1024 * 1024;
  157. target_phys_addr_t ram_base = 0x08000000;
  158. size_t ram_size = 64 * 1024 * 1024;
  159. target_phys_addr_t uart0_base = 0x80000000;
  160. target_phys_addr_t timer0_base = 0x80002000;
  161. target_phys_addr_t timer1_base = 0x80010000;
  162. target_phys_addr_t timer2_base = 0x80012000;
  163. int uart0_irq = 0;
  164. int timer0_irq = 1;
  165. int timer1_irq = 20;
  166. int timer2_irq = 21;
  167. target_phys_addr_t hwsetup_base = 0x0bffe000;
  168. target_phys_addr_t cmdline_base = 0x0bfff000;
  169. target_phys_addr_t initrd_base = 0x08400000;
  170. size_t initrd_max = 0x01000000;
  171. reset_info = g_malloc0(sizeof(ResetInfo));
  172. if (cpu_model == NULL) {
  173. cpu_model = "lm32-full";
  174. }
  175. cpu = cpu_lm32_init(cpu_model);
  176. env = &cpu->env;
  177. reset_info->cpu = cpu;
  178. reset_info->flash_base = flash_base;
  179. memory_region_init_ram(phys_ram, "lm32_uclinux.sdram", ram_size);
  180. vmstate_register_ram_global(phys_ram);
  181. memory_region_add_subregion(address_space_mem, ram_base, phys_ram);
  182. dinfo = drive_get(IF_PFLASH, 0, 0);
  183. /* Spansion S29NS128P */
  184. pflash_cfi02_register(flash_base, NULL, "lm32_uclinux.flash", flash_size,
  185. dinfo ? dinfo->bdrv : NULL, flash_sector_size,
  186. flash_size / flash_sector_size, 1, 2,
  187. 0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
  188. /* create irq lines */
  189. cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
  190. env->pic_state = lm32_pic_init(*cpu_irq);
  191. for (i = 0; i < 32; i++) {
  192. irq[i] = qdev_get_gpio_in(env->pic_state, i);
  193. }
  194. sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
  195. sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
  196. sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
  197. sysbus_create_simple("lm32-timer", timer2_base, irq[timer2_irq]);
  198. /* make sure juart isn't the first chardev */
  199. env->juart_state = lm32_juart_init();
  200. reset_info->bootstrap_pc = flash_base;
  201. if (kernel_filename) {
  202. uint64_t entry;
  203. int kernel_size;
  204. kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
  205. 1, ELF_MACHINE, 0);
  206. reset_info->bootstrap_pc = entry;
  207. if (kernel_size < 0) {
  208. kernel_size = load_image_targphys(kernel_filename, ram_base,
  209. ram_size);
  210. reset_info->bootstrap_pc = ram_base;
  211. }
  212. if (kernel_size < 0) {
  213. fprintf(stderr, "qemu: could not load kernel '%s'\n",
  214. kernel_filename);
  215. exit(1);
  216. }
  217. }
  218. /* generate a rom with the hardware description */
  219. hw = hwsetup_init();
  220. hwsetup_add_cpu(hw, "LM32", 75000000);
  221. hwsetup_add_flash(hw, "flash", flash_base, flash_size);
  222. hwsetup_add_ddr_sdram(hw, "ddr_sdram", ram_base, ram_size);
  223. hwsetup_add_timer(hw, "timer0", timer0_base, timer0_irq);
  224. hwsetup_add_timer(hw, "timer1_dev_only", timer1_base, timer1_irq);
  225. hwsetup_add_timer(hw, "timer2_dev_only", timer2_base, timer2_irq);
  226. hwsetup_add_uart(hw, "uart", uart0_base, uart0_irq);
  227. hwsetup_add_trailer(hw);
  228. hwsetup_create_rom(hw, hwsetup_base);
  229. hwsetup_free(hw);
  230. reset_info->hwsetup_base = hwsetup_base;
  231. if (kernel_cmdline && strlen(kernel_cmdline)) {
  232. pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE,
  233. kernel_cmdline);
  234. reset_info->cmdline_base = cmdline_base;
  235. }
  236. if (initrd_filename) {
  237. size_t initrd_size;
  238. initrd_size = load_image_targphys(initrd_filename, initrd_base,
  239. initrd_max);
  240. reset_info->initrd_base = initrd_base;
  241. reset_info->initrd_size = initrd_size;
  242. }
  243. qemu_register_reset(main_cpu_reset, reset_info);
  244. }
  245. static QEMUMachine lm32_evr_machine = {
  246. .name = "lm32-evr",
  247. .desc = "LatticeMico32 EVR32 eval system",
  248. .init = lm32_evr_init,
  249. .is_default = 1
  250. };
  251. static QEMUMachine lm32_uclinux_machine = {
  252. .name = "lm32-uclinux",
  253. .desc = "lm32 platform for uClinux and u-boot by Theobroma Systems",
  254. .init = lm32_uclinux_init,
  255. .is_default = 0
  256. };
  257. static void lm32_machine_init(void)
  258. {
  259. qemu_register_machine(&lm32_uclinux_machine);
  260. qemu_register_machine(&lm32_evr_machine);
  261. }
  262. machine_init(lm32_machine_init);