intel-hda.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308
  1. /*
  2. * Copyright (C) 2010 Red Hat, Inc.
  3. *
  4. * written by Gerd Hoffmann <kraxel@redhat.com>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 or
  9. * (at your option) version 3 of the License.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "hw.h"
  20. #include "pci.h"
  21. #include "msi.h"
  22. #include "qemu-timer.h"
  23. #include "audiodev.h"
  24. #include "intel-hda.h"
  25. #include "intel-hda-defs.h"
  26. #include "dma.h"
  27. /* --------------------------------------------------------------------- */
  28. /* hda bus */
  29. static Property hda_props[] = {
  30. DEFINE_PROP_UINT32("cad", HDACodecDevice, cad, -1),
  31. DEFINE_PROP_END_OF_LIST()
  32. };
  33. static const TypeInfo hda_codec_bus_info = {
  34. .name = TYPE_HDA_BUS,
  35. .parent = TYPE_BUS,
  36. .instance_size = sizeof(HDACodecBus),
  37. };
  38. void hda_codec_bus_init(DeviceState *dev, HDACodecBus *bus,
  39. hda_codec_response_func response,
  40. hda_codec_xfer_func xfer)
  41. {
  42. qbus_create_inplace(&bus->qbus, TYPE_HDA_BUS, dev, NULL);
  43. bus->response = response;
  44. bus->xfer = xfer;
  45. }
  46. static int hda_codec_dev_init(DeviceState *qdev)
  47. {
  48. HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, qdev->parent_bus);
  49. HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev);
  50. HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev);
  51. if (dev->cad == -1) {
  52. dev->cad = bus->next_cad;
  53. }
  54. if (dev->cad >= 15) {
  55. return -1;
  56. }
  57. bus->next_cad = dev->cad + 1;
  58. return cdc->init(dev);
  59. }
  60. static int hda_codec_dev_exit(DeviceState *qdev)
  61. {
  62. HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev);
  63. HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev);
  64. if (cdc->exit) {
  65. cdc->exit(dev);
  66. }
  67. return 0;
  68. }
  69. HDACodecDevice *hda_codec_find(HDACodecBus *bus, uint32_t cad)
  70. {
  71. BusChild *kid;
  72. HDACodecDevice *cdev;
  73. QTAILQ_FOREACH(kid, &bus->qbus.children, sibling) {
  74. DeviceState *qdev = kid->child;
  75. cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
  76. if (cdev->cad == cad) {
  77. return cdev;
  78. }
  79. }
  80. return NULL;
  81. }
  82. void hda_codec_response(HDACodecDevice *dev, bool solicited, uint32_t response)
  83. {
  84. HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
  85. bus->response(dev, solicited, response);
  86. }
  87. bool hda_codec_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
  88. uint8_t *buf, uint32_t len)
  89. {
  90. HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
  91. return bus->xfer(dev, stnr, output, buf, len);
  92. }
  93. /* --------------------------------------------------------------------- */
  94. /* intel hda emulation */
  95. typedef struct IntelHDAStream IntelHDAStream;
  96. typedef struct IntelHDAState IntelHDAState;
  97. typedef struct IntelHDAReg IntelHDAReg;
  98. typedef struct bpl {
  99. uint64_t addr;
  100. uint32_t len;
  101. uint32_t flags;
  102. } bpl;
  103. struct IntelHDAStream {
  104. /* registers */
  105. uint32_t ctl;
  106. uint32_t lpib;
  107. uint32_t cbl;
  108. uint32_t lvi;
  109. uint32_t fmt;
  110. uint32_t bdlp_lbase;
  111. uint32_t bdlp_ubase;
  112. /* state */
  113. bpl *bpl;
  114. uint32_t bentries;
  115. uint32_t bsize, be, bp;
  116. };
  117. struct IntelHDAState {
  118. PCIDevice pci;
  119. const char *name;
  120. HDACodecBus codecs;
  121. /* registers */
  122. uint32_t g_ctl;
  123. uint32_t wake_en;
  124. uint32_t state_sts;
  125. uint32_t int_ctl;
  126. uint32_t int_sts;
  127. uint32_t wall_clk;
  128. uint32_t corb_lbase;
  129. uint32_t corb_ubase;
  130. uint32_t corb_rp;
  131. uint32_t corb_wp;
  132. uint32_t corb_ctl;
  133. uint32_t corb_sts;
  134. uint32_t corb_size;
  135. uint32_t rirb_lbase;
  136. uint32_t rirb_ubase;
  137. uint32_t rirb_wp;
  138. uint32_t rirb_cnt;
  139. uint32_t rirb_ctl;
  140. uint32_t rirb_sts;
  141. uint32_t rirb_size;
  142. uint32_t dp_lbase;
  143. uint32_t dp_ubase;
  144. uint32_t icw;
  145. uint32_t irr;
  146. uint32_t ics;
  147. /* streams */
  148. IntelHDAStream st[8];
  149. /* state */
  150. MemoryRegion mmio;
  151. uint32_t rirb_count;
  152. int64_t wall_base_ns;
  153. /* debug logging */
  154. const IntelHDAReg *last_reg;
  155. uint32_t last_val;
  156. uint32_t last_write;
  157. uint32_t last_sec;
  158. uint32_t repeat_count;
  159. /* properties */
  160. uint32_t debug;
  161. uint32_t msi;
  162. };
  163. struct IntelHDAReg {
  164. const char *name; /* register name */
  165. uint32_t size; /* size in bytes */
  166. uint32_t reset; /* reset value */
  167. uint32_t wmask; /* write mask */
  168. uint32_t wclear; /* write 1 to clear bits */
  169. uint32_t offset; /* location in IntelHDAState */
  170. uint32_t shift; /* byte access entries for dwords */
  171. uint32_t stream;
  172. void (*whandler)(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old);
  173. void (*rhandler)(IntelHDAState *d, const IntelHDAReg *reg);
  174. };
  175. static void intel_hda_reset(DeviceState *dev);
  176. /* --------------------------------------------------------------------- */
  177. static target_phys_addr_t intel_hda_addr(uint32_t lbase, uint32_t ubase)
  178. {
  179. target_phys_addr_t addr;
  180. #if TARGET_PHYS_ADDR_BITS == 32
  181. addr = lbase;
  182. #else
  183. addr = ubase;
  184. addr <<= 32;
  185. addr |= lbase;
  186. #endif
  187. return addr;
  188. }
  189. static void intel_hda_update_int_sts(IntelHDAState *d)
  190. {
  191. uint32_t sts = 0;
  192. uint32_t i;
  193. /* update controller status */
  194. if (d->rirb_sts & ICH6_RBSTS_IRQ) {
  195. sts |= (1 << 30);
  196. }
  197. if (d->rirb_sts & ICH6_RBSTS_OVERRUN) {
  198. sts |= (1 << 30);
  199. }
  200. if (d->state_sts & d->wake_en) {
  201. sts |= (1 << 30);
  202. }
  203. /* update stream status */
  204. for (i = 0; i < 8; i++) {
  205. /* buffer completion interrupt */
  206. if (d->st[i].ctl & (1 << 26)) {
  207. sts |= (1 << i);
  208. }
  209. }
  210. /* update global status */
  211. if (sts & d->int_ctl) {
  212. sts |= (1 << 31);
  213. }
  214. d->int_sts = sts;
  215. }
  216. static void intel_hda_update_irq(IntelHDAState *d)
  217. {
  218. int msi = d->msi && msi_enabled(&d->pci);
  219. int level;
  220. intel_hda_update_int_sts(d);
  221. if (d->int_sts & (1 << 31) && d->int_ctl & (1 << 31)) {
  222. level = 1;
  223. } else {
  224. level = 0;
  225. }
  226. dprint(d, 2, "%s: level %d [%s]\n", __FUNCTION__,
  227. level, msi ? "msi" : "intx");
  228. if (msi) {
  229. if (level) {
  230. msi_notify(&d->pci, 0);
  231. }
  232. } else {
  233. qemu_set_irq(d->pci.irq[0], level);
  234. }
  235. }
  236. static int intel_hda_send_command(IntelHDAState *d, uint32_t verb)
  237. {
  238. uint32_t cad, nid, data;
  239. HDACodecDevice *codec;
  240. HDACodecDeviceClass *cdc;
  241. cad = (verb >> 28) & 0x0f;
  242. if (verb & (1 << 27)) {
  243. /* indirect node addressing, not specified in HDA 1.0 */
  244. dprint(d, 1, "%s: indirect node addressing (guest bug?)\n", __FUNCTION__);
  245. return -1;
  246. }
  247. nid = (verb >> 20) & 0x7f;
  248. data = verb & 0xfffff;
  249. codec = hda_codec_find(&d->codecs, cad);
  250. if (codec == NULL) {
  251. dprint(d, 1, "%s: addressed non-existing codec\n", __FUNCTION__);
  252. return -1;
  253. }
  254. cdc = HDA_CODEC_DEVICE_GET_CLASS(codec);
  255. cdc->command(codec, nid, data);
  256. return 0;
  257. }
  258. static void intel_hda_corb_run(IntelHDAState *d)
  259. {
  260. target_phys_addr_t addr;
  261. uint32_t rp, verb;
  262. if (d->ics & ICH6_IRS_BUSY) {
  263. dprint(d, 2, "%s: [icw] verb 0x%08x\n", __FUNCTION__, d->icw);
  264. intel_hda_send_command(d, d->icw);
  265. return;
  266. }
  267. for (;;) {
  268. if (!(d->corb_ctl & ICH6_CORBCTL_RUN)) {
  269. dprint(d, 2, "%s: !run\n", __FUNCTION__);
  270. return;
  271. }
  272. if ((d->corb_rp & 0xff) == d->corb_wp) {
  273. dprint(d, 2, "%s: corb ring empty\n", __FUNCTION__);
  274. return;
  275. }
  276. if (d->rirb_count == d->rirb_cnt) {
  277. dprint(d, 2, "%s: rirb count reached\n", __FUNCTION__);
  278. return;
  279. }
  280. rp = (d->corb_rp + 1) & 0xff;
  281. addr = intel_hda_addr(d->corb_lbase, d->corb_ubase);
  282. verb = ldl_le_pci_dma(&d->pci, addr + 4*rp);
  283. d->corb_rp = rp;
  284. dprint(d, 2, "%s: [rp 0x%x] verb 0x%08x\n", __FUNCTION__, rp, verb);
  285. intel_hda_send_command(d, verb);
  286. }
  287. }
  288. static void intel_hda_response(HDACodecDevice *dev, bool solicited, uint32_t response)
  289. {
  290. HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
  291. IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
  292. target_phys_addr_t addr;
  293. uint32_t wp, ex;
  294. if (d->ics & ICH6_IRS_BUSY) {
  295. dprint(d, 2, "%s: [irr] response 0x%x, cad 0x%x\n",
  296. __FUNCTION__, response, dev->cad);
  297. d->irr = response;
  298. d->ics &= ~(ICH6_IRS_BUSY | 0xf0);
  299. d->ics |= (ICH6_IRS_VALID | (dev->cad << 4));
  300. return;
  301. }
  302. if (!(d->rirb_ctl & ICH6_RBCTL_DMA_EN)) {
  303. dprint(d, 1, "%s: rirb dma disabled, drop codec response\n", __FUNCTION__);
  304. return;
  305. }
  306. ex = (solicited ? 0 : (1 << 4)) | dev->cad;
  307. wp = (d->rirb_wp + 1) & 0xff;
  308. addr = intel_hda_addr(d->rirb_lbase, d->rirb_ubase);
  309. stl_le_pci_dma(&d->pci, addr + 8*wp, response);
  310. stl_le_pci_dma(&d->pci, addr + 8*wp + 4, ex);
  311. d->rirb_wp = wp;
  312. dprint(d, 2, "%s: [wp 0x%x] response 0x%x, extra 0x%x\n",
  313. __FUNCTION__, wp, response, ex);
  314. d->rirb_count++;
  315. if (d->rirb_count == d->rirb_cnt) {
  316. dprint(d, 2, "%s: rirb count reached (%d)\n", __FUNCTION__, d->rirb_count);
  317. if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
  318. d->rirb_sts |= ICH6_RBSTS_IRQ;
  319. intel_hda_update_irq(d);
  320. }
  321. } else if ((d->corb_rp & 0xff) == d->corb_wp) {
  322. dprint(d, 2, "%s: corb ring empty (%d/%d)\n", __FUNCTION__,
  323. d->rirb_count, d->rirb_cnt);
  324. if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
  325. d->rirb_sts |= ICH6_RBSTS_IRQ;
  326. intel_hda_update_irq(d);
  327. }
  328. }
  329. }
  330. static bool intel_hda_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
  331. uint8_t *buf, uint32_t len)
  332. {
  333. HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
  334. IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
  335. target_phys_addr_t addr;
  336. uint32_t s, copy, left;
  337. IntelHDAStream *st;
  338. bool irq = false;
  339. st = output ? d->st + 4 : d->st;
  340. for (s = 0; s < 4; s++) {
  341. if (stnr == ((st[s].ctl >> 20) & 0x0f)) {
  342. st = st + s;
  343. break;
  344. }
  345. }
  346. if (s == 4) {
  347. return false;
  348. }
  349. if (st->bpl == NULL) {
  350. return false;
  351. }
  352. if (st->ctl & (1 << 26)) {
  353. /*
  354. * Wait with the next DMA xfer until the guest
  355. * has acked the buffer completion interrupt
  356. */
  357. return false;
  358. }
  359. left = len;
  360. while (left > 0) {
  361. copy = left;
  362. if (copy > st->bsize - st->lpib)
  363. copy = st->bsize - st->lpib;
  364. if (copy > st->bpl[st->be].len - st->bp)
  365. copy = st->bpl[st->be].len - st->bp;
  366. dprint(d, 3, "dma: entry %d, pos %d/%d, copy %d\n",
  367. st->be, st->bp, st->bpl[st->be].len, copy);
  368. pci_dma_rw(&d->pci, st->bpl[st->be].addr + st->bp, buf, copy, !output);
  369. st->lpib += copy;
  370. st->bp += copy;
  371. buf += copy;
  372. left -= copy;
  373. if (st->bpl[st->be].len == st->bp) {
  374. /* bpl entry filled */
  375. if (st->bpl[st->be].flags & 0x01) {
  376. irq = true;
  377. }
  378. st->bp = 0;
  379. st->be++;
  380. if (st->be == st->bentries) {
  381. /* bpl wrap around */
  382. st->be = 0;
  383. st->lpib = 0;
  384. }
  385. }
  386. }
  387. if (d->dp_lbase & 0x01) {
  388. addr = intel_hda_addr(d->dp_lbase & ~0x01, d->dp_ubase);
  389. stl_le_pci_dma(&d->pci, addr + 8*s, st->lpib);
  390. }
  391. dprint(d, 3, "dma: --\n");
  392. if (irq) {
  393. st->ctl |= (1 << 26); /* buffer completion interrupt */
  394. intel_hda_update_irq(d);
  395. }
  396. return true;
  397. }
  398. static void intel_hda_parse_bdl(IntelHDAState *d, IntelHDAStream *st)
  399. {
  400. target_phys_addr_t addr;
  401. uint8_t buf[16];
  402. uint32_t i;
  403. addr = intel_hda_addr(st->bdlp_lbase, st->bdlp_ubase);
  404. st->bentries = st->lvi +1;
  405. g_free(st->bpl);
  406. st->bpl = g_malloc(sizeof(bpl) * st->bentries);
  407. for (i = 0; i < st->bentries; i++, addr += 16) {
  408. pci_dma_read(&d->pci, addr, buf, 16);
  409. st->bpl[i].addr = le64_to_cpu(*(uint64_t *)buf);
  410. st->bpl[i].len = le32_to_cpu(*(uint32_t *)(buf + 8));
  411. st->bpl[i].flags = le32_to_cpu(*(uint32_t *)(buf + 12));
  412. dprint(d, 1, "bdl/%d: 0x%" PRIx64 " +0x%x, 0x%x\n",
  413. i, st->bpl[i].addr, st->bpl[i].len, st->bpl[i].flags);
  414. }
  415. st->bsize = st->cbl;
  416. st->lpib = 0;
  417. st->be = 0;
  418. st->bp = 0;
  419. }
  420. static void intel_hda_notify_codecs(IntelHDAState *d, uint32_t stream, bool running, bool output)
  421. {
  422. BusChild *kid;
  423. HDACodecDevice *cdev;
  424. QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) {
  425. DeviceState *qdev = kid->child;
  426. HDACodecDeviceClass *cdc;
  427. cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
  428. cdc = HDA_CODEC_DEVICE_GET_CLASS(cdev);
  429. if (cdc->stream) {
  430. cdc->stream(cdev, stream, running, output);
  431. }
  432. }
  433. }
  434. /* --------------------------------------------------------------------- */
  435. static void intel_hda_set_g_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  436. {
  437. if ((d->g_ctl & ICH6_GCTL_RESET) == 0) {
  438. intel_hda_reset(&d->pci.qdev);
  439. }
  440. }
  441. static void intel_hda_set_wake_en(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  442. {
  443. intel_hda_update_irq(d);
  444. }
  445. static void intel_hda_set_state_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  446. {
  447. intel_hda_update_irq(d);
  448. }
  449. static void intel_hda_set_int_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  450. {
  451. intel_hda_update_irq(d);
  452. }
  453. static void intel_hda_get_wall_clk(IntelHDAState *d, const IntelHDAReg *reg)
  454. {
  455. int64_t ns;
  456. ns = qemu_get_clock_ns(vm_clock) - d->wall_base_ns;
  457. d->wall_clk = (uint32_t)(ns * 24 / 1000); /* 24 MHz */
  458. }
  459. static void intel_hda_set_corb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  460. {
  461. intel_hda_corb_run(d);
  462. }
  463. static void intel_hda_set_corb_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  464. {
  465. intel_hda_corb_run(d);
  466. }
  467. static void intel_hda_set_rirb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  468. {
  469. if (d->rirb_wp & ICH6_RIRBWP_RST) {
  470. d->rirb_wp = 0;
  471. }
  472. }
  473. static void intel_hda_set_rirb_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  474. {
  475. intel_hda_update_irq(d);
  476. if ((old & ICH6_RBSTS_IRQ) && !(d->rirb_sts & ICH6_RBSTS_IRQ)) {
  477. /* cleared ICH6_RBSTS_IRQ */
  478. d->rirb_count = 0;
  479. intel_hda_corb_run(d);
  480. }
  481. }
  482. static void intel_hda_set_ics(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  483. {
  484. if (d->ics & ICH6_IRS_BUSY) {
  485. intel_hda_corb_run(d);
  486. }
  487. }
  488. static void intel_hda_set_st_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  489. {
  490. bool output = reg->stream >= 4;
  491. IntelHDAStream *st = d->st + reg->stream;
  492. if (st->ctl & 0x01) {
  493. /* reset */
  494. dprint(d, 1, "st #%d: reset\n", reg->stream);
  495. st->ctl = 0;
  496. }
  497. if ((st->ctl & 0x02) != (old & 0x02)) {
  498. uint32_t stnr = (st->ctl >> 20) & 0x0f;
  499. /* run bit flipped */
  500. if (st->ctl & 0x02) {
  501. /* start */
  502. dprint(d, 1, "st #%d: start %d (ring buf %d bytes)\n",
  503. reg->stream, stnr, st->cbl);
  504. intel_hda_parse_bdl(d, st);
  505. intel_hda_notify_codecs(d, stnr, true, output);
  506. } else {
  507. /* stop */
  508. dprint(d, 1, "st #%d: stop %d\n", reg->stream, stnr);
  509. intel_hda_notify_codecs(d, stnr, false, output);
  510. }
  511. }
  512. intel_hda_update_irq(d);
  513. }
  514. /* --------------------------------------------------------------------- */
  515. #define ST_REG(_n, _o) (0x80 + (_n) * 0x20 + (_o))
  516. static const struct IntelHDAReg regtab[] = {
  517. /* global */
  518. [ ICH6_REG_GCAP ] = {
  519. .name = "GCAP",
  520. .size = 2,
  521. .reset = 0x4401,
  522. },
  523. [ ICH6_REG_VMIN ] = {
  524. .name = "VMIN",
  525. .size = 1,
  526. },
  527. [ ICH6_REG_VMAJ ] = {
  528. .name = "VMAJ",
  529. .size = 1,
  530. .reset = 1,
  531. },
  532. [ ICH6_REG_OUTPAY ] = {
  533. .name = "OUTPAY",
  534. .size = 2,
  535. .reset = 0x3c,
  536. },
  537. [ ICH6_REG_INPAY ] = {
  538. .name = "INPAY",
  539. .size = 2,
  540. .reset = 0x1d,
  541. },
  542. [ ICH6_REG_GCTL ] = {
  543. .name = "GCTL",
  544. .size = 4,
  545. .wmask = 0x0103,
  546. .offset = offsetof(IntelHDAState, g_ctl),
  547. .whandler = intel_hda_set_g_ctl,
  548. },
  549. [ ICH6_REG_WAKEEN ] = {
  550. .name = "WAKEEN",
  551. .size = 2,
  552. .wmask = 0x7fff,
  553. .offset = offsetof(IntelHDAState, wake_en),
  554. .whandler = intel_hda_set_wake_en,
  555. },
  556. [ ICH6_REG_STATESTS ] = {
  557. .name = "STATESTS",
  558. .size = 2,
  559. .wmask = 0x7fff,
  560. .wclear = 0x7fff,
  561. .offset = offsetof(IntelHDAState, state_sts),
  562. .whandler = intel_hda_set_state_sts,
  563. },
  564. /* interrupts */
  565. [ ICH6_REG_INTCTL ] = {
  566. .name = "INTCTL",
  567. .size = 4,
  568. .wmask = 0xc00000ff,
  569. .offset = offsetof(IntelHDAState, int_ctl),
  570. .whandler = intel_hda_set_int_ctl,
  571. },
  572. [ ICH6_REG_INTSTS ] = {
  573. .name = "INTSTS",
  574. .size = 4,
  575. .wmask = 0xc00000ff,
  576. .wclear = 0xc00000ff,
  577. .offset = offsetof(IntelHDAState, int_sts),
  578. },
  579. /* misc */
  580. [ ICH6_REG_WALLCLK ] = {
  581. .name = "WALLCLK",
  582. .size = 4,
  583. .offset = offsetof(IntelHDAState, wall_clk),
  584. .rhandler = intel_hda_get_wall_clk,
  585. },
  586. [ ICH6_REG_WALLCLK + 0x2000 ] = {
  587. .name = "WALLCLK(alias)",
  588. .size = 4,
  589. .offset = offsetof(IntelHDAState, wall_clk),
  590. .rhandler = intel_hda_get_wall_clk,
  591. },
  592. /* dma engine */
  593. [ ICH6_REG_CORBLBASE ] = {
  594. .name = "CORBLBASE",
  595. .size = 4,
  596. .wmask = 0xffffff80,
  597. .offset = offsetof(IntelHDAState, corb_lbase),
  598. },
  599. [ ICH6_REG_CORBUBASE ] = {
  600. .name = "CORBUBASE",
  601. .size = 4,
  602. .wmask = 0xffffffff,
  603. .offset = offsetof(IntelHDAState, corb_ubase),
  604. },
  605. [ ICH6_REG_CORBWP ] = {
  606. .name = "CORBWP",
  607. .size = 2,
  608. .wmask = 0xff,
  609. .offset = offsetof(IntelHDAState, corb_wp),
  610. .whandler = intel_hda_set_corb_wp,
  611. },
  612. [ ICH6_REG_CORBRP ] = {
  613. .name = "CORBRP",
  614. .size = 2,
  615. .wmask = 0x80ff,
  616. .offset = offsetof(IntelHDAState, corb_rp),
  617. },
  618. [ ICH6_REG_CORBCTL ] = {
  619. .name = "CORBCTL",
  620. .size = 1,
  621. .wmask = 0x03,
  622. .offset = offsetof(IntelHDAState, corb_ctl),
  623. .whandler = intel_hda_set_corb_ctl,
  624. },
  625. [ ICH6_REG_CORBSTS ] = {
  626. .name = "CORBSTS",
  627. .size = 1,
  628. .wmask = 0x01,
  629. .wclear = 0x01,
  630. .offset = offsetof(IntelHDAState, corb_sts),
  631. },
  632. [ ICH6_REG_CORBSIZE ] = {
  633. .name = "CORBSIZE",
  634. .size = 1,
  635. .reset = 0x42,
  636. .offset = offsetof(IntelHDAState, corb_size),
  637. },
  638. [ ICH6_REG_RIRBLBASE ] = {
  639. .name = "RIRBLBASE",
  640. .size = 4,
  641. .wmask = 0xffffff80,
  642. .offset = offsetof(IntelHDAState, rirb_lbase),
  643. },
  644. [ ICH6_REG_RIRBUBASE ] = {
  645. .name = "RIRBUBASE",
  646. .size = 4,
  647. .wmask = 0xffffffff,
  648. .offset = offsetof(IntelHDAState, rirb_ubase),
  649. },
  650. [ ICH6_REG_RIRBWP ] = {
  651. .name = "RIRBWP",
  652. .size = 2,
  653. .wmask = 0x8000,
  654. .offset = offsetof(IntelHDAState, rirb_wp),
  655. .whandler = intel_hda_set_rirb_wp,
  656. },
  657. [ ICH6_REG_RINTCNT ] = {
  658. .name = "RINTCNT",
  659. .size = 2,
  660. .wmask = 0xff,
  661. .offset = offsetof(IntelHDAState, rirb_cnt),
  662. },
  663. [ ICH6_REG_RIRBCTL ] = {
  664. .name = "RIRBCTL",
  665. .size = 1,
  666. .wmask = 0x07,
  667. .offset = offsetof(IntelHDAState, rirb_ctl),
  668. },
  669. [ ICH6_REG_RIRBSTS ] = {
  670. .name = "RIRBSTS",
  671. .size = 1,
  672. .wmask = 0x05,
  673. .wclear = 0x05,
  674. .offset = offsetof(IntelHDAState, rirb_sts),
  675. .whandler = intel_hda_set_rirb_sts,
  676. },
  677. [ ICH6_REG_RIRBSIZE ] = {
  678. .name = "RIRBSIZE",
  679. .size = 1,
  680. .reset = 0x42,
  681. .offset = offsetof(IntelHDAState, rirb_size),
  682. },
  683. [ ICH6_REG_DPLBASE ] = {
  684. .name = "DPLBASE",
  685. .size = 4,
  686. .wmask = 0xffffff81,
  687. .offset = offsetof(IntelHDAState, dp_lbase),
  688. },
  689. [ ICH6_REG_DPUBASE ] = {
  690. .name = "DPUBASE",
  691. .size = 4,
  692. .wmask = 0xffffffff,
  693. .offset = offsetof(IntelHDAState, dp_ubase),
  694. },
  695. [ ICH6_REG_IC ] = {
  696. .name = "ICW",
  697. .size = 4,
  698. .wmask = 0xffffffff,
  699. .offset = offsetof(IntelHDAState, icw),
  700. },
  701. [ ICH6_REG_IR ] = {
  702. .name = "IRR",
  703. .size = 4,
  704. .offset = offsetof(IntelHDAState, irr),
  705. },
  706. [ ICH6_REG_IRS ] = {
  707. .name = "ICS",
  708. .size = 2,
  709. .wmask = 0x0003,
  710. .wclear = 0x0002,
  711. .offset = offsetof(IntelHDAState, ics),
  712. .whandler = intel_hda_set_ics,
  713. },
  714. #define HDA_STREAM(_t, _i) \
  715. [ ST_REG(_i, ICH6_REG_SD_CTL) ] = { \
  716. .stream = _i, \
  717. .name = _t stringify(_i) " CTL", \
  718. .size = 4, \
  719. .wmask = 0x1cff001f, \
  720. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  721. .whandler = intel_hda_set_st_ctl, \
  722. }, \
  723. [ ST_REG(_i, ICH6_REG_SD_CTL) + 2] = { \
  724. .stream = _i, \
  725. .name = _t stringify(_i) " CTL(stnr)", \
  726. .size = 1, \
  727. .shift = 16, \
  728. .wmask = 0x00ff0000, \
  729. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  730. .whandler = intel_hda_set_st_ctl, \
  731. }, \
  732. [ ST_REG(_i, ICH6_REG_SD_STS)] = { \
  733. .stream = _i, \
  734. .name = _t stringify(_i) " CTL(sts)", \
  735. .size = 1, \
  736. .shift = 24, \
  737. .wmask = 0x1c000000, \
  738. .wclear = 0x1c000000, \
  739. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  740. .whandler = intel_hda_set_st_ctl, \
  741. }, \
  742. [ ST_REG(_i, ICH6_REG_SD_LPIB) ] = { \
  743. .stream = _i, \
  744. .name = _t stringify(_i) " LPIB", \
  745. .size = 4, \
  746. .offset = offsetof(IntelHDAState, st[_i].lpib), \
  747. }, \
  748. [ ST_REG(_i, ICH6_REG_SD_LPIB) + 0x2000 ] = { \
  749. .stream = _i, \
  750. .name = _t stringify(_i) " LPIB(alias)", \
  751. .size = 4, \
  752. .offset = offsetof(IntelHDAState, st[_i].lpib), \
  753. }, \
  754. [ ST_REG(_i, ICH6_REG_SD_CBL) ] = { \
  755. .stream = _i, \
  756. .name = _t stringify(_i) " CBL", \
  757. .size = 4, \
  758. .wmask = 0xffffffff, \
  759. .offset = offsetof(IntelHDAState, st[_i].cbl), \
  760. }, \
  761. [ ST_REG(_i, ICH6_REG_SD_LVI) ] = { \
  762. .stream = _i, \
  763. .name = _t stringify(_i) " LVI", \
  764. .size = 2, \
  765. .wmask = 0x00ff, \
  766. .offset = offsetof(IntelHDAState, st[_i].lvi), \
  767. }, \
  768. [ ST_REG(_i, ICH6_REG_SD_FIFOSIZE) ] = { \
  769. .stream = _i, \
  770. .name = _t stringify(_i) " FIFOS", \
  771. .size = 2, \
  772. .reset = HDA_BUFFER_SIZE, \
  773. }, \
  774. [ ST_REG(_i, ICH6_REG_SD_FORMAT) ] = { \
  775. .stream = _i, \
  776. .name = _t stringify(_i) " FMT", \
  777. .size = 2, \
  778. .wmask = 0x7f7f, \
  779. .offset = offsetof(IntelHDAState, st[_i].fmt), \
  780. }, \
  781. [ ST_REG(_i, ICH6_REG_SD_BDLPL) ] = { \
  782. .stream = _i, \
  783. .name = _t stringify(_i) " BDLPL", \
  784. .size = 4, \
  785. .wmask = 0xffffff80, \
  786. .offset = offsetof(IntelHDAState, st[_i].bdlp_lbase), \
  787. }, \
  788. [ ST_REG(_i, ICH6_REG_SD_BDLPU) ] = { \
  789. .stream = _i, \
  790. .name = _t stringify(_i) " BDLPU", \
  791. .size = 4, \
  792. .wmask = 0xffffffff, \
  793. .offset = offsetof(IntelHDAState, st[_i].bdlp_ubase), \
  794. }, \
  795. HDA_STREAM("IN", 0)
  796. HDA_STREAM("IN", 1)
  797. HDA_STREAM("IN", 2)
  798. HDA_STREAM("IN", 3)
  799. HDA_STREAM("OUT", 4)
  800. HDA_STREAM("OUT", 5)
  801. HDA_STREAM("OUT", 6)
  802. HDA_STREAM("OUT", 7)
  803. };
  804. static const IntelHDAReg *intel_hda_reg_find(IntelHDAState *d, target_phys_addr_t addr)
  805. {
  806. const IntelHDAReg *reg;
  807. if (addr >= sizeof(regtab)/sizeof(regtab[0])) {
  808. goto noreg;
  809. }
  810. reg = regtab+addr;
  811. if (reg->name == NULL) {
  812. goto noreg;
  813. }
  814. return reg;
  815. noreg:
  816. dprint(d, 1, "unknown register, addr 0x%x\n", (int) addr);
  817. return NULL;
  818. }
  819. static uint32_t *intel_hda_reg_addr(IntelHDAState *d, const IntelHDAReg *reg)
  820. {
  821. uint8_t *addr = (void*)d;
  822. addr += reg->offset;
  823. return (uint32_t*)addr;
  824. }
  825. static void intel_hda_reg_write(IntelHDAState *d, const IntelHDAReg *reg, uint32_t val,
  826. uint32_t wmask)
  827. {
  828. uint32_t *addr;
  829. uint32_t old;
  830. if (!reg) {
  831. return;
  832. }
  833. if (d->debug) {
  834. time_t now = time(NULL);
  835. if (d->last_write && d->last_reg == reg && d->last_val == val) {
  836. d->repeat_count++;
  837. if (d->last_sec != now) {
  838. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  839. d->last_sec = now;
  840. d->repeat_count = 0;
  841. }
  842. } else {
  843. if (d->repeat_count) {
  844. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  845. }
  846. dprint(d, 2, "write %-16s: 0x%x (%x)\n", reg->name, val, wmask);
  847. d->last_write = 1;
  848. d->last_reg = reg;
  849. d->last_val = val;
  850. d->last_sec = now;
  851. d->repeat_count = 0;
  852. }
  853. }
  854. assert(reg->offset != 0);
  855. addr = intel_hda_reg_addr(d, reg);
  856. old = *addr;
  857. if (reg->shift) {
  858. val <<= reg->shift;
  859. wmask <<= reg->shift;
  860. }
  861. wmask &= reg->wmask;
  862. *addr &= ~wmask;
  863. *addr |= wmask & val;
  864. *addr &= ~(val & reg->wclear);
  865. if (reg->whandler) {
  866. reg->whandler(d, reg, old);
  867. }
  868. }
  869. static uint32_t intel_hda_reg_read(IntelHDAState *d, const IntelHDAReg *reg,
  870. uint32_t rmask)
  871. {
  872. uint32_t *addr, ret;
  873. if (!reg) {
  874. return 0;
  875. }
  876. if (reg->rhandler) {
  877. reg->rhandler(d, reg);
  878. }
  879. if (reg->offset == 0) {
  880. /* constant read-only register */
  881. ret = reg->reset;
  882. } else {
  883. addr = intel_hda_reg_addr(d, reg);
  884. ret = *addr;
  885. if (reg->shift) {
  886. ret >>= reg->shift;
  887. }
  888. ret &= rmask;
  889. }
  890. if (d->debug) {
  891. time_t now = time(NULL);
  892. if (!d->last_write && d->last_reg == reg && d->last_val == ret) {
  893. d->repeat_count++;
  894. if (d->last_sec != now) {
  895. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  896. d->last_sec = now;
  897. d->repeat_count = 0;
  898. }
  899. } else {
  900. if (d->repeat_count) {
  901. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  902. }
  903. dprint(d, 2, "read %-16s: 0x%x (%x)\n", reg->name, ret, rmask);
  904. d->last_write = 0;
  905. d->last_reg = reg;
  906. d->last_val = ret;
  907. d->last_sec = now;
  908. d->repeat_count = 0;
  909. }
  910. }
  911. return ret;
  912. }
  913. static void intel_hda_regs_reset(IntelHDAState *d)
  914. {
  915. uint32_t *addr;
  916. int i;
  917. for (i = 0; i < sizeof(regtab)/sizeof(regtab[0]); i++) {
  918. if (regtab[i].name == NULL) {
  919. continue;
  920. }
  921. if (regtab[i].offset == 0) {
  922. continue;
  923. }
  924. addr = intel_hda_reg_addr(d, regtab + i);
  925. *addr = regtab[i].reset;
  926. }
  927. }
  928. /* --------------------------------------------------------------------- */
  929. static void intel_hda_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
  930. {
  931. IntelHDAState *d = opaque;
  932. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  933. intel_hda_reg_write(d, reg, val, 0xff);
  934. }
  935. static void intel_hda_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
  936. {
  937. IntelHDAState *d = opaque;
  938. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  939. intel_hda_reg_write(d, reg, val, 0xffff);
  940. }
  941. static void intel_hda_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
  942. {
  943. IntelHDAState *d = opaque;
  944. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  945. intel_hda_reg_write(d, reg, val, 0xffffffff);
  946. }
  947. static uint32_t intel_hda_mmio_readb(void *opaque, target_phys_addr_t addr)
  948. {
  949. IntelHDAState *d = opaque;
  950. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  951. return intel_hda_reg_read(d, reg, 0xff);
  952. }
  953. static uint32_t intel_hda_mmio_readw(void *opaque, target_phys_addr_t addr)
  954. {
  955. IntelHDAState *d = opaque;
  956. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  957. return intel_hda_reg_read(d, reg, 0xffff);
  958. }
  959. static uint32_t intel_hda_mmio_readl(void *opaque, target_phys_addr_t addr)
  960. {
  961. IntelHDAState *d = opaque;
  962. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  963. return intel_hda_reg_read(d, reg, 0xffffffff);
  964. }
  965. static const MemoryRegionOps intel_hda_mmio_ops = {
  966. .old_mmio = {
  967. .read = {
  968. intel_hda_mmio_readb,
  969. intel_hda_mmio_readw,
  970. intel_hda_mmio_readl,
  971. },
  972. .write = {
  973. intel_hda_mmio_writeb,
  974. intel_hda_mmio_writew,
  975. intel_hda_mmio_writel,
  976. },
  977. },
  978. .endianness = DEVICE_NATIVE_ENDIAN,
  979. };
  980. /* --------------------------------------------------------------------- */
  981. static void intel_hda_reset(DeviceState *dev)
  982. {
  983. BusChild *kid;
  984. IntelHDAState *d = DO_UPCAST(IntelHDAState, pci.qdev, dev);
  985. HDACodecDevice *cdev;
  986. intel_hda_regs_reset(d);
  987. d->wall_base_ns = qemu_get_clock_ns(vm_clock);
  988. /* reset codecs */
  989. QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) {
  990. DeviceState *qdev = kid->child;
  991. cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
  992. device_reset(DEVICE(cdev));
  993. d->state_sts |= (1 << cdev->cad);
  994. }
  995. intel_hda_update_irq(d);
  996. }
  997. static int intel_hda_init(PCIDevice *pci)
  998. {
  999. IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
  1000. uint8_t *conf = d->pci.config;
  1001. d->name = object_get_typename(OBJECT(d));
  1002. pci_config_set_interrupt_pin(conf, 1);
  1003. /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */
  1004. conf[0x40] = 0x01;
  1005. memory_region_init_io(&d->mmio, &intel_hda_mmio_ops, d,
  1006. "intel-hda", 0x4000);
  1007. pci_register_bar(&d->pci, 0, 0, &d->mmio);
  1008. if (d->msi) {
  1009. msi_init(&d->pci, 0x50, 1, true, false);
  1010. }
  1011. hda_codec_bus_init(&d->pci.qdev, &d->codecs,
  1012. intel_hda_response, intel_hda_xfer);
  1013. return 0;
  1014. }
  1015. static void intel_hda_exit(PCIDevice *pci)
  1016. {
  1017. IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
  1018. msi_uninit(&d->pci);
  1019. memory_region_destroy(&d->mmio);
  1020. }
  1021. static int intel_hda_post_load(void *opaque, int version)
  1022. {
  1023. IntelHDAState* d = opaque;
  1024. int i;
  1025. dprint(d, 1, "%s\n", __FUNCTION__);
  1026. for (i = 0; i < ARRAY_SIZE(d->st); i++) {
  1027. if (d->st[i].ctl & 0x02) {
  1028. intel_hda_parse_bdl(d, &d->st[i]);
  1029. }
  1030. }
  1031. intel_hda_update_irq(d);
  1032. return 0;
  1033. }
  1034. static const VMStateDescription vmstate_intel_hda_stream = {
  1035. .name = "intel-hda-stream",
  1036. .version_id = 1,
  1037. .fields = (VMStateField []) {
  1038. VMSTATE_UINT32(ctl, IntelHDAStream),
  1039. VMSTATE_UINT32(lpib, IntelHDAStream),
  1040. VMSTATE_UINT32(cbl, IntelHDAStream),
  1041. VMSTATE_UINT32(lvi, IntelHDAStream),
  1042. VMSTATE_UINT32(fmt, IntelHDAStream),
  1043. VMSTATE_UINT32(bdlp_lbase, IntelHDAStream),
  1044. VMSTATE_UINT32(bdlp_ubase, IntelHDAStream),
  1045. VMSTATE_END_OF_LIST()
  1046. }
  1047. };
  1048. static const VMStateDescription vmstate_intel_hda = {
  1049. .name = "intel-hda",
  1050. .version_id = 1,
  1051. .post_load = intel_hda_post_load,
  1052. .fields = (VMStateField []) {
  1053. VMSTATE_PCI_DEVICE(pci, IntelHDAState),
  1054. /* registers */
  1055. VMSTATE_UINT32(g_ctl, IntelHDAState),
  1056. VMSTATE_UINT32(wake_en, IntelHDAState),
  1057. VMSTATE_UINT32(state_sts, IntelHDAState),
  1058. VMSTATE_UINT32(int_ctl, IntelHDAState),
  1059. VMSTATE_UINT32(int_sts, IntelHDAState),
  1060. VMSTATE_UINT32(wall_clk, IntelHDAState),
  1061. VMSTATE_UINT32(corb_lbase, IntelHDAState),
  1062. VMSTATE_UINT32(corb_ubase, IntelHDAState),
  1063. VMSTATE_UINT32(corb_rp, IntelHDAState),
  1064. VMSTATE_UINT32(corb_wp, IntelHDAState),
  1065. VMSTATE_UINT32(corb_ctl, IntelHDAState),
  1066. VMSTATE_UINT32(corb_sts, IntelHDAState),
  1067. VMSTATE_UINT32(corb_size, IntelHDAState),
  1068. VMSTATE_UINT32(rirb_lbase, IntelHDAState),
  1069. VMSTATE_UINT32(rirb_ubase, IntelHDAState),
  1070. VMSTATE_UINT32(rirb_wp, IntelHDAState),
  1071. VMSTATE_UINT32(rirb_cnt, IntelHDAState),
  1072. VMSTATE_UINT32(rirb_ctl, IntelHDAState),
  1073. VMSTATE_UINT32(rirb_sts, IntelHDAState),
  1074. VMSTATE_UINT32(rirb_size, IntelHDAState),
  1075. VMSTATE_UINT32(dp_lbase, IntelHDAState),
  1076. VMSTATE_UINT32(dp_ubase, IntelHDAState),
  1077. VMSTATE_UINT32(icw, IntelHDAState),
  1078. VMSTATE_UINT32(irr, IntelHDAState),
  1079. VMSTATE_UINT32(ics, IntelHDAState),
  1080. VMSTATE_STRUCT_ARRAY(st, IntelHDAState, 8, 0,
  1081. vmstate_intel_hda_stream,
  1082. IntelHDAStream),
  1083. /* additional state info */
  1084. VMSTATE_UINT32(rirb_count, IntelHDAState),
  1085. VMSTATE_INT64(wall_base_ns, IntelHDAState),
  1086. VMSTATE_END_OF_LIST()
  1087. }
  1088. };
  1089. static Property intel_hda_properties[] = {
  1090. DEFINE_PROP_UINT32("debug", IntelHDAState, debug, 0),
  1091. DEFINE_PROP_UINT32("msi", IntelHDAState, msi, 1),
  1092. DEFINE_PROP_END_OF_LIST(),
  1093. };
  1094. static void intel_hda_class_init(ObjectClass *klass, void *data)
  1095. {
  1096. DeviceClass *dc = DEVICE_CLASS(klass);
  1097. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  1098. k->init = intel_hda_init;
  1099. k->exit = intel_hda_exit;
  1100. k->vendor_id = PCI_VENDOR_ID_INTEL;
  1101. k->device_id = 0x2668;
  1102. k->revision = 1;
  1103. k->class_id = PCI_CLASS_MULTIMEDIA_HD_AUDIO;
  1104. dc->desc = "Intel HD Audio Controller";
  1105. dc->reset = intel_hda_reset;
  1106. dc->vmsd = &vmstate_intel_hda;
  1107. dc->props = intel_hda_properties;
  1108. }
  1109. static TypeInfo intel_hda_info = {
  1110. .name = "intel-hda",
  1111. .parent = TYPE_PCI_DEVICE,
  1112. .instance_size = sizeof(IntelHDAState),
  1113. .class_init = intel_hda_class_init,
  1114. };
  1115. static void hda_codec_device_class_init(ObjectClass *klass, void *data)
  1116. {
  1117. DeviceClass *k = DEVICE_CLASS(klass);
  1118. k->init = hda_codec_dev_init;
  1119. k->exit = hda_codec_dev_exit;
  1120. k->bus_type = TYPE_HDA_BUS;
  1121. k->props = hda_props;
  1122. }
  1123. static TypeInfo hda_codec_device_type_info = {
  1124. .name = TYPE_HDA_CODEC_DEVICE,
  1125. .parent = TYPE_DEVICE,
  1126. .instance_size = sizeof(HDACodecDevice),
  1127. .abstract = true,
  1128. .class_size = sizeof(HDACodecDeviceClass),
  1129. .class_init = hda_codec_device_class_init,
  1130. };
  1131. static void intel_hda_register_types(void)
  1132. {
  1133. type_register_static(&hda_codec_bus_info);
  1134. type_register_static(&intel_hda_info);
  1135. type_register_static(&hda_codec_device_type_info);
  1136. }
  1137. type_init(intel_hda_register_types)
  1138. /*
  1139. * create intel hda controller with codec attached to it,
  1140. * so '-soundhw hda' works.
  1141. */
  1142. int intel_hda_and_codec_init(PCIBus *bus)
  1143. {
  1144. PCIDevice *controller;
  1145. BusState *hdabus;
  1146. DeviceState *codec;
  1147. controller = pci_create_simple(bus, -1, "intel-hda");
  1148. hdabus = QLIST_FIRST(&controller->qdev.child_bus);
  1149. codec = qdev_create(hdabus, "hda-duplex");
  1150. qdev_init_nofail(codec);
  1151. return 0;
  1152. }