2
0

dma-helpers.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435
  1. /*
  2. * DMA helper functions
  3. *
  4. * Copyright (c) 2009 Red Hat
  5. *
  6. * This work is licensed under the terms of the GNU General Public License
  7. * (GNU GPL), version 2 or later.
  8. */
  9. #include "dma.h"
  10. #include "trace.h"
  11. #include "range.h"
  12. #include "qemu-thread.h"
  13. /* #define DEBUG_IOMMU */
  14. static void do_dma_memory_set(dma_addr_t addr, uint8_t c, dma_addr_t len)
  15. {
  16. #define FILLBUF_SIZE 512
  17. uint8_t fillbuf[FILLBUF_SIZE];
  18. int l;
  19. memset(fillbuf, c, FILLBUF_SIZE);
  20. while (len > 0) {
  21. l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
  22. cpu_physical_memory_rw(addr, fillbuf, l, true);
  23. len -= l;
  24. addr += l;
  25. }
  26. }
  27. int dma_memory_set(DMAContext *dma, dma_addr_t addr, uint8_t c, dma_addr_t len)
  28. {
  29. dma_barrier(dma, DMA_DIRECTION_FROM_DEVICE);
  30. if (dma_has_iommu(dma)) {
  31. return iommu_dma_memory_set(dma, addr, c, len);
  32. }
  33. do_dma_memory_set(addr, c, len);
  34. return 0;
  35. }
  36. void qemu_sglist_init(QEMUSGList *qsg, int alloc_hint, DMAContext *dma)
  37. {
  38. qsg->sg = g_malloc(alloc_hint * sizeof(ScatterGatherEntry));
  39. qsg->nsg = 0;
  40. qsg->nalloc = alloc_hint;
  41. qsg->size = 0;
  42. qsg->dma = dma;
  43. }
  44. void qemu_sglist_add(QEMUSGList *qsg, dma_addr_t base, dma_addr_t len)
  45. {
  46. if (qsg->nsg == qsg->nalloc) {
  47. qsg->nalloc = 2 * qsg->nalloc + 1;
  48. qsg->sg = g_realloc(qsg->sg, qsg->nalloc * sizeof(ScatterGatherEntry));
  49. }
  50. qsg->sg[qsg->nsg].base = base;
  51. qsg->sg[qsg->nsg].len = len;
  52. qsg->size += len;
  53. ++qsg->nsg;
  54. }
  55. void qemu_sglist_destroy(QEMUSGList *qsg)
  56. {
  57. g_free(qsg->sg);
  58. memset(qsg, 0, sizeof(*qsg));
  59. }
  60. typedef struct {
  61. BlockDriverAIOCB common;
  62. BlockDriverState *bs;
  63. BlockDriverAIOCB *acb;
  64. QEMUSGList *sg;
  65. uint64_t sector_num;
  66. DMADirection dir;
  67. bool in_cancel;
  68. int sg_cur_index;
  69. dma_addr_t sg_cur_byte;
  70. QEMUIOVector iov;
  71. QEMUBH *bh;
  72. DMAIOFunc *io_func;
  73. } DMAAIOCB;
  74. static void dma_bdrv_cb(void *opaque, int ret);
  75. static void reschedule_dma(void *opaque)
  76. {
  77. DMAAIOCB *dbs = (DMAAIOCB *)opaque;
  78. qemu_bh_delete(dbs->bh);
  79. dbs->bh = NULL;
  80. dma_bdrv_cb(dbs, 0);
  81. }
  82. static void continue_after_map_failure(void *opaque)
  83. {
  84. DMAAIOCB *dbs = (DMAAIOCB *)opaque;
  85. dbs->bh = qemu_bh_new(reschedule_dma, dbs);
  86. qemu_bh_schedule(dbs->bh);
  87. }
  88. static void dma_bdrv_unmap(DMAAIOCB *dbs)
  89. {
  90. int i;
  91. for (i = 0; i < dbs->iov.niov; ++i) {
  92. dma_memory_unmap(dbs->sg->dma, dbs->iov.iov[i].iov_base,
  93. dbs->iov.iov[i].iov_len, dbs->dir,
  94. dbs->iov.iov[i].iov_len);
  95. }
  96. qemu_iovec_reset(&dbs->iov);
  97. }
  98. static void dma_complete(DMAAIOCB *dbs, int ret)
  99. {
  100. trace_dma_complete(dbs, ret, dbs->common.cb);
  101. dma_bdrv_unmap(dbs);
  102. if (dbs->common.cb) {
  103. dbs->common.cb(dbs->common.opaque, ret);
  104. }
  105. qemu_iovec_destroy(&dbs->iov);
  106. if (dbs->bh) {
  107. qemu_bh_delete(dbs->bh);
  108. dbs->bh = NULL;
  109. }
  110. if (!dbs->in_cancel) {
  111. /* Requests may complete while dma_aio_cancel is in progress. In
  112. * this case, the AIOCB should not be released because it is still
  113. * referenced by dma_aio_cancel. */
  114. qemu_aio_release(dbs);
  115. }
  116. }
  117. static void dma_bdrv_cb(void *opaque, int ret)
  118. {
  119. DMAAIOCB *dbs = (DMAAIOCB *)opaque;
  120. dma_addr_t cur_addr, cur_len;
  121. void *mem;
  122. trace_dma_bdrv_cb(dbs, ret);
  123. dbs->acb = NULL;
  124. dbs->sector_num += dbs->iov.size / 512;
  125. dma_bdrv_unmap(dbs);
  126. if (dbs->sg_cur_index == dbs->sg->nsg || ret < 0) {
  127. dma_complete(dbs, ret);
  128. return;
  129. }
  130. while (dbs->sg_cur_index < dbs->sg->nsg) {
  131. cur_addr = dbs->sg->sg[dbs->sg_cur_index].base + dbs->sg_cur_byte;
  132. cur_len = dbs->sg->sg[dbs->sg_cur_index].len - dbs->sg_cur_byte;
  133. mem = dma_memory_map(dbs->sg->dma, cur_addr, &cur_len, dbs->dir);
  134. if (!mem)
  135. break;
  136. qemu_iovec_add(&dbs->iov, mem, cur_len);
  137. dbs->sg_cur_byte += cur_len;
  138. if (dbs->sg_cur_byte == dbs->sg->sg[dbs->sg_cur_index].len) {
  139. dbs->sg_cur_byte = 0;
  140. ++dbs->sg_cur_index;
  141. }
  142. }
  143. if (dbs->iov.size == 0) {
  144. trace_dma_map_wait(dbs);
  145. cpu_register_map_client(dbs, continue_after_map_failure);
  146. return;
  147. }
  148. dbs->acb = dbs->io_func(dbs->bs, dbs->sector_num, &dbs->iov,
  149. dbs->iov.size / 512, dma_bdrv_cb, dbs);
  150. assert(dbs->acb);
  151. }
  152. static void dma_aio_cancel(BlockDriverAIOCB *acb)
  153. {
  154. DMAAIOCB *dbs = container_of(acb, DMAAIOCB, common);
  155. trace_dma_aio_cancel(dbs);
  156. if (dbs->acb) {
  157. BlockDriverAIOCB *acb = dbs->acb;
  158. dbs->acb = NULL;
  159. dbs->in_cancel = true;
  160. bdrv_aio_cancel(acb);
  161. dbs->in_cancel = false;
  162. }
  163. dbs->common.cb = NULL;
  164. dma_complete(dbs, 0);
  165. }
  166. static AIOPool dma_aio_pool = {
  167. .aiocb_size = sizeof(DMAAIOCB),
  168. .cancel = dma_aio_cancel,
  169. };
  170. BlockDriverAIOCB *dma_bdrv_io(
  171. BlockDriverState *bs, QEMUSGList *sg, uint64_t sector_num,
  172. DMAIOFunc *io_func, BlockDriverCompletionFunc *cb,
  173. void *opaque, DMADirection dir)
  174. {
  175. DMAAIOCB *dbs = qemu_aio_get(&dma_aio_pool, bs, cb, opaque);
  176. trace_dma_bdrv_io(dbs, bs, sector_num, (dir == DMA_DIRECTION_TO_DEVICE));
  177. dbs->acb = NULL;
  178. dbs->bs = bs;
  179. dbs->sg = sg;
  180. dbs->sector_num = sector_num;
  181. dbs->sg_cur_index = 0;
  182. dbs->sg_cur_byte = 0;
  183. dbs->dir = dir;
  184. dbs->io_func = io_func;
  185. dbs->bh = NULL;
  186. qemu_iovec_init(&dbs->iov, sg->nsg);
  187. dma_bdrv_cb(dbs, 0);
  188. return &dbs->common;
  189. }
  190. BlockDriverAIOCB *dma_bdrv_read(BlockDriverState *bs,
  191. QEMUSGList *sg, uint64_t sector,
  192. void (*cb)(void *opaque, int ret), void *opaque)
  193. {
  194. return dma_bdrv_io(bs, sg, sector, bdrv_aio_readv, cb, opaque,
  195. DMA_DIRECTION_FROM_DEVICE);
  196. }
  197. BlockDriverAIOCB *dma_bdrv_write(BlockDriverState *bs,
  198. QEMUSGList *sg, uint64_t sector,
  199. void (*cb)(void *opaque, int ret), void *opaque)
  200. {
  201. return dma_bdrv_io(bs, sg, sector, bdrv_aio_writev, cb, opaque,
  202. DMA_DIRECTION_TO_DEVICE);
  203. }
  204. static uint64_t dma_buf_rw(uint8_t *ptr, int32_t len, QEMUSGList *sg,
  205. DMADirection dir)
  206. {
  207. uint64_t resid;
  208. int sg_cur_index;
  209. resid = sg->size;
  210. sg_cur_index = 0;
  211. len = MIN(len, resid);
  212. while (len > 0) {
  213. ScatterGatherEntry entry = sg->sg[sg_cur_index++];
  214. int32_t xfer = MIN(len, entry.len);
  215. dma_memory_rw(sg->dma, entry.base, ptr, xfer, dir);
  216. ptr += xfer;
  217. len -= xfer;
  218. resid -= xfer;
  219. }
  220. return resid;
  221. }
  222. uint64_t dma_buf_read(uint8_t *ptr, int32_t len, QEMUSGList *sg)
  223. {
  224. return dma_buf_rw(ptr, len, sg, DMA_DIRECTION_FROM_DEVICE);
  225. }
  226. uint64_t dma_buf_write(uint8_t *ptr, int32_t len, QEMUSGList *sg)
  227. {
  228. return dma_buf_rw(ptr, len, sg, DMA_DIRECTION_TO_DEVICE);
  229. }
  230. void dma_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie,
  231. QEMUSGList *sg, enum BlockAcctType type)
  232. {
  233. bdrv_acct_start(bs, cookie, sg->size, type);
  234. }
  235. bool iommu_dma_memory_valid(DMAContext *dma, dma_addr_t addr, dma_addr_t len,
  236. DMADirection dir)
  237. {
  238. target_phys_addr_t paddr, plen;
  239. #ifdef DEBUG_IOMMU
  240. fprintf(stderr, "dma_memory_check context=%p addr=0x" DMA_ADDR_FMT
  241. " len=0x" DMA_ADDR_FMT " dir=%d\n", dma, addr, len, dir);
  242. #endif
  243. while (len) {
  244. if (dma->translate(dma, addr, &paddr, &plen, dir) != 0) {
  245. return false;
  246. }
  247. /* The translation might be valid for larger regions. */
  248. if (plen > len) {
  249. plen = len;
  250. }
  251. len -= plen;
  252. addr += plen;
  253. }
  254. return true;
  255. }
  256. int iommu_dma_memory_rw(DMAContext *dma, dma_addr_t addr,
  257. void *buf, dma_addr_t len, DMADirection dir)
  258. {
  259. target_phys_addr_t paddr, plen;
  260. int err;
  261. #ifdef DEBUG_IOMMU
  262. fprintf(stderr, "dma_memory_rw context=%p addr=0x" DMA_ADDR_FMT " len=0x"
  263. DMA_ADDR_FMT " dir=%d\n", dma, addr, len, dir);
  264. #endif
  265. while (len) {
  266. err = dma->translate(dma, addr, &paddr, &plen, dir);
  267. if (err) {
  268. /*
  269. * In case of failure on reads from the guest, we clean the
  270. * destination buffer so that a device that doesn't test
  271. * for errors will not expose qemu internal memory.
  272. */
  273. memset(buf, 0, len);
  274. return -1;
  275. }
  276. /* The translation might be valid for larger regions. */
  277. if (plen > len) {
  278. plen = len;
  279. }
  280. cpu_physical_memory_rw(paddr, buf, plen,
  281. dir == DMA_DIRECTION_FROM_DEVICE);
  282. len -= plen;
  283. addr += plen;
  284. buf += plen;
  285. }
  286. return 0;
  287. }
  288. int iommu_dma_memory_set(DMAContext *dma, dma_addr_t addr, uint8_t c,
  289. dma_addr_t len)
  290. {
  291. target_phys_addr_t paddr, plen;
  292. int err;
  293. #ifdef DEBUG_IOMMU
  294. fprintf(stderr, "dma_memory_set context=%p addr=0x" DMA_ADDR_FMT
  295. " len=0x" DMA_ADDR_FMT "\n", dma, addr, len);
  296. #endif
  297. while (len) {
  298. err = dma->translate(dma, addr, &paddr, &plen,
  299. DMA_DIRECTION_FROM_DEVICE);
  300. if (err) {
  301. return err;
  302. }
  303. /* The translation might be valid for larger regions. */
  304. if (plen > len) {
  305. plen = len;
  306. }
  307. do_dma_memory_set(paddr, c, plen);
  308. len -= plen;
  309. addr += plen;
  310. }
  311. return 0;
  312. }
  313. void dma_context_init(DMAContext *dma, DMATranslateFunc translate,
  314. DMAMapFunc map, DMAUnmapFunc unmap)
  315. {
  316. #ifdef DEBUG_IOMMU
  317. fprintf(stderr, "dma_context_init(%p, %p, %p, %p)\n",
  318. dma, translate, map, unmap);
  319. #endif
  320. dma->translate = translate;
  321. dma->map = map;
  322. dma->unmap = unmap;
  323. }
  324. void *iommu_dma_memory_map(DMAContext *dma, dma_addr_t addr, dma_addr_t *len,
  325. DMADirection dir)
  326. {
  327. int err;
  328. target_phys_addr_t paddr, plen;
  329. void *buf;
  330. if (dma->map) {
  331. return dma->map(dma, addr, len, dir);
  332. }
  333. plen = *len;
  334. err = dma->translate(dma, addr, &paddr, &plen, dir);
  335. if (err) {
  336. return NULL;
  337. }
  338. /*
  339. * If this is true, the virtual region is contiguous,
  340. * but the translated physical region isn't. We just
  341. * clamp *len, much like cpu_physical_memory_map() does.
  342. */
  343. if (plen < *len) {
  344. *len = plen;
  345. }
  346. buf = cpu_physical_memory_map(paddr, &plen,
  347. dir == DMA_DIRECTION_FROM_DEVICE);
  348. *len = plen;
  349. return buf;
  350. }
  351. void iommu_dma_memory_unmap(DMAContext *dma, void *buffer, dma_addr_t len,
  352. DMADirection dir, dma_addr_t access_len)
  353. {
  354. if (dma->unmap) {
  355. dma->unmap(dma, buffer, len, dir, access_len);
  356. return;
  357. }
  358. cpu_physical_memory_unmap(buffer, len,
  359. dir == DMA_DIRECTION_FROM_DEVICE,
  360. access_len);
  361. }