disas.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470
  1. /* General "disassemble this chunk" code. Used for debugging. */
  2. #include "config.h"
  3. #include "dis-asm.h"
  4. #include "elf.h"
  5. #include <errno.h>
  6. #include "cpu.h"
  7. #include "disas.h"
  8. /* Filled in by elfload.c. Simplistic, but will do for now. */
  9. struct syminfo *syminfos = NULL;
  10. /* Get LENGTH bytes from info's buffer, at target address memaddr.
  11. Transfer them to myaddr. */
  12. int
  13. buffer_read_memory(bfd_vma memaddr, bfd_byte *myaddr, int length,
  14. struct disassemble_info *info)
  15. {
  16. if (memaddr < info->buffer_vma
  17. || memaddr + length > info->buffer_vma + info->buffer_length)
  18. /* Out of bounds. Use EIO because GDB uses it. */
  19. return EIO;
  20. memcpy (myaddr, info->buffer + (memaddr - info->buffer_vma), length);
  21. return 0;
  22. }
  23. /* Get LENGTH bytes from info's buffer, at target address memaddr.
  24. Transfer them to myaddr. */
  25. static int
  26. target_read_memory (bfd_vma memaddr,
  27. bfd_byte *myaddr,
  28. int length,
  29. struct disassemble_info *info)
  30. {
  31. cpu_memory_rw_debug(cpu_single_env, memaddr, myaddr, length, 0);
  32. return 0;
  33. }
  34. /* Print an error message. We can assume that this is in response to
  35. an error return from buffer_read_memory. */
  36. void
  37. perror_memory (int status, bfd_vma memaddr, struct disassemble_info *info)
  38. {
  39. if (status != EIO)
  40. /* Can't happen. */
  41. (*info->fprintf_func) (info->stream, "Unknown error %d\n", status);
  42. else
  43. /* Actually, address between memaddr and memaddr + len was
  44. out of bounds. */
  45. (*info->fprintf_func) (info->stream,
  46. "Address 0x%" PRIx64 " is out of bounds.\n", memaddr);
  47. }
  48. /* This could be in a separate file, to save minuscule amounts of space
  49. in statically linked executables. */
  50. /* Just print the address is hex. This is included for completeness even
  51. though both GDB and objdump provide their own (to print symbolic
  52. addresses). */
  53. void
  54. generic_print_address (bfd_vma addr, struct disassemble_info *info)
  55. {
  56. (*info->fprintf_func) (info->stream, "0x%" PRIx64, addr);
  57. }
  58. /* Print address in hex, truncated to the width of a target virtual address. */
  59. static void
  60. generic_print_target_address(bfd_vma addr, struct disassemble_info *info)
  61. {
  62. uint64_t mask = ~0ULL >> (64 - TARGET_VIRT_ADDR_SPACE_BITS);
  63. generic_print_address(addr & mask, info);
  64. }
  65. /* Print address in hex, truncated to the width of a host virtual address. */
  66. static void
  67. generic_print_host_address(bfd_vma addr, struct disassemble_info *info)
  68. {
  69. uint64_t mask = ~0ULL >> (64 - (sizeof(void *) * 8));
  70. generic_print_address(addr & mask, info);
  71. }
  72. /* Just return the given address. */
  73. int
  74. generic_symbol_at_address (bfd_vma addr, struct disassemble_info *info)
  75. {
  76. return 1;
  77. }
  78. bfd_vma bfd_getl64 (const bfd_byte *addr)
  79. {
  80. unsigned long long v;
  81. v = (unsigned long long) addr[0];
  82. v |= (unsigned long long) addr[1] << 8;
  83. v |= (unsigned long long) addr[2] << 16;
  84. v |= (unsigned long long) addr[3] << 24;
  85. v |= (unsigned long long) addr[4] << 32;
  86. v |= (unsigned long long) addr[5] << 40;
  87. v |= (unsigned long long) addr[6] << 48;
  88. v |= (unsigned long long) addr[7] << 56;
  89. return (bfd_vma) v;
  90. }
  91. bfd_vma bfd_getl32 (const bfd_byte *addr)
  92. {
  93. unsigned long v;
  94. v = (unsigned long) addr[0];
  95. v |= (unsigned long) addr[1] << 8;
  96. v |= (unsigned long) addr[2] << 16;
  97. v |= (unsigned long) addr[3] << 24;
  98. return (bfd_vma) v;
  99. }
  100. bfd_vma bfd_getb32 (const bfd_byte *addr)
  101. {
  102. unsigned long v;
  103. v = (unsigned long) addr[0] << 24;
  104. v |= (unsigned long) addr[1] << 16;
  105. v |= (unsigned long) addr[2] << 8;
  106. v |= (unsigned long) addr[3];
  107. return (bfd_vma) v;
  108. }
  109. bfd_vma bfd_getl16 (const bfd_byte *addr)
  110. {
  111. unsigned long v;
  112. v = (unsigned long) addr[0];
  113. v |= (unsigned long) addr[1] << 8;
  114. return (bfd_vma) v;
  115. }
  116. bfd_vma bfd_getb16 (const bfd_byte *addr)
  117. {
  118. unsigned long v;
  119. v = (unsigned long) addr[0] << 24;
  120. v |= (unsigned long) addr[1] << 16;
  121. return (bfd_vma) v;
  122. }
  123. #ifdef TARGET_ARM
  124. static int
  125. print_insn_thumb1(bfd_vma pc, disassemble_info *info)
  126. {
  127. return print_insn_arm(pc | 1, info);
  128. }
  129. #endif
  130. /* Disassemble this for me please... (debugging). 'flags' has the following
  131. values:
  132. i386 - 1 means 16 bit code, 2 means 64 bit code
  133. arm - bit 0 = thumb, bit 1 = reverse endian
  134. ppc - nonzero means little endian
  135. other targets - unused
  136. */
  137. void target_disas(FILE *out, target_ulong code, target_ulong size, int flags)
  138. {
  139. target_ulong pc;
  140. int count;
  141. struct disassemble_info disasm_info;
  142. int (*print_insn)(bfd_vma pc, disassemble_info *info);
  143. INIT_DISASSEMBLE_INFO(disasm_info, out, fprintf);
  144. disasm_info.read_memory_func = target_read_memory;
  145. disasm_info.buffer_vma = code;
  146. disasm_info.buffer_length = size;
  147. disasm_info.print_address_func = generic_print_target_address;
  148. #ifdef TARGET_WORDS_BIGENDIAN
  149. disasm_info.endian = BFD_ENDIAN_BIG;
  150. #else
  151. disasm_info.endian = BFD_ENDIAN_LITTLE;
  152. #endif
  153. #if defined(TARGET_I386)
  154. if (flags == 2)
  155. disasm_info.mach = bfd_mach_x86_64;
  156. else if (flags == 1)
  157. disasm_info.mach = bfd_mach_i386_i8086;
  158. else
  159. disasm_info.mach = bfd_mach_i386_i386;
  160. print_insn = print_insn_i386;
  161. #elif defined(TARGET_ARM)
  162. if (flags & 1) {
  163. print_insn = print_insn_thumb1;
  164. } else {
  165. print_insn = print_insn_arm;
  166. }
  167. if (flags & 2) {
  168. #ifdef TARGET_WORDS_BIGENDIAN
  169. disasm_info.endian = BFD_ENDIAN_LITTLE;
  170. #else
  171. disasm_info.endian = BFD_ENDIAN_BIG;
  172. #endif
  173. }
  174. #elif defined(TARGET_SPARC)
  175. print_insn = print_insn_sparc;
  176. #ifdef TARGET_SPARC64
  177. disasm_info.mach = bfd_mach_sparc_v9b;
  178. #endif
  179. #elif defined(TARGET_PPC)
  180. if (flags >> 16)
  181. disasm_info.endian = BFD_ENDIAN_LITTLE;
  182. if (flags & 0xFFFF) {
  183. /* If we have a precise definitions of the instructions set, use it */
  184. disasm_info.mach = flags & 0xFFFF;
  185. } else {
  186. #ifdef TARGET_PPC64
  187. disasm_info.mach = bfd_mach_ppc64;
  188. #else
  189. disasm_info.mach = bfd_mach_ppc;
  190. #endif
  191. }
  192. print_insn = print_insn_ppc;
  193. #elif defined(TARGET_M68K)
  194. print_insn = print_insn_m68k;
  195. #elif defined(TARGET_MIPS)
  196. #ifdef TARGET_WORDS_BIGENDIAN
  197. print_insn = print_insn_big_mips;
  198. #else
  199. print_insn = print_insn_little_mips;
  200. #endif
  201. #elif defined(TARGET_SH4)
  202. disasm_info.mach = bfd_mach_sh4;
  203. print_insn = print_insn_sh;
  204. #elif defined(TARGET_ALPHA)
  205. disasm_info.mach = bfd_mach_alpha_ev6;
  206. print_insn = print_insn_alpha;
  207. #elif defined(TARGET_CRIS)
  208. if (flags != 32) {
  209. disasm_info.mach = bfd_mach_cris_v0_v10;
  210. print_insn = print_insn_crisv10;
  211. } else {
  212. disasm_info.mach = bfd_mach_cris_v32;
  213. print_insn = print_insn_crisv32;
  214. }
  215. #elif defined(TARGET_S390X)
  216. disasm_info.mach = bfd_mach_s390_64;
  217. print_insn = print_insn_s390;
  218. #elif defined(TARGET_MICROBLAZE)
  219. disasm_info.mach = bfd_arch_microblaze;
  220. print_insn = print_insn_microblaze;
  221. #elif defined(TARGET_LM32)
  222. disasm_info.mach = bfd_mach_lm32;
  223. print_insn = print_insn_lm32;
  224. #else
  225. fprintf(out, "0x" TARGET_FMT_lx
  226. ": Asm output not supported on this arch\n", code);
  227. return;
  228. #endif
  229. for (pc = code; size > 0; pc += count, size -= count) {
  230. fprintf(out, "0x" TARGET_FMT_lx ": ", pc);
  231. count = print_insn(pc, &disasm_info);
  232. #if 0
  233. {
  234. int i;
  235. uint8_t b;
  236. fprintf(out, " {");
  237. for(i = 0; i < count; i++) {
  238. target_read_memory(pc + i, &b, 1, &disasm_info);
  239. fprintf(out, " %02x", b);
  240. }
  241. fprintf(out, " }");
  242. }
  243. #endif
  244. fprintf(out, "\n");
  245. if (count < 0)
  246. break;
  247. if (size < count) {
  248. fprintf(out,
  249. "Disassembler disagrees with translator over instruction "
  250. "decoding\n"
  251. "Please report this to qemu-devel@nongnu.org\n");
  252. break;
  253. }
  254. }
  255. }
  256. /* Disassemble this for me please... (debugging). */
  257. void disas(FILE *out, void *code, unsigned long size)
  258. {
  259. uintptr_t pc;
  260. int count;
  261. struct disassemble_info disasm_info;
  262. int (*print_insn)(bfd_vma pc, disassemble_info *info);
  263. INIT_DISASSEMBLE_INFO(disasm_info, out, fprintf);
  264. disasm_info.print_address_func = generic_print_host_address;
  265. disasm_info.buffer = code;
  266. disasm_info.buffer_vma = (uintptr_t)code;
  267. disasm_info.buffer_length = size;
  268. #ifdef HOST_WORDS_BIGENDIAN
  269. disasm_info.endian = BFD_ENDIAN_BIG;
  270. #else
  271. disasm_info.endian = BFD_ENDIAN_LITTLE;
  272. #endif
  273. #if defined(CONFIG_TCG_INTERPRETER)
  274. print_insn = print_insn_tci;
  275. #elif defined(__i386__)
  276. disasm_info.mach = bfd_mach_i386_i386;
  277. print_insn = print_insn_i386;
  278. #elif defined(__x86_64__)
  279. disasm_info.mach = bfd_mach_x86_64;
  280. print_insn = print_insn_i386;
  281. #elif defined(_ARCH_PPC)
  282. print_insn = print_insn_ppc;
  283. #elif defined(__alpha__)
  284. print_insn = print_insn_alpha;
  285. #elif defined(__sparc__)
  286. print_insn = print_insn_sparc;
  287. disasm_info.mach = bfd_mach_sparc_v9b;
  288. #elif defined(__arm__)
  289. print_insn = print_insn_arm;
  290. #elif defined(__MIPSEB__)
  291. print_insn = print_insn_big_mips;
  292. #elif defined(__MIPSEL__)
  293. print_insn = print_insn_little_mips;
  294. #elif defined(__m68k__)
  295. print_insn = print_insn_m68k;
  296. #elif defined(__s390__)
  297. print_insn = print_insn_s390;
  298. #elif defined(__hppa__)
  299. print_insn = print_insn_hppa;
  300. #elif defined(__ia64__)
  301. print_insn = print_insn_ia64;
  302. #else
  303. fprintf(out, "0x%lx: Asm output not supported on this arch\n",
  304. (long) code);
  305. return;
  306. #endif
  307. for (pc = (uintptr_t)code; size > 0; pc += count, size -= count) {
  308. fprintf(out, "0x%08" PRIxPTR ": ", pc);
  309. count = print_insn(pc, &disasm_info);
  310. fprintf(out, "\n");
  311. if (count < 0)
  312. break;
  313. }
  314. }
  315. /* Look up symbol for debugging purpose. Returns "" if unknown. */
  316. const char *lookup_symbol(target_ulong orig_addr)
  317. {
  318. const char *symbol = "";
  319. struct syminfo *s;
  320. for (s = syminfos; s; s = s->next) {
  321. symbol = s->lookup_symbol(s, orig_addr);
  322. if (symbol[0] != '\0') {
  323. break;
  324. }
  325. }
  326. return symbol;
  327. }
  328. #if !defined(CONFIG_USER_ONLY)
  329. #include "monitor.h"
  330. static int monitor_disas_is_physical;
  331. static CPUArchState *monitor_disas_env;
  332. static int
  333. monitor_read_memory (bfd_vma memaddr, bfd_byte *myaddr, int length,
  334. struct disassemble_info *info)
  335. {
  336. if (monitor_disas_is_physical) {
  337. cpu_physical_memory_read(memaddr, myaddr, length);
  338. } else {
  339. cpu_memory_rw_debug(monitor_disas_env, memaddr,myaddr, length, 0);
  340. }
  341. return 0;
  342. }
  343. static int GCC_FMT_ATTR(2, 3)
  344. monitor_fprintf(FILE *stream, const char *fmt, ...)
  345. {
  346. va_list ap;
  347. va_start(ap, fmt);
  348. monitor_vprintf((Monitor *)stream, fmt, ap);
  349. va_end(ap);
  350. return 0;
  351. }
  352. void monitor_disas(Monitor *mon, CPUArchState *env,
  353. target_ulong pc, int nb_insn, int is_physical, int flags)
  354. {
  355. int count, i;
  356. struct disassemble_info disasm_info;
  357. int (*print_insn)(bfd_vma pc, disassemble_info *info);
  358. INIT_DISASSEMBLE_INFO(disasm_info, (FILE *)mon, monitor_fprintf);
  359. monitor_disas_env = env;
  360. monitor_disas_is_physical = is_physical;
  361. disasm_info.read_memory_func = monitor_read_memory;
  362. disasm_info.print_address_func = generic_print_target_address;
  363. disasm_info.buffer_vma = pc;
  364. #ifdef TARGET_WORDS_BIGENDIAN
  365. disasm_info.endian = BFD_ENDIAN_BIG;
  366. #else
  367. disasm_info.endian = BFD_ENDIAN_LITTLE;
  368. #endif
  369. #if defined(TARGET_I386)
  370. if (flags == 2)
  371. disasm_info.mach = bfd_mach_x86_64;
  372. else if (flags == 1)
  373. disasm_info.mach = bfd_mach_i386_i8086;
  374. else
  375. disasm_info.mach = bfd_mach_i386_i386;
  376. print_insn = print_insn_i386;
  377. #elif defined(TARGET_ARM)
  378. print_insn = print_insn_arm;
  379. #elif defined(TARGET_ALPHA)
  380. print_insn = print_insn_alpha;
  381. #elif defined(TARGET_SPARC)
  382. print_insn = print_insn_sparc;
  383. #ifdef TARGET_SPARC64
  384. disasm_info.mach = bfd_mach_sparc_v9b;
  385. #endif
  386. #elif defined(TARGET_PPC)
  387. #ifdef TARGET_PPC64
  388. disasm_info.mach = bfd_mach_ppc64;
  389. #else
  390. disasm_info.mach = bfd_mach_ppc;
  391. #endif
  392. print_insn = print_insn_ppc;
  393. #elif defined(TARGET_M68K)
  394. print_insn = print_insn_m68k;
  395. #elif defined(TARGET_MIPS)
  396. #ifdef TARGET_WORDS_BIGENDIAN
  397. print_insn = print_insn_big_mips;
  398. #else
  399. print_insn = print_insn_little_mips;
  400. #endif
  401. #elif defined(TARGET_SH4)
  402. disasm_info.mach = bfd_mach_sh4;
  403. print_insn = print_insn_sh;
  404. #elif defined(TARGET_S390X)
  405. disasm_info.mach = bfd_mach_s390_64;
  406. print_insn = print_insn_s390;
  407. #elif defined(TARGET_LM32)
  408. disasm_info.mach = bfd_mach_lm32;
  409. print_insn = print_insn_lm32;
  410. #else
  411. monitor_printf(mon, "0x" TARGET_FMT_lx
  412. ": Asm output not supported on this arch\n", pc);
  413. return;
  414. #endif
  415. for(i = 0; i < nb_insn; i++) {
  416. monitor_printf(mon, "0x" TARGET_FMT_lx ": ", pc);
  417. count = print_insn(pc, &disasm_info);
  418. monitor_printf(mon, "\n");
  419. if (count < 0)
  420. break;
  421. pc += count;
  422. }
  423. }
  424. #endif