kvm-all.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709
  1. /*
  2. * QEMU KVM support
  3. *
  4. * Copyright IBM, Corp. 2008
  5. * Red Hat, Inc. 2008
  6. *
  7. * Authors:
  8. * Anthony Liguori <aliguori@us.ibm.com>
  9. * Glauber Costa <gcosta@redhat.com>
  10. *
  11. * This work is licensed under the terms of the GNU GPL, version 2 or later.
  12. * See the COPYING file in the top-level directory.
  13. *
  14. */
  15. #include <sys/types.h>
  16. #include <sys/ioctl.h>
  17. #include <sys/mman.h>
  18. #include <stdarg.h>
  19. #include <linux/kvm.h>
  20. #include "qemu-common.h"
  21. #include "qemu-barrier.h"
  22. #include "sysemu.h"
  23. #include "hw/hw.h"
  24. #include "gdbstub.h"
  25. #include "kvm.h"
  26. #include "bswap.h"
  27. #include "memory.h"
  28. #include "exec-memory.h"
  29. /* This check must be after config-host.h is included */
  30. #ifdef CONFIG_EVENTFD
  31. #include <sys/eventfd.h>
  32. #endif
  33. /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
  34. #define PAGE_SIZE TARGET_PAGE_SIZE
  35. //#define DEBUG_KVM
  36. #ifdef DEBUG_KVM
  37. #define DPRINTF(fmt, ...) \
  38. do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  39. #else
  40. #define DPRINTF(fmt, ...) \
  41. do { } while (0)
  42. #endif
  43. typedef struct KVMSlot
  44. {
  45. target_phys_addr_t start_addr;
  46. ram_addr_t memory_size;
  47. void *ram;
  48. int slot;
  49. int flags;
  50. } KVMSlot;
  51. typedef struct kvm_dirty_log KVMDirtyLog;
  52. struct KVMState
  53. {
  54. KVMSlot slots[32];
  55. int fd;
  56. int vmfd;
  57. int coalesced_mmio;
  58. struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
  59. bool coalesced_flush_in_progress;
  60. int broken_set_mem_region;
  61. int migration_log;
  62. int vcpu_events;
  63. int robust_singlestep;
  64. int debugregs;
  65. #ifdef KVM_CAP_SET_GUEST_DEBUG
  66. struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
  67. #endif
  68. int pit_state2;
  69. int xsave, xcrs;
  70. int many_ioeventfds;
  71. /* The man page (and posix) say ioctl numbers are signed int, but
  72. * they're not. Linux, glibc and *BSD all treat ioctl numbers as
  73. * unsigned, and treating them as signed here can break things */
  74. unsigned irqchip_inject_ioctl;
  75. #ifdef KVM_CAP_IRQ_ROUTING
  76. struct kvm_irq_routing *irq_routes;
  77. int nr_allocated_irq_routes;
  78. uint32_t *used_gsi_bitmap;
  79. unsigned int max_gsi;
  80. #endif
  81. };
  82. KVMState *kvm_state;
  83. bool kvm_kernel_irqchip;
  84. static const KVMCapabilityInfo kvm_required_capabilites[] = {
  85. KVM_CAP_INFO(USER_MEMORY),
  86. KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
  87. KVM_CAP_LAST_INFO
  88. };
  89. static KVMSlot *kvm_alloc_slot(KVMState *s)
  90. {
  91. int i;
  92. for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
  93. if (s->slots[i].memory_size == 0) {
  94. return &s->slots[i];
  95. }
  96. }
  97. fprintf(stderr, "%s: no free slot available\n", __func__);
  98. abort();
  99. }
  100. static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
  101. target_phys_addr_t start_addr,
  102. target_phys_addr_t end_addr)
  103. {
  104. int i;
  105. for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
  106. KVMSlot *mem = &s->slots[i];
  107. if (start_addr == mem->start_addr &&
  108. end_addr == mem->start_addr + mem->memory_size) {
  109. return mem;
  110. }
  111. }
  112. return NULL;
  113. }
  114. /*
  115. * Find overlapping slot with lowest start address
  116. */
  117. static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
  118. target_phys_addr_t start_addr,
  119. target_phys_addr_t end_addr)
  120. {
  121. KVMSlot *found = NULL;
  122. int i;
  123. for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
  124. KVMSlot *mem = &s->slots[i];
  125. if (mem->memory_size == 0 ||
  126. (found && found->start_addr < mem->start_addr)) {
  127. continue;
  128. }
  129. if (end_addr > mem->start_addr &&
  130. start_addr < mem->start_addr + mem->memory_size) {
  131. found = mem;
  132. }
  133. }
  134. return found;
  135. }
  136. int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
  137. target_phys_addr_t *phys_addr)
  138. {
  139. int i;
  140. for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
  141. KVMSlot *mem = &s->slots[i];
  142. if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
  143. *phys_addr = mem->start_addr + (ram - mem->ram);
  144. return 1;
  145. }
  146. }
  147. return 0;
  148. }
  149. static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
  150. {
  151. struct kvm_userspace_memory_region mem;
  152. mem.slot = slot->slot;
  153. mem.guest_phys_addr = slot->start_addr;
  154. mem.memory_size = slot->memory_size;
  155. mem.userspace_addr = (unsigned long)slot->ram;
  156. mem.flags = slot->flags;
  157. if (s->migration_log) {
  158. mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
  159. }
  160. return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
  161. }
  162. static void kvm_reset_vcpu(void *opaque)
  163. {
  164. CPUArchState *env = opaque;
  165. kvm_arch_reset_vcpu(env);
  166. }
  167. int kvm_init_vcpu(CPUArchState *env)
  168. {
  169. KVMState *s = kvm_state;
  170. long mmap_size;
  171. int ret;
  172. DPRINTF("kvm_init_vcpu\n");
  173. ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
  174. if (ret < 0) {
  175. DPRINTF("kvm_create_vcpu failed\n");
  176. goto err;
  177. }
  178. env->kvm_fd = ret;
  179. env->kvm_state = s;
  180. env->kvm_vcpu_dirty = 1;
  181. mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
  182. if (mmap_size < 0) {
  183. ret = mmap_size;
  184. DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
  185. goto err;
  186. }
  187. env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
  188. env->kvm_fd, 0);
  189. if (env->kvm_run == MAP_FAILED) {
  190. ret = -errno;
  191. DPRINTF("mmap'ing vcpu state failed\n");
  192. goto err;
  193. }
  194. if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
  195. s->coalesced_mmio_ring =
  196. (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
  197. }
  198. ret = kvm_arch_init_vcpu(env);
  199. if (ret == 0) {
  200. qemu_register_reset(kvm_reset_vcpu, env);
  201. kvm_arch_reset_vcpu(env);
  202. }
  203. err:
  204. return ret;
  205. }
  206. /*
  207. * dirty pages logging control
  208. */
  209. static int kvm_mem_flags(KVMState *s, bool log_dirty)
  210. {
  211. return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
  212. }
  213. static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
  214. {
  215. KVMState *s = kvm_state;
  216. int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
  217. int old_flags;
  218. old_flags = mem->flags;
  219. flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
  220. mem->flags = flags;
  221. /* If nothing changed effectively, no need to issue ioctl */
  222. if (s->migration_log) {
  223. flags |= KVM_MEM_LOG_DIRTY_PAGES;
  224. }
  225. if (flags == old_flags) {
  226. return 0;
  227. }
  228. return kvm_set_user_memory_region(s, mem);
  229. }
  230. static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
  231. ram_addr_t size, bool log_dirty)
  232. {
  233. KVMState *s = kvm_state;
  234. KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
  235. if (mem == NULL) {
  236. fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
  237. TARGET_FMT_plx "\n", __func__, phys_addr,
  238. (target_phys_addr_t)(phys_addr + size - 1));
  239. return -EINVAL;
  240. }
  241. return kvm_slot_dirty_pages_log_change(mem, log_dirty);
  242. }
  243. static void kvm_log_start(MemoryListener *listener,
  244. MemoryRegionSection *section)
  245. {
  246. int r;
  247. r = kvm_dirty_pages_log_change(section->offset_within_address_space,
  248. section->size, true);
  249. if (r < 0) {
  250. abort();
  251. }
  252. }
  253. static void kvm_log_stop(MemoryListener *listener,
  254. MemoryRegionSection *section)
  255. {
  256. int r;
  257. r = kvm_dirty_pages_log_change(section->offset_within_address_space,
  258. section->size, false);
  259. if (r < 0) {
  260. abort();
  261. }
  262. }
  263. static int kvm_set_migration_log(int enable)
  264. {
  265. KVMState *s = kvm_state;
  266. KVMSlot *mem;
  267. int i, err;
  268. s->migration_log = enable;
  269. for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
  270. mem = &s->slots[i];
  271. if (!mem->memory_size) {
  272. continue;
  273. }
  274. if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
  275. continue;
  276. }
  277. err = kvm_set_user_memory_region(s, mem);
  278. if (err) {
  279. return err;
  280. }
  281. }
  282. return 0;
  283. }
  284. /* get kvm's dirty pages bitmap and update qemu's */
  285. static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
  286. unsigned long *bitmap)
  287. {
  288. unsigned int i, j;
  289. unsigned long page_number, c;
  290. target_phys_addr_t addr, addr1;
  291. unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
  292. unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
  293. /*
  294. * bitmap-traveling is faster than memory-traveling (for addr...)
  295. * especially when most of the memory is not dirty.
  296. */
  297. for (i = 0; i < len; i++) {
  298. if (bitmap[i] != 0) {
  299. c = leul_to_cpu(bitmap[i]);
  300. do {
  301. j = ffsl(c) - 1;
  302. c &= ~(1ul << j);
  303. page_number = (i * HOST_LONG_BITS + j) * hpratio;
  304. addr1 = page_number * TARGET_PAGE_SIZE;
  305. addr = section->offset_within_region + addr1;
  306. memory_region_set_dirty(section->mr, addr,
  307. TARGET_PAGE_SIZE * hpratio);
  308. } while (c != 0);
  309. }
  310. }
  311. return 0;
  312. }
  313. #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
  314. /**
  315. * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
  316. * This function updates qemu's dirty bitmap using
  317. * memory_region_set_dirty(). This means all bits are set
  318. * to dirty.
  319. *
  320. * @start_add: start of logged region.
  321. * @end_addr: end of logged region.
  322. */
  323. static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
  324. {
  325. KVMState *s = kvm_state;
  326. unsigned long size, allocated_size = 0;
  327. KVMDirtyLog d;
  328. KVMSlot *mem;
  329. int ret = 0;
  330. target_phys_addr_t start_addr = section->offset_within_address_space;
  331. target_phys_addr_t end_addr = start_addr + section->size;
  332. d.dirty_bitmap = NULL;
  333. while (start_addr < end_addr) {
  334. mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
  335. if (mem == NULL) {
  336. break;
  337. }
  338. /* XXX bad kernel interface alert
  339. * For dirty bitmap, kernel allocates array of size aligned to
  340. * bits-per-long. But for case when the kernel is 64bits and
  341. * the userspace is 32bits, userspace can't align to the same
  342. * bits-per-long, since sizeof(long) is different between kernel
  343. * and user space. This way, userspace will provide buffer which
  344. * may be 4 bytes less than the kernel will use, resulting in
  345. * userspace memory corruption (which is not detectable by valgrind
  346. * too, in most cases).
  347. * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
  348. * a hope that sizeof(long) wont become >8 any time soon.
  349. */
  350. size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
  351. /*HOST_LONG_BITS*/ 64) / 8;
  352. if (!d.dirty_bitmap) {
  353. d.dirty_bitmap = g_malloc(size);
  354. } else if (size > allocated_size) {
  355. d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
  356. }
  357. allocated_size = size;
  358. memset(d.dirty_bitmap, 0, allocated_size);
  359. d.slot = mem->slot;
  360. if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
  361. DPRINTF("ioctl failed %d\n", errno);
  362. ret = -1;
  363. break;
  364. }
  365. kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
  366. start_addr = mem->start_addr + mem->memory_size;
  367. }
  368. g_free(d.dirty_bitmap);
  369. return ret;
  370. }
  371. int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
  372. {
  373. int ret = -ENOSYS;
  374. KVMState *s = kvm_state;
  375. if (s->coalesced_mmio) {
  376. struct kvm_coalesced_mmio_zone zone;
  377. zone.addr = start;
  378. zone.size = size;
  379. zone.pad = 0;
  380. ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
  381. }
  382. return ret;
  383. }
  384. int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
  385. {
  386. int ret = -ENOSYS;
  387. KVMState *s = kvm_state;
  388. if (s->coalesced_mmio) {
  389. struct kvm_coalesced_mmio_zone zone;
  390. zone.addr = start;
  391. zone.size = size;
  392. zone.pad = 0;
  393. ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
  394. }
  395. return ret;
  396. }
  397. int kvm_check_extension(KVMState *s, unsigned int extension)
  398. {
  399. int ret;
  400. ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
  401. if (ret < 0) {
  402. ret = 0;
  403. }
  404. return ret;
  405. }
  406. static int kvm_check_many_ioeventfds(void)
  407. {
  408. /* Userspace can use ioeventfd for io notification. This requires a host
  409. * that supports eventfd(2) and an I/O thread; since eventfd does not
  410. * support SIGIO it cannot interrupt the vcpu.
  411. *
  412. * Older kernels have a 6 device limit on the KVM io bus. Find out so we
  413. * can avoid creating too many ioeventfds.
  414. */
  415. #if defined(CONFIG_EVENTFD)
  416. int ioeventfds[7];
  417. int i, ret = 0;
  418. for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
  419. ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
  420. if (ioeventfds[i] < 0) {
  421. break;
  422. }
  423. ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
  424. if (ret < 0) {
  425. close(ioeventfds[i]);
  426. break;
  427. }
  428. }
  429. /* Decide whether many devices are supported or not */
  430. ret = i == ARRAY_SIZE(ioeventfds);
  431. while (i-- > 0) {
  432. kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
  433. close(ioeventfds[i]);
  434. }
  435. return ret;
  436. #else
  437. return 0;
  438. #endif
  439. }
  440. static const KVMCapabilityInfo *
  441. kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
  442. {
  443. while (list->name) {
  444. if (!kvm_check_extension(s, list->value)) {
  445. return list;
  446. }
  447. list++;
  448. }
  449. return NULL;
  450. }
  451. static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
  452. {
  453. KVMState *s = kvm_state;
  454. KVMSlot *mem, old;
  455. int err;
  456. MemoryRegion *mr = section->mr;
  457. bool log_dirty = memory_region_is_logging(mr);
  458. target_phys_addr_t start_addr = section->offset_within_address_space;
  459. ram_addr_t size = section->size;
  460. void *ram = NULL;
  461. unsigned delta;
  462. /* kvm works in page size chunks, but the function may be called
  463. with sub-page size and unaligned start address. */
  464. delta = TARGET_PAGE_ALIGN(size) - size;
  465. if (delta > size) {
  466. return;
  467. }
  468. start_addr += delta;
  469. size -= delta;
  470. size &= TARGET_PAGE_MASK;
  471. if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
  472. return;
  473. }
  474. if (!memory_region_is_ram(mr)) {
  475. return;
  476. }
  477. ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
  478. while (1) {
  479. mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
  480. if (!mem) {
  481. break;
  482. }
  483. if (add && start_addr >= mem->start_addr &&
  484. (start_addr + size <= mem->start_addr + mem->memory_size) &&
  485. (ram - start_addr == mem->ram - mem->start_addr)) {
  486. /* The new slot fits into the existing one and comes with
  487. * identical parameters - update flags and done. */
  488. kvm_slot_dirty_pages_log_change(mem, log_dirty);
  489. return;
  490. }
  491. old = *mem;
  492. if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
  493. kvm_physical_sync_dirty_bitmap(section);
  494. }
  495. /* unregister the overlapping slot */
  496. mem->memory_size = 0;
  497. err = kvm_set_user_memory_region(s, mem);
  498. if (err) {
  499. fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
  500. __func__, strerror(-err));
  501. abort();
  502. }
  503. /* Workaround for older KVM versions: we can't join slots, even not by
  504. * unregistering the previous ones and then registering the larger
  505. * slot. We have to maintain the existing fragmentation. Sigh.
  506. *
  507. * This workaround assumes that the new slot starts at the same
  508. * address as the first existing one. If not or if some overlapping
  509. * slot comes around later, we will fail (not seen in practice so far)
  510. * - and actually require a recent KVM version. */
  511. if (s->broken_set_mem_region &&
  512. old.start_addr == start_addr && old.memory_size < size && add) {
  513. mem = kvm_alloc_slot(s);
  514. mem->memory_size = old.memory_size;
  515. mem->start_addr = old.start_addr;
  516. mem->ram = old.ram;
  517. mem->flags = kvm_mem_flags(s, log_dirty);
  518. err = kvm_set_user_memory_region(s, mem);
  519. if (err) {
  520. fprintf(stderr, "%s: error updating slot: %s\n", __func__,
  521. strerror(-err));
  522. abort();
  523. }
  524. start_addr += old.memory_size;
  525. ram += old.memory_size;
  526. size -= old.memory_size;
  527. continue;
  528. }
  529. /* register prefix slot */
  530. if (old.start_addr < start_addr) {
  531. mem = kvm_alloc_slot(s);
  532. mem->memory_size = start_addr - old.start_addr;
  533. mem->start_addr = old.start_addr;
  534. mem->ram = old.ram;
  535. mem->flags = kvm_mem_flags(s, log_dirty);
  536. err = kvm_set_user_memory_region(s, mem);
  537. if (err) {
  538. fprintf(stderr, "%s: error registering prefix slot: %s\n",
  539. __func__, strerror(-err));
  540. #ifdef TARGET_PPC
  541. fprintf(stderr, "%s: This is probably because your kernel's " \
  542. "PAGE_SIZE is too big. Please try to use 4k " \
  543. "PAGE_SIZE!\n", __func__);
  544. #endif
  545. abort();
  546. }
  547. }
  548. /* register suffix slot */
  549. if (old.start_addr + old.memory_size > start_addr + size) {
  550. ram_addr_t size_delta;
  551. mem = kvm_alloc_slot(s);
  552. mem->start_addr = start_addr + size;
  553. size_delta = mem->start_addr - old.start_addr;
  554. mem->memory_size = old.memory_size - size_delta;
  555. mem->ram = old.ram + size_delta;
  556. mem->flags = kvm_mem_flags(s, log_dirty);
  557. err = kvm_set_user_memory_region(s, mem);
  558. if (err) {
  559. fprintf(stderr, "%s: error registering suffix slot: %s\n",
  560. __func__, strerror(-err));
  561. abort();
  562. }
  563. }
  564. }
  565. /* in case the KVM bug workaround already "consumed" the new slot */
  566. if (!size) {
  567. return;
  568. }
  569. if (!add) {
  570. return;
  571. }
  572. mem = kvm_alloc_slot(s);
  573. mem->memory_size = size;
  574. mem->start_addr = start_addr;
  575. mem->ram = ram;
  576. mem->flags = kvm_mem_flags(s, log_dirty);
  577. err = kvm_set_user_memory_region(s, mem);
  578. if (err) {
  579. fprintf(stderr, "%s: error registering slot: %s\n", __func__,
  580. strerror(-err));
  581. abort();
  582. }
  583. }
  584. static void kvm_begin(MemoryListener *listener)
  585. {
  586. }
  587. static void kvm_commit(MemoryListener *listener)
  588. {
  589. }
  590. static void kvm_region_add(MemoryListener *listener,
  591. MemoryRegionSection *section)
  592. {
  593. kvm_set_phys_mem(section, true);
  594. }
  595. static void kvm_region_del(MemoryListener *listener,
  596. MemoryRegionSection *section)
  597. {
  598. kvm_set_phys_mem(section, false);
  599. }
  600. static void kvm_region_nop(MemoryListener *listener,
  601. MemoryRegionSection *section)
  602. {
  603. }
  604. static void kvm_log_sync(MemoryListener *listener,
  605. MemoryRegionSection *section)
  606. {
  607. int r;
  608. r = kvm_physical_sync_dirty_bitmap(section);
  609. if (r < 0) {
  610. abort();
  611. }
  612. }
  613. static void kvm_log_global_start(struct MemoryListener *listener)
  614. {
  615. int r;
  616. r = kvm_set_migration_log(1);
  617. assert(r >= 0);
  618. }
  619. static void kvm_log_global_stop(struct MemoryListener *listener)
  620. {
  621. int r;
  622. r = kvm_set_migration_log(0);
  623. assert(r >= 0);
  624. }
  625. static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
  626. bool match_data, uint64_t data, int fd)
  627. {
  628. int r;
  629. assert(match_data && section->size <= 8);
  630. r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
  631. data, true, section->size);
  632. if (r < 0) {
  633. abort();
  634. }
  635. }
  636. static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
  637. bool match_data, uint64_t data, int fd)
  638. {
  639. int r;
  640. r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
  641. data, false, section->size);
  642. if (r < 0) {
  643. abort();
  644. }
  645. }
  646. static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
  647. bool match_data, uint64_t data, int fd)
  648. {
  649. int r;
  650. assert(match_data && section->size == 2);
  651. r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
  652. data, true);
  653. if (r < 0) {
  654. abort();
  655. }
  656. }
  657. static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
  658. bool match_data, uint64_t data, int fd)
  659. {
  660. int r;
  661. r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
  662. data, false);
  663. if (r < 0) {
  664. abort();
  665. }
  666. }
  667. static void kvm_eventfd_add(MemoryListener *listener,
  668. MemoryRegionSection *section,
  669. bool match_data, uint64_t data, int fd)
  670. {
  671. if (section->address_space == get_system_memory()) {
  672. kvm_mem_ioeventfd_add(section, match_data, data, fd);
  673. } else {
  674. kvm_io_ioeventfd_add(section, match_data, data, fd);
  675. }
  676. }
  677. static void kvm_eventfd_del(MemoryListener *listener,
  678. MemoryRegionSection *section,
  679. bool match_data, uint64_t data, int fd)
  680. {
  681. if (section->address_space == get_system_memory()) {
  682. kvm_mem_ioeventfd_del(section, match_data, data, fd);
  683. } else {
  684. kvm_io_ioeventfd_del(section, match_data, data, fd);
  685. }
  686. }
  687. static MemoryListener kvm_memory_listener = {
  688. .begin = kvm_begin,
  689. .commit = kvm_commit,
  690. .region_add = kvm_region_add,
  691. .region_del = kvm_region_del,
  692. .region_nop = kvm_region_nop,
  693. .log_start = kvm_log_start,
  694. .log_stop = kvm_log_stop,
  695. .log_sync = kvm_log_sync,
  696. .log_global_start = kvm_log_global_start,
  697. .log_global_stop = kvm_log_global_stop,
  698. .eventfd_add = kvm_eventfd_add,
  699. .eventfd_del = kvm_eventfd_del,
  700. .priority = 10,
  701. };
  702. static void kvm_handle_interrupt(CPUArchState *env, int mask)
  703. {
  704. env->interrupt_request |= mask;
  705. if (!qemu_cpu_is_self(env)) {
  706. qemu_cpu_kick(env);
  707. }
  708. }
  709. int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
  710. {
  711. struct kvm_irq_level event;
  712. int ret;
  713. assert(kvm_irqchip_in_kernel());
  714. event.level = level;
  715. event.irq = irq;
  716. ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
  717. if (ret < 0) {
  718. perror("kvm_set_irqchip_line");
  719. abort();
  720. }
  721. return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
  722. }
  723. #ifdef KVM_CAP_IRQ_ROUTING
  724. static void set_gsi(KVMState *s, unsigned int gsi)
  725. {
  726. assert(gsi < s->max_gsi);
  727. s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
  728. }
  729. static void kvm_init_irq_routing(KVMState *s)
  730. {
  731. int gsi_count;
  732. gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
  733. if (gsi_count > 0) {
  734. unsigned int gsi_bits, i;
  735. /* Round up so we can search ints using ffs */
  736. gsi_bits = ALIGN(gsi_count, 32);
  737. s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
  738. s->max_gsi = gsi_bits;
  739. /* Mark any over-allocated bits as already in use */
  740. for (i = gsi_count; i < gsi_bits; i++) {
  741. set_gsi(s, i);
  742. }
  743. }
  744. s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
  745. s->nr_allocated_irq_routes = 0;
  746. kvm_arch_init_irq_routing(s);
  747. }
  748. static void kvm_add_routing_entry(KVMState *s,
  749. struct kvm_irq_routing_entry *entry)
  750. {
  751. struct kvm_irq_routing_entry *new;
  752. int n, size;
  753. if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
  754. n = s->nr_allocated_irq_routes * 2;
  755. if (n < 64) {
  756. n = 64;
  757. }
  758. size = sizeof(struct kvm_irq_routing);
  759. size += n * sizeof(*new);
  760. s->irq_routes = g_realloc(s->irq_routes, size);
  761. s->nr_allocated_irq_routes = n;
  762. }
  763. n = s->irq_routes->nr++;
  764. new = &s->irq_routes->entries[n];
  765. memset(new, 0, sizeof(*new));
  766. new->gsi = entry->gsi;
  767. new->type = entry->type;
  768. new->flags = entry->flags;
  769. new->u = entry->u;
  770. set_gsi(s, entry->gsi);
  771. }
  772. void kvm_irqchip_add_route(KVMState *s, int irq, int irqchip, int pin)
  773. {
  774. struct kvm_irq_routing_entry e;
  775. e.gsi = irq;
  776. e.type = KVM_IRQ_ROUTING_IRQCHIP;
  777. e.flags = 0;
  778. e.u.irqchip.irqchip = irqchip;
  779. e.u.irqchip.pin = pin;
  780. kvm_add_routing_entry(s, &e);
  781. }
  782. int kvm_irqchip_commit_routes(KVMState *s)
  783. {
  784. s->irq_routes->flags = 0;
  785. return kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
  786. }
  787. #else /* !KVM_CAP_IRQ_ROUTING */
  788. static void kvm_init_irq_routing(KVMState *s)
  789. {
  790. }
  791. #endif /* !KVM_CAP_IRQ_ROUTING */
  792. static int kvm_irqchip_create(KVMState *s)
  793. {
  794. QemuOptsList *list = qemu_find_opts("machine");
  795. int ret;
  796. if (QTAILQ_EMPTY(&list->head) ||
  797. !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
  798. "kernel_irqchip", false) ||
  799. !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
  800. return 0;
  801. }
  802. ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
  803. if (ret < 0) {
  804. fprintf(stderr, "Create kernel irqchip failed\n");
  805. return ret;
  806. }
  807. s->irqchip_inject_ioctl = KVM_IRQ_LINE;
  808. if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
  809. s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
  810. }
  811. kvm_kernel_irqchip = true;
  812. kvm_init_irq_routing(s);
  813. return 0;
  814. }
  815. int kvm_init(void)
  816. {
  817. static const char upgrade_note[] =
  818. "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
  819. "(see http://sourceforge.net/projects/kvm).\n";
  820. KVMState *s;
  821. const KVMCapabilityInfo *missing_cap;
  822. int ret;
  823. int i;
  824. s = g_malloc0(sizeof(KVMState));
  825. /*
  826. * On systems where the kernel can support different base page
  827. * sizes, host page size may be different from TARGET_PAGE_SIZE,
  828. * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
  829. * page size for the system though.
  830. */
  831. assert(TARGET_PAGE_SIZE <= getpagesize());
  832. #ifdef KVM_CAP_SET_GUEST_DEBUG
  833. QTAILQ_INIT(&s->kvm_sw_breakpoints);
  834. #endif
  835. for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
  836. s->slots[i].slot = i;
  837. }
  838. s->vmfd = -1;
  839. s->fd = qemu_open("/dev/kvm", O_RDWR);
  840. if (s->fd == -1) {
  841. fprintf(stderr, "Could not access KVM kernel module: %m\n");
  842. ret = -errno;
  843. goto err;
  844. }
  845. ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
  846. if (ret < KVM_API_VERSION) {
  847. if (ret > 0) {
  848. ret = -EINVAL;
  849. }
  850. fprintf(stderr, "kvm version too old\n");
  851. goto err;
  852. }
  853. if (ret > KVM_API_VERSION) {
  854. ret = -EINVAL;
  855. fprintf(stderr, "kvm version not supported\n");
  856. goto err;
  857. }
  858. s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
  859. if (s->vmfd < 0) {
  860. #ifdef TARGET_S390X
  861. fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
  862. "your host kernel command line\n");
  863. #endif
  864. ret = s->vmfd;
  865. goto err;
  866. }
  867. missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
  868. if (!missing_cap) {
  869. missing_cap =
  870. kvm_check_extension_list(s, kvm_arch_required_capabilities);
  871. }
  872. if (missing_cap) {
  873. ret = -EINVAL;
  874. fprintf(stderr, "kvm does not support %s\n%s",
  875. missing_cap->name, upgrade_note);
  876. goto err;
  877. }
  878. s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
  879. s->broken_set_mem_region = 1;
  880. ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
  881. if (ret > 0) {
  882. s->broken_set_mem_region = 0;
  883. }
  884. #ifdef KVM_CAP_VCPU_EVENTS
  885. s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
  886. #endif
  887. s->robust_singlestep =
  888. kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
  889. #ifdef KVM_CAP_DEBUGREGS
  890. s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
  891. #endif
  892. #ifdef KVM_CAP_XSAVE
  893. s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
  894. #endif
  895. #ifdef KVM_CAP_XCRS
  896. s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
  897. #endif
  898. #ifdef KVM_CAP_PIT_STATE2
  899. s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
  900. #endif
  901. ret = kvm_arch_init(s);
  902. if (ret < 0) {
  903. goto err;
  904. }
  905. ret = kvm_irqchip_create(s);
  906. if (ret < 0) {
  907. goto err;
  908. }
  909. kvm_state = s;
  910. memory_listener_register(&kvm_memory_listener, NULL);
  911. s->many_ioeventfds = kvm_check_many_ioeventfds();
  912. cpu_interrupt_handler = kvm_handle_interrupt;
  913. return 0;
  914. err:
  915. if (s) {
  916. if (s->vmfd >= 0) {
  917. close(s->vmfd);
  918. }
  919. if (s->fd != -1) {
  920. close(s->fd);
  921. }
  922. }
  923. g_free(s);
  924. return ret;
  925. }
  926. static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
  927. uint32_t count)
  928. {
  929. int i;
  930. uint8_t *ptr = data;
  931. for (i = 0; i < count; i++) {
  932. if (direction == KVM_EXIT_IO_IN) {
  933. switch (size) {
  934. case 1:
  935. stb_p(ptr, cpu_inb(port));
  936. break;
  937. case 2:
  938. stw_p(ptr, cpu_inw(port));
  939. break;
  940. case 4:
  941. stl_p(ptr, cpu_inl(port));
  942. break;
  943. }
  944. } else {
  945. switch (size) {
  946. case 1:
  947. cpu_outb(port, ldub_p(ptr));
  948. break;
  949. case 2:
  950. cpu_outw(port, lduw_p(ptr));
  951. break;
  952. case 4:
  953. cpu_outl(port, ldl_p(ptr));
  954. break;
  955. }
  956. }
  957. ptr += size;
  958. }
  959. }
  960. static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
  961. {
  962. fprintf(stderr, "KVM internal error.");
  963. if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
  964. int i;
  965. fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
  966. for (i = 0; i < run->internal.ndata; ++i) {
  967. fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
  968. i, (uint64_t)run->internal.data[i]);
  969. }
  970. } else {
  971. fprintf(stderr, "\n");
  972. }
  973. if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
  974. fprintf(stderr, "emulation failure\n");
  975. if (!kvm_arch_stop_on_emulation_error(env)) {
  976. cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
  977. return EXCP_INTERRUPT;
  978. }
  979. }
  980. /* FIXME: Should trigger a qmp message to let management know
  981. * something went wrong.
  982. */
  983. return -1;
  984. }
  985. void kvm_flush_coalesced_mmio_buffer(void)
  986. {
  987. KVMState *s = kvm_state;
  988. if (s->coalesced_flush_in_progress) {
  989. return;
  990. }
  991. s->coalesced_flush_in_progress = true;
  992. if (s->coalesced_mmio_ring) {
  993. struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
  994. while (ring->first != ring->last) {
  995. struct kvm_coalesced_mmio *ent;
  996. ent = &ring->coalesced_mmio[ring->first];
  997. cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
  998. smp_wmb();
  999. ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
  1000. }
  1001. }
  1002. s->coalesced_flush_in_progress = false;
  1003. }
  1004. static void do_kvm_cpu_synchronize_state(void *_env)
  1005. {
  1006. CPUArchState *env = _env;
  1007. if (!env->kvm_vcpu_dirty) {
  1008. kvm_arch_get_registers(env);
  1009. env->kvm_vcpu_dirty = 1;
  1010. }
  1011. }
  1012. void kvm_cpu_synchronize_state(CPUArchState *env)
  1013. {
  1014. if (!env->kvm_vcpu_dirty) {
  1015. run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
  1016. }
  1017. }
  1018. void kvm_cpu_synchronize_post_reset(CPUArchState *env)
  1019. {
  1020. kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
  1021. env->kvm_vcpu_dirty = 0;
  1022. }
  1023. void kvm_cpu_synchronize_post_init(CPUArchState *env)
  1024. {
  1025. kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
  1026. env->kvm_vcpu_dirty = 0;
  1027. }
  1028. int kvm_cpu_exec(CPUArchState *env)
  1029. {
  1030. struct kvm_run *run = env->kvm_run;
  1031. int ret, run_ret;
  1032. DPRINTF("kvm_cpu_exec()\n");
  1033. if (kvm_arch_process_async_events(env)) {
  1034. env->exit_request = 0;
  1035. return EXCP_HLT;
  1036. }
  1037. do {
  1038. if (env->kvm_vcpu_dirty) {
  1039. kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
  1040. env->kvm_vcpu_dirty = 0;
  1041. }
  1042. kvm_arch_pre_run(env, run);
  1043. if (env->exit_request) {
  1044. DPRINTF("interrupt exit requested\n");
  1045. /*
  1046. * KVM requires us to reenter the kernel after IO exits to complete
  1047. * instruction emulation. This self-signal will ensure that we
  1048. * leave ASAP again.
  1049. */
  1050. qemu_cpu_kick_self();
  1051. }
  1052. qemu_mutex_unlock_iothread();
  1053. run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
  1054. qemu_mutex_lock_iothread();
  1055. kvm_arch_post_run(env, run);
  1056. kvm_flush_coalesced_mmio_buffer();
  1057. if (run_ret < 0) {
  1058. if (run_ret == -EINTR || run_ret == -EAGAIN) {
  1059. DPRINTF("io window exit\n");
  1060. ret = EXCP_INTERRUPT;
  1061. break;
  1062. }
  1063. fprintf(stderr, "error: kvm run failed %s\n",
  1064. strerror(-run_ret));
  1065. abort();
  1066. }
  1067. switch (run->exit_reason) {
  1068. case KVM_EXIT_IO:
  1069. DPRINTF("handle_io\n");
  1070. kvm_handle_io(run->io.port,
  1071. (uint8_t *)run + run->io.data_offset,
  1072. run->io.direction,
  1073. run->io.size,
  1074. run->io.count);
  1075. ret = 0;
  1076. break;
  1077. case KVM_EXIT_MMIO:
  1078. DPRINTF("handle_mmio\n");
  1079. cpu_physical_memory_rw(run->mmio.phys_addr,
  1080. run->mmio.data,
  1081. run->mmio.len,
  1082. run->mmio.is_write);
  1083. ret = 0;
  1084. break;
  1085. case KVM_EXIT_IRQ_WINDOW_OPEN:
  1086. DPRINTF("irq_window_open\n");
  1087. ret = EXCP_INTERRUPT;
  1088. break;
  1089. case KVM_EXIT_SHUTDOWN:
  1090. DPRINTF("shutdown\n");
  1091. qemu_system_reset_request();
  1092. ret = EXCP_INTERRUPT;
  1093. break;
  1094. case KVM_EXIT_UNKNOWN:
  1095. fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
  1096. (uint64_t)run->hw.hardware_exit_reason);
  1097. ret = -1;
  1098. break;
  1099. case KVM_EXIT_INTERNAL_ERROR:
  1100. ret = kvm_handle_internal_error(env, run);
  1101. break;
  1102. default:
  1103. DPRINTF("kvm_arch_handle_exit\n");
  1104. ret = kvm_arch_handle_exit(env, run);
  1105. break;
  1106. }
  1107. } while (ret == 0);
  1108. if (ret < 0) {
  1109. cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
  1110. vm_stop(RUN_STATE_INTERNAL_ERROR);
  1111. }
  1112. env->exit_request = 0;
  1113. return ret;
  1114. }
  1115. int kvm_ioctl(KVMState *s, int type, ...)
  1116. {
  1117. int ret;
  1118. void *arg;
  1119. va_list ap;
  1120. va_start(ap, type);
  1121. arg = va_arg(ap, void *);
  1122. va_end(ap);
  1123. ret = ioctl(s->fd, type, arg);
  1124. if (ret == -1) {
  1125. ret = -errno;
  1126. }
  1127. return ret;
  1128. }
  1129. int kvm_vm_ioctl(KVMState *s, int type, ...)
  1130. {
  1131. int ret;
  1132. void *arg;
  1133. va_list ap;
  1134. va_start(ap, type);
  1135. arg = va_arg(ap, void *);
  1136. va_end(ap);
  1137. ret = ioctl(s->vmfd, type, arg);
  1138. if (ret == -1) {
  1139. ret = -errno;
  1140. }
  1141. return ret;
  1142. }
  1143. int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
  1144. {
  1145. int ret;
  1146. void *arg;
  1147. va_list ap;
  1148. va_start(ap, type);
  1149. arg = va_arg(ap, void *);
  1150. va_end(ap);
  1151. ret = ioctl(env->kvm_fd, type, arg);
  1152. if (ret == -1) {
  1153. ret = -errno;
  1154. }
  1155. return ret;
  1156. }
  1157. int kvm_has_sync_mmu(void)
  1158. {
  1159. return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
  1160. }
  1161. int kvm_has_vcpu_events(void)
  1162. {
  1163. return kvm_state->vcpu_events;
  1164. }
  1165. int kvm_has_robust_singlestep(void)
  1166. {
  1167. return kvm_state->robust_singlestep;
  1168. }
  1169. int kvm_has_debugregs(void)
  1170. {
  1171. return kvm_state->debugregs;
  1172. }
  1173. int kvm_has_xsave(void)
  1174. {
  1175. return kvm_state->xsave;
  1176. }
  1177. int kvm_has_xcrs(void)
  1178. {
  1179. return kvm_state->xcrs;
  1180. }
  1181. int kvm_has_pit_state2(void)
  1182. {
  1183. return kvm_state->pit_state2;
  1184. }
  1185. int kvm_has_many_ioeventfds(void)
  1186. {
  1187. if (!kvm_enabled()) {
  1188. return 0;
  1189. }
  1190. return kvm_state->many_ioeventfds;
  1191. }
  1192. int kvm_has_gsi_routing(void)
  1193. {
  1194. #ifdef KVM_CAP_IRQ_ROUTING
  1195. return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
  1196. #else
  1197. return false;
  1198. #endif
  1199. }
  1200. int kvm_allows_irq0_override(void)
  1201. {
  1202. return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
  1203. }
  1204. void kvm_setup_guest_memory(void *start, size_t size)
  1205. {
  1206. if (!kvm_has_sync_mmu()) {
  1207. int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
  1208. if (ret) {
  1209. perror("qemu_madvise");
  1210. fprintf(stderr,
  1211. "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
  1212. exit(1);
  1213. }
  1214. }
  1215. }
  1216. #ifdef KVM_CAP_SET_GUEST_DEBUG
  1217. struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
  1218. target_ulong pc)
  1219. {
  1220. struct kvm_sw_breakpoint *bp;
  1221. QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
  1222. if (bp->pc == pc) {
  1223. return bp;
  1224. }
  1225. }
  1226. return NULL;
  1227. }
  1228. int kvm_sw_breakpoints_active(CPUArchState *env)
  1229. {
  1230. return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
  1231. }
  1232. struct kvm_set_guest_debug_data {
  1233. struct kvm_guest_debug dbg;
  1234. CPUArchState *env;
  1235. int err;
  1236. };
  1237. static void kvm_invoke_set_guest_debug(void *data)
  1238. {
  1239. struct kvm_set_guest_debug_data *dbg_data = data;
  1240. CPUArchState *env = dbg_data->env;
  1241. dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
  1242. }
  1243. int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
  1244. {
  1245. struct kvm_set_guest_debug_data data;
  1246. data.dbg.control = reinject_trap;
  1247. if (env->singlestep_enabled) {
  1248. data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
  1249. }
  1250. kvm_arch_update_guest_debug(env, &data.dbg);
  1251. data.env = env;
  1252. run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
  1253. return data.err;
  1254. }
  1255. int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
  1256. target_ulong len, int type)
  1257. {
  1258. struct kvm_sw_breakpoint *bp;
  1259. CPUArchState *env;
  1260. int err;
  1261. if (type == GDB_BREAKPOINT_SW) {
  1262. bp = kvm_find_sw_breakpoint(current_env, addr);
  1263. if (bp) {
  1264. bp->use_count++;
  1265. return 0;
  1266. }
  1267. bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
  1268. if (!bp) {
  1269. return -ENOMEM;
  1270. }
  1271. bp->pc = addr;
  1272. bp->use_count = 1;
  1273. err = kvm_arch_insert_sw_breakpoint(current_env, bp);
  1274. if (err) {
  1275. g_free(bp);
  1276. return err;
  1277. }
  1278. QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
  1279. bp, entry);
  1280. } else {
  1281. err = kvm_arch_insert_hw_breakpoint(addr, len, type);
  1282. if (err) {
  1283. return err;
  1284. }
  1285. }
  1286. for (env = first_cpu; env != NULL; env = env->next_cpu) {
  1287. err = kvm_update_guest_debug(env, 0);
  1288. if (err) {
  1289. return err;
  1290. }
  1291. }
  1292. return 0;
  1293. }
  1294. int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
  1295. target_ulong len, int type)
  1296. {
  1297. struct kvm_sw_breakpoint *bp;
  1298. CPUArchState *env;
  1299. int err;
  1300. if (type == GDB_BREAKPOINT_SW) {
  1301. bp = kvm_find_sw_breakpoint(current_env, addr);
  1302. if (!bp) {
  1303. return -ENOENT;
  1304. }
  1305. if (bp->use_count > 1) {
  1306. bp->use_count--;
  1307. return 0;
  1308. }
  1309. err = kvm_arch_remove_sw_breakpoint(current_env, bp);
  1310. if (err) {
  1311. return err;
  1312. }
  1313. QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
  1314. g_free(bp);
  1315. } else {
  1316. err = kvm_arch_remove_hw_breakpoint(addr, len, type);
  1317. if (err) {
  1318. return err;
  1319. }
  1320. }
  1321. for (env = first_cpu; env != NULL; env = env->next_cpu) {
  1322. err = kvm_update_guest_debug(env, 0);
  1323. if (err) {
  1324. return err;
  1325. }
  1326. }
  1327. return 0;
  1328. }
  1329. void kvm_remove_all_breakpoints(CPUArchState *current_env)
  1330. {
  1331. struct kvm_sw_breakpoint *bp, *next;
  1332. KVMState *s = current_env->kvm_state;
  1333. CPUArchState *env;
  1334. QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
  1335. if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
  1336. /* Try harder to find a CPU that currently sees the breakpoint. */
  1337. for (env = first_cpu; env != NULL; env = env->next_cpu) {
  1338. if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
  1339. break;
  1340. }
  1341. }
  1342. }
  1343. }
  1344. kvm_arch_remove_all_hw_breakpoints();
  1345. for (env = first_cpu; env != NULL; env = env->next_cpu) {
  1346. kvm_update_guest_debug(env, 0);
  1347. }
  1348. }
  1349. #else /* !KVM_CAP_SET_GUEST_DEBUG */
  1350. int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
  1351. {
  1352. return -EINVAL;
  1353. }
  1354. int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
  1355. target_ulong len, int type)
  1356. {
  1357. return -EINVAL;
  1358. }
  1359. int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
  1360. target_ulong len, int type)
  1361. {
  1362. return -EINVAL;
  1363. }
  1364. void kvm_remove_all_breakpoints(CPUArchState *current_env)
  1365. {
  1366. }
  1367. #endif /* !KVM_CAP_SET_GUEST_DEBUG */
  1368. int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
  1369. {
  1370. struct kvm_signal_mask *sigmask;
  1371. int r;
  1372. if (!sigset) {
  1373. return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
  1374. }
  1375. sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
  1376. sigmask->len = 8;
  1377. memcpy(sigmask->sigset, sigset, sizeof(*sigset));
  1378. r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
  1379. g_free(sigmask);
  1380. return r;
  1381. }
  1382. int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
  1383. uint32_t size)
  1384. {
  1385. int ret;
  1386. struct kvm_ioeventfd iofd;
  1387. iofd.datamatch = val;
  1388. iofd.addr = addr;
  1389. iofd.len = size;
  1390. iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
  1391. iofd.fd = fd;
  1392. if (!kvm_enabled()) {
  1393. return -ENOSYS;
  1394. }
  1395. if (!assign) {
  1396. iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
  1397. }
  1398. ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
  1399. if (ret < 0) {
  1400. return -errno;
  1401. }
  1402. return 0;
  1403. }
  1404. int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
  1405. {
  1406. struct kvm_ioeventfd kick = {
  1407. .datamatch = val,
  1408. .addr = addr,
  1409. .len = 2,
  1410. .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
  1411. .fd = fd,
  1412. };
  1413. int r;
  1414. if (!kvm_enabled()) {
  1415. return -ENOSYS;
  1416. }
  1417. if (!assign) {
  1418. kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
  1419. }
  1420. r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
  1421. if (r < 0) {
  1422. return r;
  1423. }
  1424. return 0;
  1425. }
  1426. int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
  1427. {
  1428. return kvm_arch_on_sigbus_vcpu(env, code, addr);
  1429. }
  1430. int kvm_on_sigbus(int code, void *addr)
  1431. {
  1432. return kvm_arch_on_sigbus(code, addr);
  1433. }