2
0

qemu-timer.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851
  1. /*
  2. * QEMU System Emulator
  3. *
  4. * Copyright (c) 2003-2008 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "sysemu.h"
  25. #include "net.h"
  26. #include "monitor.h"
  27. #include "console.h"
  28. #include "hw/hw.h"
  29. #include <unistd.h>
  30. #include <fcntl.h>
  31. #include <time.h>
  32. #include <errno.h>
  33. #include <sys/time.h>
  34. #include <signal.h>
  35. #ifdef __FreeBSD__
  36. #include <sys/param.h>
  37. #endif
  38. #ifdef _WIN32
  39. #include <windows.h>
  40. #include <mmsystem.h>
  41. #endif
  42. #include "qemu-timer.h"
  43. /***********************************************************/
  44. /* timers */
  45. #define QEMU_CLOCK_REALTIME 0
  46. #define QEMU_CLOCK_VIRTUAL 1
  47. #define QEMU_CLOCK_HOST 2
  48. struct QEMUClock {
  49. int type;
  50. int enabled;
  51. QEMUTimer *active_timers;
  52. NotifierList reset_notifiers;
  53. int64_t last;
  54. };
  55. struct QEMUTimer {
  56. QEMUClock *clock;
  57. int64_t expire_time; /* in nanoseconds */
  58. int scale;
  59. QEMUTimerCB *cb;
  60. void *opaque;
  61. struct QEMUTimer *next;
  62. };
  63. struct qemu_alarm_timer {
  64. char const *name;
  65. int (*start)(struct qemu_alarm_timer *t);
  66. void (*stop)(struct qemu_alarm_timer *t);
  67. void (*rearm)(struct qemu_alarm_timer *t, int64_t nearest_delta_ns);
  68. #if defined(__linux__)
  69. int fd;
  70. timer_t timer;
  71. #elif defined(_WIN32)
  72. HANDLE timer;
  73. #endif
  74. char expired;
  75. char pending;
  76. };
  77. static struct qemu_alarm_timer *alarm_timer;
  78. static bool qemu_timer_expired_ns(QEMUTimer *timer_head, int64_t current_time)
  79. {
  80. return timer_head && (timer_head->expire_time <= current_time);
  81. }
  82. int qemu_alarm_pending(void)
  83. {
  84. return alarm_timer->pending;
  85. }
  86. static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
  87. {
  88. return !!t->rearm;
  89. }
  90. static int64_t qemu_next_alarm_deadline(void)
  91. {
  92. int64_t delta;
  93. int64_t rtdelta;
  94. if (!use_icount && vm_clock->active_timers) {
  95. delta = vm_clock->active_timers->expire_time -
  96. qemu_get_clock_ns(vm_clock);
  97. } else {
  98. delta = INT32_MAX;
  99. }
  100. if (host_clock->active_timers) {
  101. int64_t hdelta = host_clock->active_timers->expire_time -
  102. qemu_get_clock_ns(host_clock);
  103. if (hdelta < delta) {
  104. delta = hdelta;
  105. }
  106. }
  107. if (rt_clock->active_timers) {
  108. rtdelta = (rt_clock->active_timers->expire_time -
  109. qemu_get_clock_ns(rt_clock));
  110. if (rtdelta < delta) {
  111. delta = rtdelta;
  112. }
  113. }
  114. return delta;
  115. }
  116. static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
  117. {
  118. int64_t nearest_delta_ns;
  119. assert(alarm_has_dynticks(t));
  120. if (!rt_clock->active_timers &&
  121. !vm_clock->active_timers &&
  122. !host_clock->active_timers) {
  123. return;
  124. }
  125. nearest_delta_ns = qemu_next_alarm_deadline();
  126. t->rearm(t, nearest_delta_ns);
  127. }
  128. /* TODO: MIN_TIMER_REARM_NS should be optimized */
  129. #define MIN_TIMER_REARM_NS 250000
  130. #ifdef _WIN32
  131. static int mm_start_timer(struct qemu_alarm_timer *t);
  132. static void mm_stop_timer(struct qemu_alarm_timer *t);
  133. static void mm_rearm_timer(struct qemu_alarm_timer *t, int64_t delta);
  134. static int win32_start_timer(struct qemu_alarm_timer *t);
  135. static void win32_stop_timer(struct qemu_alarm_timer *t);
  136. static void win32_rearm_timer(struct qemu_alarm_timer *t, int64_t delta);
  137. #else
  138. static int unix_start_timer(struct qemu_alarm_timer *t);
  139. static void unix_stop_timer(struct qemu_alarm_timer *t);
  140. static void unix_rearm_timer(struct qemu_alarm_timer *t, int64_t delta);
  141. #ifdef __linux__
  142. static int dynticks_start_timer(struct qemu_alarm_timer *t);
  143. static void dynticks_stop_timer(struct qemu_alarm_timer *t);
  144. static void dynticks_rearm_timer(struct qemu_alarm_timer *t, int64_t delta);
  145. #endif /* __linux__ */
  146. #endif /* _WIN32 */
  147. static struct qemu_alarm_timer alarm_timers[] = {
  148. #ifndef _WIN32
  149. #ifdef __linux__
  150. {"dynticks", dynticks_start_timer,
  151. dynticks_stop_timer, dynticks_rearm_timer},
  152. #endif
  153. {"unix", unix_start_timer, unix_stop_timer, unix_rearm_timer},
  154. #else
  155. {"mmtimer", mm_start_timer, mm_stop_timer, mm_rearm_timer},
  156. {"dynticks", win32_start_timer, win32_stop_timer, win32_rearm_timer},
  157. #endif
  158. {NULL, }
  159. };
  160. static void show_available_alarms(void)
  161. {
  162. int i;
  163. printf("Available alarm timers, in order of precedence:\n");
  164. for (i = 0; alarm_timers[i].name; i++)
  165. printf("%s\n", alarm_timers[i].name);
  166. }
  167. void configure_alarms(char const *opt)
  168. {
  169. int i;
  170. int cur = 0;
  171. int count = ARRAY_SIZE(alarm_timers) - 1;
  172. char *arg;
  173. char *name;
  174. struct qemu_alarm_timer tmp;
  175. if (!strcmp(opt, "?")) {
  176. show_available_alarms();
  177. exit(0);
  178. }
  179. arg = g_strdup(opt);
  180. /* Reorder the array */
  181. name = strtok(arg, ",");
  182. while (name) {
  183. for (i = 0; i < count && alarm_timers[i].name; i++) {
  184. if (!strcmp(alarm_timers[i].name, name))
  185. break;
  186. }
  187. if (i == count) {
  188. fprintf(stderr, "Unknown clock %s\n", name);
  189. goto next;
  190. }
  191. if (i < cur)
  192. /* Ignore */
  193. goto next;
  194. /* Swap */
  195. tmp = alarm_timers[i];
  196. alarm_timers[i] = alarm_timers[cur];
  197. alarm_timers[cur] = tmp;
  198. cur++;
  199. next:
  200. name = strtok(NULL, ",");
  201. }
  202. g_free(arg);
  203. if (cur) {
  204. /* Disable remaining timers */
  205. for (i = cur; i < count; i++)
  206. alarm_timers[i].name = NULL;
  207. } else {
  208. show_available_alarms();
  209. exit(1);
  210. }
  211. }
  212. QEMUClock *rt_clock;
  213. QEMUClock *vm_clock;
  214. QEMUClock *host_clock;
  215. static QEMUClock *qemu_new_clock(int type)
  216. {
  217. QEMUClock *clock;
  218. clock = g_malloc0(sizeof(QEMUClock));
  219. clock->type = type;
  220. clock->enabled = 1;
  221. clock->last = INT64_MIN;
  222. notifier_list_init(&clock->reset_notifiers);
  223. return clock;
  224. }
  225. void qemu_clock_enable(QEMUClock *clock, int enabled)
  226. {
  227. bool old = clock->enabled;
  228. clock->enabled = enabled;
  229. if (enabled && !old) {
  230. qemu_rearm_alarm_timer(alarm_timer);
  231. }
  232. }
  233. int64_t qemu_clock_has_timers(QEMUClock *clock)
  234. {
  235. return !!clock->active_timers;
  236. }
  237. int64_t qemu_clock_expired(QEMUClock *clock)
  238. {
  239. return (clock->active_timers &&
  240. clock->active_timers->expire_time < qemu_get_clock_ns(clock));
  241. }
  242. int64_t qemu_clock_deadline(QEMUClock *clock)
  243. {
  244. /* To avoid problems with overflow limit this to 2^32. */
  245. int64_t delta = INT32_MAX;
  246. if (clock->active_timers) {
  247. delta = clock->active_timers->expire_time - qemu_get_clock_ns(clock);
  248. }
  249. if (delta < 0) {
  250. delta = 0;
  251. }
  252. return delta;
  253. }
  254. QEMUTimer *qemu_new_timer(QEMUClock *clock, int scale,
  255. QEMUTimerCB *cb, void *opaque)
  256. {
  257. QEMUTimer *ts;
  258. ts = g_malloc0(sizeof(QEMUTimer));
  259. ts->clock = clock;
  260. ts->cb = cb;
  261. ts->opaque = opaque;
  262. ts->scale = scale;
  263. return ts;
  264. }
  265. void qemu_free_timer(QEMUTimer *ts)
  266. {
  267. g_free(ts);
  268. }
  269. /* stop a timer, but do not dealloc it */
  270. void qemu_del_timer(QEMUTimer *ts)
  271. {
  272. QEMUTimer **pt, *t;
  273. /* NOTE: this code must be signal safe because
  274. qemu_timer_expired() can be called from a signal. */
  275. pt = &ts->clock->active_timers;
  276. for(;;) {
  277. t = *pt;
  278. if (!t)
  279. break;
  280. if (t == ts) {
  281. *pt = t->next;
  282. break;
  283. }
  284. pt = &t->next;
  285. }
  286. }
  287. /* modify the current timer so that it will be fired when current_time
  288. >= expire_time. The corresponding callback will be called. */
  289. void qemu_mod_timer_ns(QEMUTimer *ts, int64_t expire_time)
  290. {
  291. QEMUTimer **pt, *t;
  292. qemu_del_timer(ts);
  293. /* add the timer in the sorted list */
  294. /* NOTE: this code must be signal safe because
  295. qemu_timer_expired() can be called from a signal. */
  296. pt = &ts->clock->active_timers;
  297. for(;;) {
  298. t = *pt;
  299. if (!qemu_timer_expired_ns(t, expire_time)) {
  300. break;
  301. }
  302. pt = &t->next;
  303. }
  304. ts->expire_time = expire_time;
  305. ts->next = *pt;
  306. *pt = ts;
  307. /* Rearm if necessary */
  308. if (pt == &ts->clock->active_timers) {
  309. if (!alarm_timer->pending) {
  310. qemu_rearm_alarm_timer(alarm_timer);
  311. }
  312. /* Interrupt execution to force deadline recalculation. */
  313. qemu_clock_warp(ts->clock);
  314. if (use_icount) {
  315. qemu_notify_event();
  316. }
  317. }
  318. }
  319. void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
  320. {
  321. qemu_mod_timer_ns(ts, expire_time * ts->scale);
  322. }
  323. int qemu_timer_pending(QEMUTimer *ts)
  324. {
  325. QEMUTimer *t;
  326. for (t = ts->clock->active_timers; t != NULL; t = t->next) {
  327. if (t == ts)
  328. return 1;
  329. }
  330. return 0;
  331. }
  332. int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
  333. {
  334. return qemu_timer_expired_ns(timer_head, current_time * timer_head->scale);
  335. }
  336. static void qemu_run_timers(QEMUClock *clock)
  337. {
  338. QEMUTimer **ptimer_head, *ts;
  339. int64_t current_time;
  340. if (!clock->enabled)
  341. return;
  342. current_time = qemu_get_clock_ns(clock);
  343. ptimer_head = &clock->active_timers;
  344. for(;;) {
  345. ts = *ptimer_head;
  346. if (!qemu_timer_expired_ns(ts, current_time)) {
  347. break;
  348. }
  349. /* remove timer from the list before calling the callback */
  350. *ptimer_head = ts->next;
  351. ts->next = NULL;
  352. /* run the callback (the timer list can be modified) */
  353. ts->cb(ts->opaque);
  354. }
  355. }
  356. int64_t qemu_get_clock_ns(QEMUClock *clock)
  357. {
  358. int64_t now, last;
  359. switch(clock->type) {
  360. case QEMU_CLOCK_REALTIME:
  361. return get_clock();
  362. default:
  363. case QEMU_CLOCK_VIRTUAL:
  364. if (use_icount) {
  365. return cpu_get_icount();
  366. } else {
  367. return cpu_get_clock();
  368. }
  369. case QEMU_CLOCK_HOST:
  370. now = get_clock_realtime();
  371. last = clock->last;
  372. clock->last = now;
  373. if (now < last) {
  374. notifier_list_notify(&clock->reset_notifiers, &now);
  375. }
  376. return now;
  377. }
  378. }
  379. void qemu_register_clock_reset_notifier(QEMUClock *clock, Notifier *notifier)
  380. {
  381. notifier_list_add(&clock->reset_notifiers, notifier);
  382. }
  383. void qemu_unregister_clock_reset_notifier(QEMUClock *clock, Notifier *notifier)
  384. {
  385. notifier_list_remove(&clock->reset_notifiers, notifier);
  386. }
  387. void init_clocks(void)
  388. {
  389. rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
  390. vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
  391. host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
  392. }
  393. uint64_t qemu_timer_expire_time_ns(QEMUTimer *ts)
  394. {
  395. return qemu_timer_pending(ts) ? ts->expire_time : -1;
  396. }
  397. void qemu_run_all_timers(void)
  398. {
  399. alarm_timer->pending = 0;
  400. /* rearm timer, if not periodic */
  401. if (alarm_timer->expired) {
  402. alarm_timer->expired = 0;
  403. qemu_rearm_alarm_timer(alarm_timer);
  404. }
  405. /* vm time timers */
  406. qemu_run_timers(vm_clock);
  407. qemu_run_timers(rt_clock);
  408. qemu_run_timers(host_clock);
  409. }
  410. #ifdef _WIN32
  411. static void CALLBACK host_alarm_handler(PVOID lpParam, BOOLEAN unused)
  412. #else
  413. static void host_alarm_handler(int host_signum)
  414. #endif
  415. {
  416. struct qemu_alarm_timer *t = alarm_timer;
  417. if (!t)
  418. return;
  419. #if 0
  420. #define DISP_FREQ 1000
  421. {
  422. static int64_t delta_min = INT64_MAX;
  423. static int64_t delta_max, delta_cum, last_clock, delta, ti;
  424. static int count;
  425. ti = qemu_get_clock_ns(vm_clock);
  426. if (last_clock != 0) {
  427. delta = ti - last_clock;
  428. if (delta < delta_min)
  429. delta_min = delta;
  430. if (delta > delta_max)
  431. delta_max = delta;
  432. delta_cum += delta;
  433. if (++count == DISP_FREQ) {
  434. printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
  435. muldiv64(delta_min, 1000000, get_ticks_per_sec()),
  436. muldiv64(delta_max, 1000000, get_ticks_per_sec()),
  437. muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
  438. (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
  439. count = 0;
  440. delta_min = INT64_MAX;
  441. delta_max = 0;
  442. delta_cum = 0;
  443. }
  444. }
  445. last_clock = ti;
  446. }
  447. #endif
  448. if (alarm_has_dynticks(t) ||
  449. qemu_next_alarm_deadline () <= 0) {
  450. t->expired = alarm_has_dynticks(t);
  451. t->pending = 1;
  452. qemu_notify_event();
  453. }
  454. }
  455. #if defined(__linux__)
  456. #include "compatfd.h"
  457. static int dynticks_start_timer(struct qemu_alarm_timer *t)
  458. {
  459. struct sigevent ev;
  460. timer_t host_timer;
  461. struct sigaction act;
  462. sigfillset(&act.sa_mask);
  463. act.sa_flags = 0;
  464. act.sa_handler = host_alarm_handler;
  465. sigaction(SIGALRM, &act, NULL);
  466. /*
  467. * Initialize ev struct to 0 to avoid valgrind complaining
  468. * about uninitialized data in timer_create call
  469. */
  470. memset(&ev, 0, sizeof(ev));
  471. ev.sigev_value.sival_int = 0;
  472. ev.sigev_notify = SIGEV_SIGNAL;
  473. #ifdef SIGEV_THREAD_ID
  474. if (qemu_signalfd_available()) {
  475. ev.sigev_notify = SIGEV_THREAD_ID;
  476. ev._sigev_un._tid = qemu_get_thread_id();
  477. }
  478. #endif /* SIGEV_THREAD_ID */
  479. ev.sigev_signo = SIGALRM;
  480. if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
  481. perror("timer_create");
  482. /* disable dynticks */
  483. fprintf(stderr, "Dynamic Ticks disabled\n");
  484. return -1;
  485. }
  486. t->timer = host_timer;
  487. return 0;
  488. }
  489. static void dynticks_stop_timer(struct qemu_alarm_timer *t)
  490. {
  491. timer_t host_timer = t->timer;
  492. timer_delete(host_timer);
  493. }
  494. static void dynticks_rearm_timer(struct qemu_alarm_timer *t,
  495. int64_t nearest_delta_ns)
  496. {
  497. timer_t host_timer = t->timer;
  498. struct itimerspec timeout;
  499. int64_t current_ns;
  500. if (nearest_delta_ns < MIN_TIMER_REARM_NS)
  501. nearest_delta_ns = MIN_TIMER_REARM_NS;
  502. /* check whether a timer is already running */
  503. if (timer_gettime(host_timer, &timeout)) {
  504. perror("gettime");
  505. fprintf(stderr, "Internal timer error: aborting\n");
  506. exit(1);
  507. }
  508. current_ns = timeout.it_value.tv_sec * 1000000000LL + timeout.it_value.tv_nsec;
  509. if (current_ns && current_ns <= nearest_delta_ns)
  510. return;
  511. timeout.it_interval.tv_sec = 0;
  512. timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
  513. timeout.it_value.tv_sec = nearest_delta_ns / 1000000000;
  514. timeout.it_value.tv_nsec = nearest_delta_ns % 1000000000;
  515. if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
  516. perror("settime");
  517. fprintf(stderr, "Internal timer error: aborting\n");
  518. exit(1);
  519. }
  520. }
  521. #endif /* defined(__linux__) */
  522. #if !defined(_WIN32)
  523. static int unix_start_timer(struct qemu_alarm_timer *t)
  524. {
  525. struct sigaction act;
  526. /* timer signal */
  527. sigfillset(&act.sa_mask);
  528. act.sa_flags = 0;
  529. act.sa_handler = host_alarm_handler;
  530. sigaction(SIGALRM, &act, NULL);
  531. return 0;
  532. }
  533. static void unix_rearm_timer(struct qemu_alarm_timer *t,
  534. int64_t nearest_delta_ns)
  535. {
  536. struct itimerval itv;
  537. int err;
  538. if (nearest_delta_ns < MIN_TIMER_REARM_NS)
  539. nearest_delta_ns = MIN_TIMER_REARM_NS;
  540. itv.it_interval.tv_sec = 0;
  541. itv.it_interval.tv_usec = 0; /* 0 for one-shot timer */
  542. itv.it_value.tv_sec = nearest_delta_ns / 1000000000;
  543. itv.it_value.tv_usec = (nearest_delta_ns % 1000000000) / 1000;
  544. err = setitimer(ITIMER_REAL, &itv, NULL);
  545. if (err) {
  546. perror("setitimer");
  547. fprintf(stderr, "Internal timer error: aborting\n");
  548. exit(1);
  549. }
  550. }
  551. static void unix_stop_timer(struct qemu_alarm_timer *t)
  552. {
  553. struct itimerval itv;
  554. memset(&itv, 0, sizeof(itv));
  555. setitimer(ITIMER_REAL, &itv, NULL);
  556. }
  557. #endif /* !defined(_WIN32) */
  558. #ifdef _WIN32
  559. static MMRESULT mm_timer;
  560. static unsigned mm_period;
  561. static void CALLBACK mm_alarm_handler(UINT uTimerID, UINT uMsg,
  562. DWORD_PTR dwUser, DWORD_PTR dw1,
  563. DWORD_PTR dw2)
  564. {
  565. struct qemu_alarm_timer *t = alarm_timer;
  566. if (!t) {
  567. return;
  568. }
  569. if (alarm_has_dynticks(t) || qemu_next_alarm_deadline() <= 0) {
  570. t->expired = alarm_has_dynticks(t);
  571. t->pending = 1;
  572. qemu_notify_event();
  573. }
  574. }
  575. static int mm_start_timer(struct qemu_alarm_timer *t)
  576. {
  577. TIMECAPS tc;
  578. UINT flags;
  579. memset(&tc, 0, sizeof(tc));
  580. timeGetDevCaps(&tc, sizeof(tc));
  581. mm_period = tc.wPeriodMin;
  582. timeBeginPeriod(mm_period);
  583. flags = TIME_CALLBACK_FUNCTION;
  584. if (alarm_has_dynticks(t)) {
  585. flags |= TIME_ONESHOT;
  586. } else {
  587. flags |= TIME_PERIODIC;
  588. }
  589. mm_timer = timeSetEvent(1, /* interval (ms) */
  590. mm_period, /* resolution */
  591. mm_alarm_handler, /* function */
  592. (DWORD_PTR)t, /* parameter */
  593. flags);
  594. if (!mm_timer) {
  595. fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
  596. GetLastError());
  597. timeEndPeriod(mm_period);
  598. return -1;
  599. }
  600. return 0;
  601. }
  602. static void mm_stop_timer(struct qemu_alarm_timer *t)
  603. {
  604. timeKillEvent(mm_timer);
  605. timeEndPeriod(mm_period);
  606. }
  607. static void mm_rearm_timer(struct qemu_alarm_timer *t, int64_t delta)
  608. {
  609. int nearest_delta_ms = (delta + 999999) / 1000000;
  610. if (nearest_delta_ms < 1) {
  611. nearest_delta_ms = 1;
  612. }
  613. timeKillEvent(mm_timer);
  614. mm_timer = timeSetEvent(nearest_delta_ms,
  615. mm_period,
  616. mm_alarm_handler,
  617. (DWORD_PTR)t,
  618. TIME_ONESHOT | TIME_CALLBACK_FUNCTION);
  619. if (!mm_timer) {
  620. fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
  621. GetLastError());
  622. timeEndPeriod(mm_period);
  623. exit(1);
  624. }
  625. }
  626. static int win32_start_timer(struct qemu_alarm_timer *t)
  627. {
  628. HANDLE hTimer;
  629. BOOLEAN success;
  630. /* If you call ChangeTimerQueueTimer on a one-shot timer (its period
  631. is zero) that has already expired, the timer is not updated. Since
  632. creating a new timer is relatively expensive, set a bogus one-hour
  633. interval in the dynticks case. */
  634. success = CreateTimerQueueTimer(&hTimer,
  635. NULL,
  636. host_alarm_handler,
  637. t,
  638. 1,
  639. alarm_has_dynticks(t) ? 3600000 : 1,
  640. WT_EXECUTEINTIMERTHREAD);
  641. if (!success) {
  642. fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
  643. GetLastError());
  644. return -1;
  645. }
  646. t->timer = hTimer;
  647. return 0;
  648. }
  649. static void win32_stop_timer(struct qemu_alarm_timer *t)
  650. {
  651. HANDLE hTimer = t->timer;
  652. if (hTimer) {
  653. DeleteTimerQueueTimer(NULL, hTimer, NULL);
  654. }
  655. }
  656. static void win32_rearm_timer(struct qemu_alarm_timer *t,
  657. int64_t nearest_delta_ns)
  658. {
  659. HANDLE hTimer = t->timer;
  660. int nearest_delta_ms;
  661. BOOLEAN success;
  662. nearest_delta_ms = (nearest_delta_ns + 999999) / 1000000;
  663. if (nearest_delta_ms < 1) {
  664. nearest_delta_ms = 1;
  665. }
  666. success = ChangeTimerQueueTimer(NULL,
  667. hTimer,
  668. nearest_delta_ms,
  669. 3600000);
  670. if (!success) {
  671. fprintf(stderr, "Failed to rearm win32 alarm timer: %ld\n",
  672. GetLastError());
  673. exit(-1);
  674. }
  675. }
  676. #endif /* _WIN32 */
  677. static void quit_timers(void)
  678. {
  679. struct qemu_alarm_timer *t = alarm_timer;
  680. alarm_timer = NULL;
  681. t->stop(t);
  682. }
  683. int init_timer_alarm(void)
  684. {
  685. struct qemu_alarm_timer *t = NULL;
  686. int i, err = -1;
  687. for (i = 0; alarm_timers[i].name; i++) {
  688. t = &alarm_timers[i];
  689. err = t->start(t);
  690. if (!err)
  691. break;
  692. }
  693. if (err) {
  694. err = -ENOENT;
  695. goto fail;
  696. }
  697. /* first event is at time 0 */
  698. atexit(quit_timers);
  699. t->pending = 1;
  700. alarm_timer = t;
  701. return 0;
  702. fail:
  703. return err;
  704. }
  705. int qemu_calculate_timeout(void)
  706. {
  707. return 1000;
  708. }