tc6393xb.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583
  1. /*
  2. * Toshiba TC6393XB I/O Controller.
  3. * Found in Sharp Zaurus SL-6000 (tosa) or some
  4. * Toshiba e-Series PDAs.
  5. *
  6. * Most features are currently unsupported!!!
  7. *
  8. * This code is licensed under the GNU GPL v2.
  9. */
  10. #include "hw.h"
  11. #include "devices.h"
  12. #include "flash.h"
  13. #include "console.h"
  14. #include "pixel_ops.h"
  15. #include "blockdev.h"
  16. #define IRQ_TC6393_NAND 0
  17. #define IRQ_TC6393_MMC 1
  18. #define IRQ_TC6393_OHCI 2
  19. #define IRQ_TC6393_SERIAL 3
  20. #define IRQ_TC6393_FB 4
  21. #define TC6393XB_NR_IRQS 8
  22. #define TC6393XB_GPIOS 16
  23. #define SCR_REVID 0x08 /* b Revision ID */
  24. #define SCR_ISR 0x50 /* b Interrupt Status */
  25. #define SCR_IMR 0x52 /* b Interrupt Mask */
  26. #define SCR_IRR 0x54 /* b Interrupt Routing */
  27. #define SCR_GPER 0x60 /* w GP Enable */
  28. #define SCR_GPI_SR(i) (0x64 + (i)) /* b3 GPI Status */
  29. #define SCR_GPI_IMR(i) (0x68 + (i)) /* b3 GPI INT Mask */
  30. #define SCR_GPI_EDER(i) (0x6c + (i)) /* b3 GPI Edge Detect Enable */
  31. #define SCR_GPI_LIR(i) (0x70 + (i)) /* b3 GPI Level Invert */
  32. #define SCR_GPO_DSR(i) (0x78 + (i)) /* b3 GPO Data Set */
  33. #define SCR_GPO_DOECR(i) (0x7c + (i)) /* b3 GPO Data OE Control */
  34. #define SCR_GP_IARCR(i) (0x80 + (i)) /* b3 GP Internal Active Register Control */
  35. #define SCR_GP_IARLCR(i) (0x84 + (i)) /* b3 GP INTERNAL Active Register Level Control */
  36. #define SCR_GPI_BCR(i) (0x88 + (i)) /* b3 GPI Buffer Control */
  37. #define SCR_GPA_IARCR 0x8c /* w GPa Internal Active Register Control */
  38. #define SCR_GPA_IARLCR 0x90 /* w GPa Internal Active Register Level Control */
  39. #define SCR_GPA_BCR 0x94 /* w GPa Buffer Control */
  40. #define SCR_CCR 0x98 /* w Clock Control */
  41. #define SCR_PLL2CR 0x9a /* w PLL2 Control */
  42. #define SCR_PLL1CR 0x9c /* l PLL1 Control */
  43. #define SCR_DIARCR 0xa0 /* b Device Internal Active Register Control */
  44. #define SCR_DBOCR 0xa1 /* b Device Buffer Off Control */
  45. #define SCR_FER 0xe0 /* b Function Enable */
  46. #define SCR_MCR 0xe4 /* w Mode Control */
  47. #define SCR_CONFIG 0xfc /* b Configuration Control */
  48. #define SCR_DEBUG 0xff /* b Debug */
  49. #define NAND_CFG_COMMAND 0x04 /* w Command */
  50. #define NAND_CFG_BASE 0x10 /* l Control Base Address */
  51. #define NAND_CFG_INTP 0x3d /* b Interrupt Pin */
  52. #define NAND_CFG_INTE 0x48 /* b Int Enable */
  53. #define NAND_CFG_EC 0x4a /* b Event Control */
  54. #define NAND_CFG_ICC 0x4c /* b Internal Clock Control */
  55. #define NAND_CFG_ECCC 0x5b /* b ECC Control */
  56. #define NAND_CFG_NFTC 0x60 /* b NAND Flash Transaction Control */
  57. #define NAND_CFG_NFM 0x61 /* b NAND Flash Monitor */
  58. #define NAND_CFG_NFPSC 0x62 /* b NAND Flash Power Supply Control */
  59. #define NAND_CFG_NFDC 0x63 /* b NAND Flash Detect Control */
  60. #define NAND_DATA 0x00 /* l Data */
  61. #define NAND_MODE 0x04 /* b Mode */
  62. #define NAND_STATUS 0x05 /* b Status */
  63. #define NAND_ISR 0x06 /* b Interrupt Status */
  64. #define NAND_IMR 0x07 /* b Interrupt Mask */
  65. #define NAND_MODE_WP 0x80
  66. #define NAND_MODE_CE 0x10
  67. #define NAND_MODE_ALE 0x02
  68. #define NAND_MODE_CLE 0x01
  69. #define NAND_MODE_ECC_MASK 0x60
  70. #define NAND_MODE_ECC_EN 0x20
  71. #define NAND_MODE_ECC_READ 0x40
  72. #define NAND_MODE_ECC_RST 0x60
  73. struct TC6393xbState {
  74. MemoryRegion iomem;
  75. qemu_irq irq;
  76. qemu_irq *sub_irqs;
  77. struct {
  78. uint8_t ISR;
  79. uint8_t IMR;
  80. uint8_t IRR;
  81. uint16_t GPER;
  82. uint8_t GPI_SR[3];
  83. uint8_t GPI_IMR[3];
  84. uint8_t GPI_EDER[3];
  85. uint8_t GPI_LIR[3];
  86. uint8_t GP_IARCR[3];
  87. uint8_t GP_IARLCR[3];
  88. uint8_t GPI_BCR[3];
  89. uint16_t GPA_IARCR;
  90. uint16_t GPA_IARLCR;
  91. uint16_t CCR;
  92. uint16_t PLL2CR;
  93. uint32_t PLL1CR;
  94. uint8_t DIARCR;
  95. uint8_t DBOCR;
  96. uint8_t FER;
  97. uint16_t MCR;
  98. uint8_t CONFIG;
  99. uint8_t DEBUG;
  100. } scr;
  101. uint32_t gpio_dir;
  102. uint32_t gpio_level;
  103. uint32_t prev_level;
  104. qemu_irq handler[TC6393XB_GPIOS];
  105. qemu_irq *gpio_in;
  106. struct {
  107. uint8_t mode;
  108. uint8_t isr;
  109. uint8_t imr;
  110. } nand;
  111. int nand_enable;
  112. uint32_t nand_phys;
  113. DeviceState *flash;
  114. ECCState ecc;
  115. DisplayState *ds;
  116. MemoryRegion vram;
  117. uint16_t *vram_ptr;
  118. uint32_t scr_width, scr_height; /* in pixels */
  119. qemu_irq l3v;
  120. unsigned blank : 1,
  121. blanked : 1;
  122. };
  123. qemu_irq *tc6393xb_gpio_in_get(TC6393xbState *s)
  124. {
  125. return s->gpio_in;
  126. }
  127. static void tc6393xb_gpio_set(void *opaque, int line, int level)
  128. {
  129. // TC6393xbState *s = opaque;
  130. if (line > TC6393XB_GPIOS) {
  131. printf("%s: No GPIO pin %i\n", __FUNCTION__, line);
  132. return;
  133. }
  134. // FIXME: how does the chip reflect the GPIO input level change?
  135. }
  136. void tc6393xb_gpio_out_set(TC6393xbState *s, int line,
  137. qemu_irq handler)
  138. {
  139. if (line >= TC6393XB_GPIOS) {
  140. fprintf(stderr, "TC6393xb: no GPIO pin %d\n", line);
  141. return;
  142. }
  143. s->handler[line] = handler;
  144. }
  145. static void tc6393xb_gpio_handler_update(TC6393xbState *s)
  146. {
  147. uint32_t level, diff;
  148. int bit;
  149. level = s->gpio_level & s->gpio_dir;
  150. for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
  151. bit = ffs(diff) - 1;
  152. qemu_set_irq(s->handler[bit], (level >> bit) & 1);
  153. }
  154. s->prev_level = level;
  155. }
  156. qemu_irq tc6393xb_l3v_get(TC6393xbState *s)
  157. {
  158. return s->l3v;
  159. }
  160. static void tc6393xb_l3v(void *opaque, int line, int level)
  161. {
  162. TC6393xbState *s = opaque;
  163. s->blank = !level;
  164. fprintf(stderr, "L3V: %d\n", level);
  165. }
  166. static void tc6393xb_sub_irq(void *opaque, int line, int level) {
  167. TC6393xbState *s = opaque;
  168. uint8_t isr = s->scr.ISR;
  169. if (level)
  170. isr |= 1 << line;
  171. else
  172. isr &= ~(1 << line);
  173. s->scr.ISR = isr;
  174. qemu_set_irq(s->irq, isr & s->scr.IMR);
  175. }
  176. #define SCR_REG_B(N) \
  177. case SCR_ ##N: return s->scr.N
  178. #define SCR_REG_W(N) \
  179. case SCR_ ##N: return s->scr.N; \
  180. case SCR_ ##N + 1: return s->scr.N >> 8;
  181. #define SCR_REG_L(N) \
  182. case SCR_ ##N: return s->scr.N; \
  183. case SCR_ ##N + 1: return s->scr.N >> 8; \
  184. case SCR_ ##N + 2: return s->scr.N >> 16; \
  185. case SCR_ ##N + 3: return s->scr.N >> 24;
  186. #define SCR_REG_A(N) \
  187. case SCR_ ##N(0): return s->scr.N[0]; \
  188. case SCR_ ##N(1): return s->scr.N[1]; \
  189. case SCR_ ##N(2): return s->scr.N[2]
  190. static uint32_t tc6393xb_scr_readb(TC6393xbState *s, target_phys_addr_t addr)
  191. {
  192. switch (addr) {
  193. case SCR_REVID:
  194. return 3;
  195. case SCR_REVID+1:
  196. return 0;
  197. SCR_REG_B(ISR);
  198. SCR_REG_B(IMR);
  199. SCR_REG_B(IRR);
  200. SCR_REG_W(GPER);
  201. SCR_REG_A(GPI_SR);
  202. SCR_REG_A(GPI_IMR);
  203. SCR_REG_A(GPI_EDER);
  204. SCR_REG_A(GPI_LIR);
  205. case SCR_GPO_DSR(0):
  206. case SCR_GPO_DSR(1):
  207. case SCR_GPO_DSR(2):
  208. return (s->gpio_level >> ((addr - SCR_GPO_DSR(0)) * 8)) & 0xff;
  209. case SCR_GPO_DOECR(0):
  210. case SCR_GPO_DOECR(1):
  211. case SCR_GPO_DOECR(2):
  212. return (s->gpio_dir >> ((addr - SCR_GPO_DOECR(0)) * 8)) & 0xff;
  213. SCR_REG_A(GP_IARCR);
  214. SCR_REG_A(GP_IARLCR);
  215. SCR_REG_A(GPI_BCR);
  216. SCR_REG_W(GPA_IARCR);
  217. SCR_REG_W(GPA_IARLCR);
  218. SCR_REG_W(CCR);
  219. SCR_REG_W(PLL2CR);
  220. SCR_REG_L(PLL1CR);
  221. SCR_REG_B(DIARCR);
  222. SCR_REG_B(DBOCR);
  223. SCR_REG_B(FER);
  224. SCR_REG_W(MCR);
  225. SCR_REG_B(CONFIG);
  226. SCR_REG_B(DEBUG);
  227. }
  228. fprintf(stderr, "tc6393xb_scr: unhandled read at %08x\n", (uint32_t) addr);
  229. return 0;
  230. }
  231. #undef SCR_REG_B
  232. #undef SCR_REG_W
  233. #undef SCR_REG_L
  234. #undef SCR_REG_A
  235. #define SCR_REG_B(N) \
  236. case SCR_ ##N: s->scr.N = value; return;
  237. #define SCR_REG_W(N) \
  238. case SCR_ ##N: s->scr.N = (s->scr.N & ~0xff) | (value & 0xff); return; \
  239. case SCR_ ##N + 1: s->scr.N = (s->scr.N & 0xff) | (value << 8); return
  240. #define SCR_REG_L(N) \
  241. case SCR_ ##N: s->scr.N = (s->scr.N & ~0xff) | (value & 0xff); return; \
  242. case SCR_ ##N + 1: s->scr.N = (s->scr.N & ~(0xff << 8)) | (value & (0xff << 8)); return; \
  243. case SCR_ ##N + 2: s->scr.N = (s->scr.N & ~(0xff << 16)) | (value & (0xff << 16)); return; \
  244. case SCR_ ##N + 3: s->scr.N = (s->scr.N & ~(0xff << 24)) | (value & (0xff << 24)); return;
  245. #define SCR_REG_A(N) \
  246. case SCR_ ##N(0): s->scr.N[0] = value; return; \
  247. case SCR_ ##N(1): s->scr.N[1] = value; return; \
  248. case SCR_ ##N(2): s->scr.N[2] = value; return
  249. static void tc6393xb_scr_writeb(TC6393xbState *s, target_phys_addr_t addr, uint32_t value)
  250. {
  251. switch (addr) {
  252. SCR_REG_B(ISR);
  253. SCR_REG_B(IMR);
  254. SCR_REG_B(IRR);
  255. SCR_REG_W(GPER);
  256. SCR_REG_A(GPI_SR);
  257. SCR_REG_A(GPI_IMR);
  258. SCR_REG_A(GPI_EDER);
  259. SCR_REG_A(GPI_LIR);
  260. case SCR_GPO_DSR(0):
  261. case SCR_GPO_DSR(1):
  262. case SCR_GPO_DSR(2):
  263. s->gpio_level = (s->gpio_level & ~(0xff << ((addr - SCR_GPO_DSR(0))*8))) | ((value & 0xff) << ((addr - SCR_GPO_DSR(0))*8));
  264. tc6393xb_gpio_handler_update(s);
  265. return;
  266. case SCR_GPO_DOECR(0):
  267. case SCR_GPO_DOECR(1):
  268. case SCR_GPO_DOECR(2):
  269. s->gpio_dir = (s->gpio_dir & ~(0xff << ((addr - SCR_GPO_DOECR(0))*8))) | ((value & 0xff) << ((addr - SCR_GPO_DOECR(0))*8));
  270. tc6393xb_gpio_handler_update(s);
  271. return;
  272. SCR_REG_A(GP_IARCR);
  273. SCR_REG_A(GP_IARLCR);
  274. SCR_REG_A(GPI_BCR);
  275. SCR_REG_W(GPA_IARCR);
  276. SCR_REG_W(GPA_IARLCR);
  277. SCR_REG_W(CCR);
  278. SCR_REG_W(PLL2CR);
  279. SCR_REG_L(PLL1CR);
  280. SCR_REG_B(DIARCR);
  281. SCR_REG_B(DBOCR);
  282. SCR_REG_B(FER);
  283. SCR_REG_W(MCR);
  284. SCR_REG_B(CONFIG);
  285. SCR_REG_B(DEBUG);
  286. }
  287. fprintf(stderr, "tc6393xb_scr: unhandled write at %08x: %02x\n",
  288. (uint32_t) addr, value & 0xff);
  289. }
  290. #undef SCR_REG_B
  291. #undef SCR_REG_W
  292. #undef SCR_REG_L
  293. #undef SCR_REG_A
  294. static void tc6393xb_nand_irq(TC6393xbState *s) {
  295. qemu_set_irq(s->sub_irqs[IRQ_TC6393_NAND],
  296. (s->nand.imr & 0x80) && (s->nand.imr & s->nand.isr));
  297. }
  298. static uint32_t tc6393xb_nand_cfg_readb(TC6393xbState *s, target_phys_addr_t addr) {
  299. switch (addr) {
  300. case NAND_CFG_COMMAND:
  301. return s->nand_enable ? 2 : 0;
  302. case NAND_CFG_BASE:
  303. case NAND_CFG_BASE + 1:
  304. case NAND_CFG_BASE + 2:
  305. case NAND_CFG_BASE + 3:
  306. return s->nand_phys >> (addr - NAND_CFG_BASE);
  307. }
  308. fprintf(stderr, "tc6393xb_nand_cfg: unhandled read at %08x\n", (uint32_t) addr);
  309. return 0;
  310. }
  311. static void tc6393xb_nand_cfg_writeb(TC6393xbState *s, target_phys_addr_t addr, uint32_t value) {
  312. switch (addr) {
  313. case NAND_CFG_COMMAND:
  314. s->nand_enable = (value & 0x2);
  315. return;
  316. case NAND_CFG_BASE:
  317. case NAND_CFG_BASE + 1:
  318. case NAND_CFG_BASE + 2:
  319. case NAND_CFG_BASE + 3:
  320. s->nand_phys &= ~(0xff << ((addr - NAND_CFG_BASE) * 8));
  321. s->nand_phys |= (value & 0xff) << ((addr - NAND_CFG_BASE) * 8);
  322. return;
  323. }
  324. fprintf(stderr, "tc6393xb_nand_cfg: unhandled write at %08x: %02x\n",
  325. (uint32_t) addr, value & 0xff);
  326. }
  327. static uint32_t tc6393xb_nand_readb(TC6393xbState *s, target_phys_addr_t addr) {
  328. switch (addr) {
  329. case NAND_DATA + 0:
  330. case NAND_DATA + 1:
  331. case NAND_DATA + 2:
  332. case NAND_DATA + 3:
  333. return nand_getio(s->flash);
  334. case NAND_MODE:
  335. return s->nand.mode;
  336. case NAND_STATUS:
  337. return 0x14;
  338. case NAND_ISR:
  339. return s->nand.isr;
  340. case NAND_IMR:
  341. return s->nand.imr;
  342. }
  343. fprintf(stderr, "tc6393xb_nand: unhandled read at %08x\n", (uint32_t) addr);
  344. return 0;
  345. }
  346. static void tc6393xb_nand_writeb(TC6393xbState *s, target_phys_addr_t addr, uint32_t value) {
  347. // fprintf(stderr, "tc6393xb_nand: write at %08x: %02x\n",
  348. // (uint32_t) addr, value & 0xff);
  349. switch (addr) {
  350. case NAND_DATA + 0:
  351. case NAND_DATA + 1:
  352. case NAND_DATA + 2:
  353. case NAND_DATA + 3:
  354. nand_setio(s->flash, value);
  355. s->nand.isr |= 1;
  356. tc6393xb_nand_irq(s);
  357. return;
  358. case NAND_MODE:
  359. s->nand.mode = value;
  360. nand_setpins(s->flash,
  361. value & NAND_MODE_CLE,
  362. value & NAND_MODE_ALE,
  363. !(value & NAND_MODE_CE),
  364. value & NAND_MODE_WP,
  365. 0); // FIXME: gnd
  366. switch (value & NAND_MODE_ECC_MASK) {
  367. case NAND_MODE_ECC_RST:
  368. ecc_reset(&s->ecc);
  369. break;
  370. case NAND_MODE_ECC_READ:
  371. // FIXME
  372. break;
  373. case NAND_MODE_ECC_EN:
  374. ecc_reset(&s->ecc);
  375. }
  376. return;
  377. case NAND_ISR:
  378. s->nand.isr = value;
  379. tc6393xb_nand_irq(s);
  380. return;
  381. case NAND_IMR:
  382. s->nand.imr = value;
  383. tc6393xb_nand_irq(s);
  384. return;
  385. }
  386. fprintf(stderr, "tc6393xb_nand: unhandled write at %08x: %02x\n",
  387. (uint32_t) addr, value & 0xff);
  388. }
  389. #define BITS 8
  390. #include "tc6393xb_template.h"
  391. #define BITS 15
  392. #include "tc6393xb_template.h"
  393. #define BITS 16
  394. #include "tc6393xb_template.h"
  395. #define BITS 24
  396. #include "tc6393xb_template.h"
  397. #define BITS 32
  398. #include "tc6393xb_template.h"
  399. static void tc6393xb_draw_graphic(TC6393xbState *s, int full_update)
  400. {
  401. switch (ds_get_bits_per_pixel(s->ds)) {
  402. case 8:
  403. tc6393xb_draw_graphic8(s);
  404. break;
  405. case 15:
  406. tc6393xb_draw_graphic15(s);
  407. break;
  408. case 16:
  409. tc6393xb_draw_graphic16(s);
  410. break;
  411. case 24:
  412. tc6393xb_draw_graphic24(s);
  413. break;
  414. case 32:
  415. tc6393xb_draw_graphic32(s);
  416. break;
  417. default:
  418. printf("tc6393xb: unknown depth %d\n", ds_get_bits_per_pixel(s->ds));
  419. return;
  420. }
  421. dpy_update(s->ds, 0, 0, s->scr_width, s->scr_height);
  422. }
  423. static void tc6393xb_draw_blank(TC6393xbState *s, int full_update)
  424. {
  425. int i, w;
  426. uint8_t *d;
  427. if (!full_update)
  428. return;
  429. w = s->scr_width * ((ds_get_bits_per_pixel(s->ds) + 7) >> 3);
  430. d = ds_get_data(s->ds);
  431. for(i = 0; i < s->scr_height; i++) {
  432. memset(d, 0, w);
  433. d += ds_get_linesize(s->ds);
  434. }
  435. dpy_update(s->ds, 0, 0, s->scr_width, s->scr_height);
  436. }
  437. static void tc6393xb_update_display(void *opaque)
  438. {
  439. TC6393xbState *s = opaque;
  440. int full_update;
  441. if (s->scr_width == 0 || s->scr_height == 0)
  442. return;
  443. full_update = 0;
  444. if (s->blanked != s->blank) {
  445. s->blanked = s->blank;
  446. full_update = 1;
  447. }
  448. if (s->scr_width != ds_get_width(s->ds) || s->scr_height != ds_get_height(s->ds)) {
  449. qemu_console_resize(s->ds, s->scr_width, s->scr_height);
  450. full_update = 1;
  451. }
  452. if (s->blanked)
  453. tc6393xb_draw_blank(s, full_update);
  454. else
  455. tc6393xb_draw_graphic(s, full_update);
  456. }
  457. static uint64_t tc6393xb_readb(void *opaque, target_phys_addr_t addr,
  458. unsigned size)
  459. {
  460. TC6393xbState *s = opaque;
  461. switch (addr >> 8) {
  462. case 0:
  463. return tc6393xb_scr_readb(s, addr & 0xff);
  464. case 1:
  465. return tc6393xb_nand_cfg_readb(s, addr & 0xff);
  466. };
  467. if ((addr &~0xff) == s->nand_phys && s->nand_enable) {
  468. // return tc6393xb_nand_readb(s, addr & 0xff);
  469. uint8_t d = tc6393xb_nand_readb(s, addr & 0xff);
  470. // fprintf(stderr, "tc6393xb_nand: read at %08x: %02hhx\n", (uint32_t) addr, d);
  471. return d;
  472. }
  473. // fprintf(stderr, "tc6393xb: unhandled read at %08x\n", (uint32_t) addr);
  474. return 0;
  475. }
  476. static void tc6393xb_writeb(void *opaque, target_phys_addr_t addr,
  477. uint64_t value, unsigned size) {
  478. TC6393xbState *s = opaque;
  479. switch (addr >> 8) {
  480. case 0:
  481. tc6393xb_scr_writeb(s, addr & 0xff, value);
  482. return;
  483. case 1:
  484. tc6393xb_nand_cfg_writeb(s, addr & 0xff, value);
  485. return;
  486. };
  487. if ((addr &~0xff) == s->nand_phys && s->nand_enable)
  488. tc6393xb_nand_writeb(s, addr & 0xff, value);
  489. else
  490. fprintf(stderr, "tc6393xb: unhandled write at %08x: %02x\n",
  491. (uint32_t) addr, (int)value & 0xff);
  492. }
  493. TC6393xbState *tc6393xb_init(MemoryRegion *sysmem, uint32_t base, qemu_irq irq)
  494. {
  495. TC6393xbState *s;
  496. DriveInfo *nand;
  497. static const MemoryRegionOps tc6393xb_ops = {
  498. .read = tc6393xb_readb,
  499. .write = tc6393xb_writeb,
  500. .endianness = DEVICE_NATIVE_ENDIAN,
  501. .impl = {
  502. .min_access_size = 1,
  503. .max_access_size = 1,
  504. },
  505. };
  506. s = (TC6393xbState *) g_malloc0(sizeof(TC6393xbState));
  507. s->irq = irq;
  508. s->gpio_in = qemu_allocate_irqs(tc6393xb_gpio_set, s, TC6393XB_GPIOS);
  509. s->l3v = *qemu_allocate_irqs(tc6393xb_l3v, s, 1);
  510. s->blanked = 1;
  511. s->sub_irqs = qemu_allocate_irqs(tc6393xb_sub_irq, s, TC6393XB_NR_IRQS);
  512. nand = drive_get(IF_MTD, 0, 0);
  513. s->flash = nand_init(nand ? nand->bdrv : NULL, NAND_MFR_TOSHIBA, 0x76);
  514. memory_region_init_io(&s->iomem, &tc6393xb_ops, s, "tc6393xb", 0x10000);
  515. memory_region_add_subregion(sysmem, base, &s->iomem);
  516. memory_region_init_ram(&s->vram, NULL, "tc6393xb.vram", 0x100000);
  517. s->vram_ptr = memory_region_get_ram_ptr(&s->vram);
  518. memory_region_add_subregion(sysmem, base + 0x100000, &s->vram);
  519. s->scr_width = 480;
  520. s->scr_height = 640;
  521. s->ds = graphic_console_init(tc6393xb_update_display,
  522. NULL, /* invalidate */
  523. NULL, /* screen_dump */
  524. NULL, /* text_update */
  525. s);
  526. return s;
  527. }