slavio_intctl.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463
  1. /*
  2. * QEMU Sparc SLAVIO interrupt controller emulation
  3. *
  4. * Copyright (c) 2003-2005 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "sun4m.h"
  25. #include "monitor.h"
  26. #include "sysbus.h"
  27. #include "trace.h"
  28. //#define DEBUG_IRQ_COUNT
  29. /*
  30. * Registers of interrupt controller in sun4m.
  31. *
  32. * This is the interrupt controller part of chip STP2001 (Slave I/O), also
  33. * produced as NCR89C105. See
  34. * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
  35. *
  36. * There is a system master controller and one for each cpu.
  37. *
  38. */
  39. #define MAX_CPUS 16
  40. #define MAX_PILS 16
  41. struct SLAVIO_INTCTLState;
  42. typedef struct SLAVIO_CPUINTCTLState {
  43. struct SLAVIO_INTCTLState *master;
  44. uint32_t intreg_pending;
  45. uint32_t cpu;
  46. uint32_t irl_out;
  47. } SLAVIO_CPUINTCTLState;
  48. typedef struct SLAVIO_INTCTLState {
  49. SysBusDevice busdev;
  50. #ifdef DEBUG_IRQ_COUNT
  51. uint64_t irq_count[32];
  52. #endif
  53. qemu_irq cpu_irqs[MAX_CPUS][MAX_PILS];
  54. SLAVIO_CPUINTCTLState slaves[MAX_CPUS];
  55. uint32_t intregm_pending;
  56. uint32_t intregm_disabled;
  57. uint32_t target_cpu;
  58. } SLAVIO_INTCTLState;
  59. #define INTCTL_MAXADDR 0xf
  60. #define INTCTL_SIZE (INTCTL_MAXADDR + 1)
  61. #define INTCTLM_SIZE 0x14
  62. #define MASTER_IRQ_MASK ~0x0fa2007f
  63. #define MASTER_DISABLE 0x80000000
  64. #define CPU_SOFTIRQ_MASK 0xfffe0000
  65. #define CPU_IRQ_INT15_IN (1 << 15)
  66. #define CPU_IRQ_TIMER_IN (1 << 14)
  67. static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs);
  68. // per-cpu interrupt controller
  69. static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
  70. {
  71. SLAVIO_CPUINTCTLState *s = opaque;
  72. uint32_t saddr, ret;
  73. saddr = addr >> 2;
  74. switch (saddr) {
  75. case 0:
  76. ret = s->intreg_pending;
  77. break;
  78. default:
  79. ret = 0;
  80. break;
  81. }
  82. trace_slavio_intctl_mem_readl(s->cpu, addr, ret);
  83. return ret;
  84. }
  85. static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr,
  86. uint32_t val)
  87. {
  88. SLAVIO_CPUINTCTLState *s = opaque;
  89. uint32_t saddr;
  90. saddr = addr >> 2;
  91. trace_slavio_intctl_mem_writel(s->cpu, addr, val);
  92. switch (saddr) {
  93. case 1: // clear pending softints
  94. val &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN;
  95. s->intreg_pending &= ~val;
  96. slavio_check_interrupts(s->master, 1);
  97. trace_slavio_intctl_mem_writel_clear(s->cpu, val, s->intreg_pending);
  98. break;
  99. case 2: // set softint
  100. val &= CPU_SOFTIRQ_MASK;
  101. s->intreg_pending |= val;
  102. slavio_check_interrupts(s->master, 1);
  103. trace_slavio_intctl_mem_writel_set(s->cpu, val, s->intreg_pending);
  104. break;
  105. default:
  106. break;
  107. }
  108. }
  109. static CPUReadMemoryFunc * const slavio_intctl_mem_read[3] = {
  110. NULL,
  111. NULL,
  112. slavio_intctl_mem_readl,
  113. };
  114. static CPUWriteMemoryFunc * const slavio_intctl_mem_write[3] = {
  115. NULL,
  116. NULL,
  117. slavio_intctl_mem_writel,
  118. };
  119. // master system interrupt controller
  120. static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
  121. {
  122. SLAVIO_INTCTLState *s = opaque;
  123. uint32_t saddr, ret;
  124. saddr = addr >> 2;
  125. switch (saddr) {
  126. case 0:
  127. ret = s->intregm_pending & ~MASTER_DISABLE;
  128. break;
  129. case 1:
  130. ret = s->intregm_disabled & MASTER_IRQ_MASK;
  131. break;
  132. case 4:
  133. ret = s->target_cpu;
  134. break;
  135. default:
  136. ret = 0;
  137. break;
  138. }
  139. trace_slavio_intctlm_mem_readl(addr, ret);
  140. return ret;
  141. }
  142. static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr,
  143. uint32_t val)
  144. {
  145. SLAVIO_INTCTLState *s = opaque;
  146. uint32_t saddr;
  147. saddr = addr >> 2;
  148. trace_slavio_intctlm_mem_writel(addr, val);
  149. switch (saddr) {
  150. case 2: // clear (enable)
  151. // Force clear unused bits
  152. val &= MASTER_IRQ_MASK;
  153. s->intregm_disabled &= ~val;
  154. trace_slavio_intctlm_mem_writel_enable(val, s->intregm_disabled);
  155. slavio_check_interrupts(s, 1);
  156. break;
  157. case 3: // set (disable; doesn't affect pending)
  158. // Force clear unused bits
  159. val &= MASTER_IRQ_MASK;
  160. s->intregm_disabled |= val;
  161. slavio_check_interrupts(s, 1);
  162. trace_slavio_intctlm_mem_writel_disable(val, s->intregm_disabled);
  163. break;
  164. case 4:
  165. s->target_cpu = val & (MAX_CPUS - 1);
  166. slavio_check_interrupts(s, 1);
  167. trace_slavio_intctlm_mem_writel_target(s->target_cpu);
  168. break;
  169. default:
  170. break;
  171. }
  172. }
  173. static CPUReadMemoryFunc * const slavio_intctlm_mem_read[3] = {
  174. NULL,
  175. NULL,
  176. slavio_intctlm_mem_readl,
  177. };
  178. static CPUWriteMemoryFunc * const slavio_intctlm_mem_write[3] = {
  179. NULL,
  180. NULL,
  181. slavio_intctlm_mem_writel,
  182. };
  183. void slavio_pic_info(Monitor *mon, DeviceState *dev)
  184. {
  185. SysBusDevice *sd;
  186. SLAVIO_INTCTLState *s;
  187. int i;
  188. sd = sysbus_from_qdev(dev);
  189. s = FROM_SYSBUS(SLAVIO_INTCTLState, sd);
  190. for (i = 0; i < MAX_CPUS; i++) {
  191. monitor_printf(mon, "per-cpu %d: pending 0x%08x\n", i,
  192. s->slaves[i].intreg_pending);
  193. }
  194. monitor_printf(mon, "master: pending 0x%08x, disabled 0x%08x\n",
  195. s->intregm_pending, s->intregm_disabled);
  196. }
  197. void slavio_irq_info(Monitor *mon, DeviceState *dev)
  198. {
  199. #ifndef DEBUG_IRQ_COUNT
  200. monitor_printf(mon, "irq statistic code not compiled.\n");
  201. #else
  202. SysBusDevice *sd;
  203. SLAVIO_INTCTLState *s;
  204. int i;
  205. int64_t count;
  206. sd = sysbus_from_qdev(dev);
  207. s = FROM_SYSBUS(SLAVIO_INTCTLState, sd);
  208. monitor_printf(mon, "IRQ statistics:\n");
  209. for (i = 0; i < 32; i++) {
  210. count = s->irq_count[i];
  211. if (count > 0)
  212. monitor_printf(mon, "%2d: %" PRId64 "\n", i, count);
  213. }
  214. #endif
  215. }
  216. static const uint32_t intbit_to_level[] = {
  217. 2, 3, 5, 7, 9, 11, 13, 2, 3, 5, 7, 9, 11, 13, 12, 12,
  218. 6, 13, 4, 10, 8, 9, 11, 0, 0, 0, 0, 15, 15, 15, 15, 0,
  219. };
  220. static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs)
  221. {
  222. uint32_t pending = s->intregm_pending, pil_pending;
  223. unsigned int i, j;
  224. pending &= ~s->intregm_disabled;
  225. trace_slavio_check_interrupts(pending, s->intregm_disabled);
  226. for (i = 0; i < MAX_CPUS; i++) {
  227. pil_pending = 0;
  228. /* If we are the current interrupt target, get hard interrupts */
  229. if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
  230. (i == s->target_cpu)) {
  231. for (j = 0; j < 32; j++) {
  232. if ((pending & (1 << j)) && intbit_to_level[j]) {
  233. pil_pending |= 1 << intbit_to_level[j];
  234. }
  235. }
  236. }
  237. /* Calculate current pending hard interrupts for display */
  238. s->slaves[i].intreg_pending &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN |
  239. CPU_IRQ_TIMER_IN;
  240. if (i == s->target_cpu) {
  241. for (j = 0; j < 32; j++) {
  242. if ((s->intregm_pending & (1 << j)) && intbit_to_level[j]) {
  243. s->slaves[i].intreg_pending |= 1 << intbit_to_level[j];
  244. }
  245. }
  246. }
  247. /* Level 15 and CPU timer interrupts are only masked when
  248. the MASTER_DISABLE bit is set */
  249. if (!(s->intregm_disabled & MASTER_DISABLE)) {
  250. pil_pending |= s->slaves[i].intreg_pending &
  251. (CPU_IRQ_INT15_IN | CPU_IRQ_TIMER_IN);
  252. }
  253. /* Add soft interrupts */
  254. pil_pending |= (s->slaves[i].intreg_pending & CPU_SOFTIRQ_MASK) >> 16;
  255. if (set_irqs) {
  256. /* Since there is not really an interrupt 0 (and pil_pending
  257. * and irl_out bit zero are thus always zero) there is no need
  258. * to do anything with cpu_irqs[i][0] and it is OK not to do
  259. * the j=0 iteration of this loop.
  260. */
  261. for (j = MAX_PILS-1; j > 0; j--) {
  262. if (pil_pending & (1 << j)) {
  263. if (!(s->slaves[i].irl_out & (1 << j))) {
  264. qemu_irq_raise(s->cpu_irqs[i][j]);
  265. }
  266. } else {
  267. if (s->slaves[i].irl_out & (1 << j)) {
  268. qemu_irq_lower(s->cpu_irqs[i][j]);
  269. }
  270. }
  271. }
  272. }
  273. s->slaves[i].irl_out = pil_pending;
  274. }
  275. }
  276. /*
  277. * "irq" here is the bit number in the system interrupt register to
  278. * separate serial and keyboard interrupts sharing a level.
  279. */
  280. static void slavio_set_irq(void *opaque, int irq, int level)
  281. {
  282. SLAVIO_INTCTLState *s = opaque;
  283. uint32_t mask = 1 << irq;
  284. uint32_t pil = intbit_to_level[irq];
  285. unsigned int i;
  286. trace_slavio_set_irq(s->target_cpu, irq, pil, level);
  287. if (pil > 0) {
  288. if (level) {
  289. #ifdef DEBUG_IRQ_COUNT
  290. s->irq_count[pil]++;
  291. #endif
  292. s->intregm_pending |= mask;
  293. if (pil == 15) {
  294. for (i = 0; i < MAX_CPUS; i++) {
  295. s->slaves[i].intreg_pending |= 1 << pil;
  296. }
  297. }
  298. } else {
  299. s->intregm_pending &= ~mask;
  300. if (pil == 15) {
  301. for (i = 0; i < MAX_CPUS; i++) {
  302. s->slaves[i].intreg_pending &= ~(1 << pil);
  303. }
  304. }
  305. }
  306. slavio_check_interrupts(s, 1);
  307. }
  308. }
  309. static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
  310. {
  311. SLAVIO_INTCTLState *s = opaque;
  312. trace_slavio_set_timer_irq_cpu(cpu, level);
  313. if (level) {
  314. s->slaves[cpu].intreg_pending |= CPU_IRQ_TIMER_IN;
  315. } else {
  316. s->slaves[cpu].intreg_pending &= ~CPU_IRQ_TIMER_IN;
  317. }
  318. slavio_check_interrupts(s, 1);
  319. }
  320. static void slavio_set_irq_all(void *opaque, int irq, int level)
  321. {
  322. if (irq < 32) {
  323. slavio_set_irq(opaque, irq, level);
  324. } else {
  325. slavio_set_timer_irq_cpu(opaque, irq - 32, level);
  326. }
  327. }
  328. static int vmstate_intctl_post_load(void *opaque, int version_id)
  329. {
  330. SLAVIO_INTCTLState *s = opaque;
  331. slavio_check_interrupts(s, 0);
  332. return 0;
  333. }
  334. static const VMStateDescription vmstate_intctl_cpu = {
  335. .name ="slavio_intctl_cpu",
  336. .version_id = 1,
  337. .minimum_version_id = 1,
  338. .minimum_version_id_old = 1,
  339. .fields = (VMStateField []) {
  340. VMSTATE_UINT32(intreg_pending, SLAVIO_CPUINTCTLState),
  341. VMSTATE_END_OF_LIST()
  342. }
  343. };
  344. static const VMStateDescription vmstate_intctl = {
  345. .name ="slavio_intctl",
  346. .version_id = 1,
  347. .minimum_version_id = 1,
  348. .minimum_version_id_old = 1,
  349. .post_load = vmstate_intctl_post_load,
  350. .fields = (VMStateField []) {
  351. VMSTATE_STRUCT_ARRAY(slaves, SLAVIO_INTCTLState, MAX_CPUS, 1,
  352. vmstate_intctl_cpu, SLAVIO_CPUINTCTLState),
  353. VMSTATE_UINT32(intregm_pending, SLAVIO_INTCTLState),
  354. VMSTATE_UINT32(intregm_disabled, SLAVIO_INTCTLState),
  355. VMSTATE_UINT32(target_cpu, SLAVIO_INTCTLState),
  356. VMSTATE_END_OF_LIST()
  357. }
  358. };
  359. static void slavio_intctl_reset(DeviceState *d)
  360. {
  361. SLAVIO_INTCTLState *s = container_of(d, SLAVIO_INTCTLState, busdev.qdev);
  362. int i;
  363. for (i = 0; i < MAX_CPUS; i++) {
  364. s->slaves[i].intreg_pending = 0;
  365. s->slaves[i].irl_out = 0;
  366. }
  367. s->intregm_disabled = ~MASTER_IRQ_MASK;
  368. s->intregm_pending = 0;
  369. s->target_cpu = 0;
  370. slavio_check_interrupts(s, 0);
  371. }
  372. static int slavio_intctl_init1(SysBusDevice *dev)
  373. {
  374. SLAVIO_INTCTLState *s = FROM_SYSBUS(SLAVIO_INTCTLState, dev);
  375. int io_memory;
  376. unsigned int i, j;
  377. qdev_init_gpio_in(&dev->qdev, slavio_set_irq_all, 32 + MAX_CPUS);
  378. io_memory = cpu_register_io_memory(slavio_intctlm_mem_read,
  379. slavio_intctlm_mem_write, s,
  380. DEVICE_NATIVE_ENDIAN);
  381. sysbus_init_mmio(dev, INTCTLM_SIZE, io_memory);
  382. for (i = 0; i < MAX_CPUS; i++) {
  383. for (j = 0; j < MAX_PILS; j++) {
  384. sysbus_init_irq(dev, &s->cpu_irqs[i][j]);
  385. }
  386. io_memory = cpu_register_io_memory(slavio_intctl_mem_read,
  387. slavio_intctl_mem_write,
  388. &s->slaves[i],
  389. DEVICE_NATIVE_ENDIAN);
  390. sysbus_init_mmio(dev, INTCTL_SIZE, io_memory);
  391. s->slaves[i].cpu = i;
  392. s->slaves[i].master = s;
  393. }
  394. return 0;
  395. }
  396. static SysBusDeviceInfo slavio_intctl_info = {
  397. .init = slavio_intctl_init1,
  398. .qdev.name = "slavio_intctl",
  399. .qdev.size = sizeof(SLAVIO_INTCTLState),
  400. .qdev.vmsd = &vmstate_intctl,
  401. .qdev.reset = slavio_intctl_reset,
  402. };
  403. static void slavio_intctl_register_devices(void)
  404. {
  405. sysbus_register_withprop(&slavio_intctl_info);
  406. }
  407. device_init(slavio_intctl_register_devices)