rc4030.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830
  1. /*
  2. * QEMU JAZZ RC4030 chipset
  3. *
  4. * Copyright (c) 2007-2009 Herve Poussineau
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "hw.h"
  25. #include "mips.h"
  26. #include "qemu-timer.h"
  27. /********************************************************/
  28. /* debug rc4030 */
  29. //#define DEBUG_RC4030
  30. //#define DEBUG_RC4030_DMA
  31. #ifdef DEBUG_RC4030
  32. #define DPRINTF(fmt, ...) \
  33. do { printf("rc4030: " fmt , ## __VA_ARGS__); } while (0)
  34. static const char* irq_names[] = { "parallel", "floppy", "sound", "video",
  35. "network", "scsi", "keyboard", "mouse", "serial0", "serial1" };
  36. #else
  37. #define DPRINTF(fmt, ...)
  38. #endif
  39. #define RC4030_ERROR(fmt, ...) \
  40. do { fprintf(stderr, "rc4030 ERROR: %s: " fmt, __func__ , ## __VA_ARGS__); } while (0)
  41. /********************************************************/
  42. /* rc4030 emulation */
  43. typedef struct dma_pagetable_entry {
  44. int32_t frame;
  45. int32_t owner;
  46. } QEMU_PACKED dma_pagetable_entry;
  47. #define DMA_PAGESIZE 4096
  48. #define DMA_REG_ENABLE 1
  49. #define DMA_REG_COUNT 2
  50. #define DMA_REG_ADDRESS 3
  51. #define DMA_FLAG_ENABLE 0x0001
  52. #define DMA_FLAG_MEM_TO_DEV 0x0002
  53. #define DMA_FLAG_TC_INTR 0x0100
  54. #define DMA_FLAG_MEM_INTR 0x0200
  55. #define DMA_FLAG_ADDR_INTR 0x0400
  56. typedef struct rc4030State
  57. {
  58. uint32_t config; /* 0x0000: RC4030 config register */
  59. uint32_t revision; /* 0x0008: RC4030 Revision register */
  60. uint32_t invalid_address_register; /* 0x0010: Invalid Address register */
  61. /* DMA */
  62. uint32_t dma_regs[8][4];
  63. uint32_t dma_tl_base; /* 0x0018: DMA transl. table base */
  64. uint32_t dma_tl_limit; /* 0x0020: DMA transl. table limit */
  65. /* cache */
  66. uint32_t cache_maint; /* 0x0030: Cache Maintenance */
  67. uint32_t remote_failed_address; /* 0x0038: Remote Failed Address */
  68. uint32_t memory_failed_address; /* 0x0040: Memory Failed Address */
  69. uint32_t cache_ptag; /* 0x0048: I/O Cache Physical Tag */
  70. uint32_t cache_ltag; /* 0x0050: I/O Cache Logical Tag */
  71. uint32_t cache_bmask; /* 0x0058: I/O Cache Byte Mask */
  72. uint32_t nmi_interrupt; /* 0x0200: interrupt source */
  73. uint32_t offset210;
  74. uint32_t nvram_protect; /* 0x0220: NV ram protect register */
  75. uint32_t rem_speed[16];
  76. uint32_t imr_jazz; /* Local bus int enable mask */
  77. uint32_t isr_jazz; /* Local bus int source */
  78. /* timer */
  79. QEMUTimer *periodic_timer;
  80. uint32_t itr; /* Interval timer reload */
  81. qemu_irq timer_irq;
  82. qemu_irq jazz_bus_irq;
  83. } rc4030State;
  84. static void set_next_tick(rc4030State *s)
  85. {
  86. qemu_irq_lower(s->timer_irq);
  87. uint32_t tm_hz;
  88. tm_hz = 1000 / (s->itr + 1);
  89. qemu_mod_timer(s->periodic_timer, qemu_get_clock_ns(vm_clock) +
  90. get_ticks_per_sec() / tm_hz);
  91. }
  92. /* called for accesses to rc4030 */
  93. static uint32_t rc4030_readl(void *opaque, target_phys_addr_t addr)
  94. {
  95. rc4030State *s = opaque;
  96. uint32_t val;
  97. addr &= 0x3fff;
  98. switch (addr & ~0x3) {
  99. /* Global config register */
  100. case 0x0000:
  101. val = s->config;
  102. break;
  103. /* Revision register */
  104. case 0x0008:
  105. val = s->revision;
  106. break;
  107. /* Invalid Address register */
  108. case 0x0010:
  109. val = s->invalid_address_register;
  110. break;
  111. /* DMA transl. table base */
  112. case 0x0018:
  113. val = s->dma_tl_base;
  114. break;
  115. /* DMA transl. table limit */
  116. case 0x0020:
  117. val = s->dma_tl_limit;
  118. break;
  119. /* Remote Failed Address */
  120. case 0x0038:
  121. val = s->remote_failed_address;
  122. break;
  123. /* Memory Failed Address */
  124. case 0x0040:
  125. val = s->memory_failed_address;
  126. break;
  127. /* I/O Cache Byte Mask */
  128. case 0x0058:
  129. val = s->cache_bmask;
  130. /* HACK */
  131. if (s->cache_bmask == (uint32_t)-1)
  132. s->cache_bmask = 0;
  133. break;
  134. /* Remote Speed Registers */
  135. case 0x0070:
  136. case 0x0078:
  137. case 0x0080:
  138. case 0x0088:
  139. case 0x0090:
  140. case 0x0098:
  141. case 0x00a0:
  142. case 0x00a8:
  143. case 0x00b0:
  144. case 0x00b8:
  145. case 0x00c0:
  146. case 0x00c8:
  147. case 0x00d0:
  148. case 0x00d8:
  149. case 0x00e0:
  150. case 0x00e8:
  151. val = s->rem_speed[(addr - 0x0070) >> 3];
  152. break;
  153. /* DMA channel base address */
  154. case 0x0100:
  155. case 0x0108:
  156. case 0x0110:
  157. case 0x0118:
  158. case 0x0120:
  159. case 0x0128:
  160. case 0x0130:
  161. case 0x0138:
  162. case 0x0140:
  163. case 0x0148:
  164. case 0x0150:
  165. case 0x0158:
  166. case 0x0160:
  167. case 0x0168:
  168. case 0x0170:
  169. case 0x0178:
  170. case 0x0180:
  171. case 0x0188:
  172. case 0x0190:
  173. case 0x0198:
  174. case 0x01a0:
  175. case 0x01a8:
  176. case 0x01b0:
  177. case 0x01b8:
  178. case 0x01c0:
  179. case 0x01c8:
  180. case 0x01d0:
  181. case 0x01d8:
  182. case 0x01e0:
  183. case 0x01e8:
  184. case 0x01f0:
  185. case 0x01f8:
  186. {
  187. int entry = (addr - 0x0100) >> 5;
  188. int idx = (addr & 0x1f) >> 3;
  189. val = s->dma_regs[entry][idx];
  190. }
  191. break;
  192. /* Interrupt source */
  193. case 0x0200:
  194. val = s->nmi_interrupt;
  195. break;
  196. /* Error type */
  197. case 0x0208:
  198. val = 0;
  199. break;
  200. /* Offset 0x0210 */
  201. case 0x0210:
  202. val = s->offset210;
  203. break;
  204. /* NV ram protect register */
  205. case 0x0220:
  206. val = s->nvram_protect;
  207. break;
  208. /* Interval timer count */
  209. case 0x0230:
  210. val = 0;
  211. qemu_irq_lower(s->timer_irq);
  212. break;
  213. /* EISA interrupt */
  214. case 0x0238:
  215. val = 7; /* FIXME: should be read from EISA controller */
  216. break;
  217. default:
  218. RC4030_ERROR("invalid read [" TARGET_FMT_plx "]\n", addr);
  219. val = 0;
  220. break;
  221. }
  222. if ((addr & ~3) != 0x230) {
  223. DPRINTF("read 0x%02x at " TARGET_FMT_plx "\n", val, addr);
  224. }
  225. return val;
  226. }
  227. static uint32_t rc4030_readw(void *opaque, target_phys_addr_t addr)
  228. {
  229. uint32_t v = rc4030_readl(opaque, addr & ~0x3);
  230. if (addr & 0x2)
  231. return v >> 16;
  232. else
  233. return v & 0xffff;
  234. }
  235. static uint32_t rc4030_readb(void *opaque, target_phys_addr_t addr)
  236. {
  237. uint32_t v = rc4030_readl(opaque, addr & ~0x3);
  238. return (v >> (8 * (addr & 0x3))) & 0xff;
  239. }
  240. static void rc4030_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
  241. {
  242. rc4030State *s = opaque;
  243. addr &= 0x3fff;
  244. DPRINTF("write 0x%02x at " TARGET_FMT_plx "\n", val, addr);
  245. switch (addr & ~0x3) {
  246. /* Global config register */
  247. case 0x0000:
  248. s->config = val;
  249. break;
  250. /* DMA transl. table base */
  251. case 0x0018:
  252. s->dma_tl_base = val;
  253. break;
  254. /* DMA transl. table limit */
  255. case 0x0020:
  256. s->dma_tl_limit = val;
  257. break;
  258. /* DMA transl. table invalidated */
  259. case 0x0028:
  260. break;
  261. /* Cache Maintenance */
  262. case 0x0030:
  263. s->cache_maint = val;
  264. break;
  265. /* I/O Cache Physical Tag */
  266. case 0x0048:
  267. s->cache_ptag = val;
  268. break;
  269. /* I/O Cache Logical Tag */
  270. case 0x0050:
  271. s->cache_ltag = val;
  272. break;
  273. /* I/O Cache Byte Mask */
  274. case 0x0058:
  275. s->cache_bmask |= val; /* HACK */
  276. break;
  277. /* I/O Cache Buffer Window */
  278. case 0x0060:
  279. /* HACK */
  280. if (s->cache_ltag == 0x80000001 && s->cache_bmask == 0xf0f0f0f) {
  281. target_phys_addr_t dest = s->cache_ptag & ~0x1;
  282. dest += (s->cache_maint & 0x3) << 3;
  283. cpu_physical_memory_write(dest, &val, 4);
  284. }
  285. break;
  286. /* Remote Speed Registers */
  287. case 0x0070:
  288. case 0x0078:
  289. case 0x0080:
  290. case 0x0088:
  291. case 0x0090:
  292. case 0x0098:
  293. case 0x00a0:
  294. case 0x00a8:
  295. case 0x00b0:
  296. case 0x00b8:
  297. case 0x00c0:
  298. case 0x00c8:
  299. case 0x00d0:
  300. case 0x00d8:
  301. case 0x00e0:
  302. case 0x00e8:
  303. s->rem_speed[(addr - 0x0070) >> 3] = val;
  304. break;
  305. /* DMA channel base address */
  306. case 0x0100:
  307. case 0x0108:
  308. case 0x0110:
  309. case 0x0118:
  310. case 0x0120:
  311. case 0x0128:
  312. case 0x0130:
  313. case 0x0138:
  314. case 0x0140:
  315. case 0x0148:
  316. case 0x0150:
  317. case 0x0158:
  318. case 0x0160:
  319. case 0x0168:
  320. case 0x0170:
  321. case 0x0178:
  322. case 0x0180:
  323. case 0x0188:
  324. case 0x0190:
  325. case 0x0198:
  326. case 0x01a0:
  327. case 0x01a8:
  328. case 0x01b0:
  329. case 0x01b8:
  330. case 0x01c0:
  331. case 0x01c8:
  332. case 0x01d0:
  333. case 0x01d8:
  334. case 0x01e0:
  335. case 0x01e8:
  336. case 0x01f0:
  337. case 0x01f8:
  338. {
  339. int entry = (addr - 0x0100) >> 5;
  340. int idx = (addr & 0x1f) >> 3;
  341. s->dma_regs[entry][idx] = val;
  342. }
  343. break;
  344. /* Offset 0x0210 */
  345. case 0x0210:
  346. s->offset210 = val;
  347. break;
  348. /* Interval timer reload */
  349. case 0x0228:
  350. s->itr = val;
  351. qemu_irq_lower(s->timer_irq);
  352. set_next_tick(s);
  353. break;
  354. /* EISA interrupt */
  355. case 0x0238:
  356. break;
  357. default:
  358. RC4030_ERROR("invalid write of 0x%02x at [" TARGET_FMT_plx "]\n", val, addr);
  359. break;
  360. }
  361. }
  362. static void rc4030_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
  363. {
  364. uint32_t old_val = rc4030_readl(opaque, addr & ~0x3);
  365. if (addr & 0x2)
  366. val = (val << 16) | (old_val & 0x0000ffff);
  367. else
  368. val = val | (old_val & 0xffff0000);
  369. rc4030_writel(opaque, addr & ~0x3, val);
  370. }
  371. static void rc4030_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
  372. {
  373. uint32_t old_val = rc4030_readl(opaque, addr & ~0x3);
  374. switch (addr & 3) {
  375. case 0:
  376. val = val | (old_val & 0xffffff00);
  377. break;
  378. case 1:
  379. val = (val << 8) | (old_val & 0xffff00ff);
  380. break;
  381. case 2:
  382. val = (val << 16) | (old_val & 0xff00ffff);
  383. break;
  384. case 3:
  385. val = (val << 24) | (old_val & 0x00ffffff);
  386. break;
  387. }
  388. rc4030_writel(opaque, addr & ~0x3, val);
  389. }
  390. static CPUReadMemoryFunc * const rc4030_read[3] = {
  391. rc4030_readb,
  392. rc4030_readw,
  393. rc4030_readl,
  394. };
  395. static CPUWriteMemoryFunc * const rc4030_write[3] = {
  396. rc4030_writeb,
  397. rc4030_writew,
  398. rc4030_writel,
  399. };
  400. static void update_jazz_irq(rc4030State *s)
  401. {
  402. uint16_t pending;
  403. pending = s->isr_jazz & s->imr_jazz;
  404. #ifdef DEBUG_RC4030
  405. if (s->isr_jazz != 0) {
  406. uint32_t irq = 0;
  407. DPRINTF("pending irqs:");
  408. for (irq = 0; irq < ARRAY_SIZE(irq_names); irq++) {
  409. if (s->isr_jazz & (1 << irq)) {
  410. printf(" %s", irq_names[irq]);
  411. if (!(s->imr_jazz & (1 << irq))) {
  412. printf("(ignored)");
  413. }
  414. }
  415. }
  416. printf("\n");
  417. }
  418. #endif
  419. if (pending != 0)
  420. qemu_irq_raise(s->jazz_bus_irq);
  421. else
  422. qemu_irq_lower(s->jazz_bus_irq);
  423. }
  424. static void rc4030_irq_jazz_request(void *opaque, int irq, int level)
  425. {
  426. rc4030State *s = opaque;
  427. if (level) {
  428. s->isr_jazz |= 1 << irq;
  429. } else {
  430. s->isr_jazz &= ~(1 << irq);
  431. }
  432. update_jazz_irq(s);
  433. }
  434. static void rc4030_periodic_timer(void *opaque)
  435. {
  436. rc4030State *s = opaque;
  437. set_next_tick(s);
  438. qemu_irq_raise(s->timer_irq);
  439. }
  440. static uint32_t jazzio_readw(void *opaque, target_phys_addr_t addr)
  441. {
  442. rc4030State *s = opaque;
  443. uint32_t val;
  444. uint32_t irq;
  445. addr &= 0xfff;
  446. switch (addr) {
  447. /* Local bus int source */
  448. case 0x00: {
  449. uint32_t pending = s->isr_jazz & s->imr_jazz;
  450. val = 0;
  451. irq = 0;
  452. while (pending) {
  453. if (pending & 1) {
  454. DPRINTF("returning irq %s\n", irq_names[irq]);
  455. val = (irq + 1) << 2;
  456. break;
  457. }
  458. irq++;
  459. pending >>= 1;
  460. }
  461. break;
  462. }
  463. /* Local bus int enable mask */
  464. case 0x02:
  465. val = s->imr_jazz;
  466. break;
  467. default:
  468. RC4030_ERROR("(jazz io controller) invalid read [" TARGET_FMT_plx "]\n", addr);
  469. val = 0;
  470. }
  471. DPRINTF("(jazz io controller) read 0x%04x at " TARGET_FMT_plx "\n", val, addr);
  472. return val;
  473. }
  474. static uint32_t jazzio_readb(void *opaque, target_phys_addr_t addr)
  475. {
  476. uint32_t v;
  477. v = jazzio_readw(opaque, addr & ~0x1);
  478. return (v >> (8 * (addr & 0x1))) & 0xff;
  479. }
  480. static uint32_t jazzio_readl(void *opaque, target_phys_addr_t addr)
  481. {
  482. uint32_t v;
  483. v = jazzio_readw(opaque, addr);
  484. v |= jazzio_readw(opaque, addr + 2) << 16;
  485. return v;
  486. }
  487. static void jazzio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
  488. {
  489. rc4030State *s = opaque;
  490. addr &= 0xfff;
  491. DPRINTF("(jazz io controller) write 0x%04x at " TARGET_FMT_plx "\n", val, addr);
  492. switch (addr) {
  493. /* Local bus int enable mask */
  494. case 0x02:
  495. s->imr_jazz = val;
  496. update_jazz_irq(s);
  497. break;
  498. default:
  499. RC4030_ERROR("(jazz io controller) invalid write of 0x%04x at [" TARGET_FMT_plx "]\n", val, addr);
  500. break;
  501. }
  502. }
  503. static void jazzio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
  504. {
  505. uint32_t old_val = jazzio_readw(opaque, addr & ~0x1);
  506. switch (addr & 1) {
  507. case 0:
  508. val = val | (old_val & 0xff00);
  509. break;
  510. case 1:
  511. val = (val << 8) | (old_val & 0x00ff);
  512. break;
  513. }
  514. jazzio_writew(opaque, addr & ~0x1, val);
  515. }
  516. static void jazzio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
  517. {
  518. jazzio_writew(opaque, addr, val & 0xffff);
  519. jazzio_writew(opaque, addr + 2, (val >> 16) & 0xffff);
  520. }
  521. static CPUReadMemoryFunc * const jazzio_read[3] = {
  522. jazzio_readb,
  523. jazzio_readw,
  524. jazzio_readl,
  525. };
  526. static CPUWriteMemoryFunc * const jazzio_write[3] = {
  527. jazzio_writeb,
  528. jazzio_writew,
  529. jazzio_writel,
  530. };
  531. static void rc4030_reset(void *opaque)
  532. {
  533. rc4030State *s = opaque;
  534. int i;
  535. s->config = 0x410; /* some boards seem to accept 0x104 too */
  536. s->revision = 1;
  537. s->invalid_address_register = 0;
  538. memset(s->dma_regs, 0, sizeof(s->dma_regs));
  539. s->dma_tl_base = s->dma_tl_limit = 0;
  540. s->remote_failed_address = s->memory_failed_address = 0;
  541. s->cache_maint = 0;
  542. s->cache_ptag = s->cache_ltag = 0;
  543. s->cache_bmask = 0;
  544. s->offset210 = 0x18186;
  545. s->nvram_protect = 7;
  546. for (i = 0; i < 15; i++)
  547. s->rem_speed[i] = 7;
  548. s->imr_jazz = 0x10; /* XXX: required by firmware, but why? */
  549. s->isr_jazz = 0;
  550. s->itr = 0;
  551. qemu_irq_lower(s->timer_irq);
  552. qemu_irq_lower(s->jazz_bus_irq);
  553. }
  554. static int rc4030_load(QEMUFile *f, void *opaque, int version_id)
  555. {
  556. rc4030State* s = opaque;
  557. int i, j;
  558. if (version_id != 2)
  559. return -EINVAL;
  560. s->config = qemu_get_be32(f);
  561. s->invalid_address_register = qemu_get_be32(f);
  562. for (i = 0; i < 8; i++)
  563. for (j = 0; j < 4; j++)
  564. s->dma_regs[i][j] = qemu_get_be32(f);
  565. s->dma_tl_base = qemu_get_be32(f);
  566. s->dma_tl_limit = qemu_get_be32(f);
  567. s->cache_maint = qemu_get_be32(f);
  568. s->remote_failed_address = qemu_get_be32(f);
  569. s->memory_failed_address = qemu_get_be32(f);
  570. s->cache_ptag = qemu_get_be32(f);
  571. s->cache_ltag = qemu_get_be32(f);
  572. s->cache_bmask = qemu_get_be32(f);
  573. s->offset210 = qemu_get_be32(f);
  574. s->nvram_protect = qemu_get_be32(f);
  575. for (i = 0; i < 15; i++)
  576. s->rem_speed[i] = qemu_get_be32(f);
  577. s->imr_jazz = qemu_get_be32(f);
  578. s->isr_jazz = qemu_get_be32(f);
  579. s->itr = qemu_get_be32(f);
  580. set_next_tick(s);
  581. update_jazz_irq(s);
  582. return 0;
  583. }
  584. static void rc4030_save(QEMUFile *f, void *opaque)
  585. {
  586. rc4030State* s = opaque;
  587. int i, j;
  588. qemu_put_be32(f, s->config);
  589. qemu_put_be32(f, s->invalid_address_register);
  590. for (i = 0; i < 8; i++)
  591. for (j = 0; j < 4; j++)
  592. qemu_put_be32(f, s->dma_regs[i][j]);
  593. qemu_put_be32(f, s->dma_tl_base);
  594. qemu_put_be32(f, s->dma_tl_limit);
  595. qemu_put_be32(f, s->cache_maint);
  596. qemu_put_be32(f, s->remote_failed_address);
  597. qemu_put_be32(f, s->memory_failed_address);
  598. qemu_put_be32(f, s->cache_ptag);
  599. qemu_put_be32(f, s->cache_ltag);
  600. qemu_put_be32(f, s->cache_bmask);
  601. qemu_put_be32(f, s->offset210);
  602. qemu_put_be32(f, s->nvram_protect);
  603. for (i = 0; i < 15; i++)
  604. qemu_put_be32(f, s->rem_speed[i]);
  605. qemu_put_be32(f, s->imr_jazz);
  606. qemu_put_be32(f, s->isr_jazz);
  607. qemu_put_be32(f, s->itr);
  608. }
  609. void rc4030_dma_memory_rw(void *opaque, target_phys_addr_t addr, uint8_t *buf, int len, int is_write)
  610. {
  611. rc4030State *s = opaque;
  612. target_phys_addr_t entry_addr;
  613. target_phys_addr_t phys_addr;
  614. dma_pagetable_entry entry;
  615. int index;
  616. int ncpy, i;
  617. i = 0;
  618. for (;;) {
  619. if (i == len) {
  620. break;
  621. }
  622. ncpy = DMA_PAGESIZE - (addr & (DMA_PAGESIZE - 1));
  623. if (ncpy > len - i)
  624. ncpy = len - i;
  625. /* Get DMA translation table entry */
  626. index = addr / DMA_PAGESIZE;
  627. if (index >= s->dma_tl_limit / sizeof(dma_pagetable_entry)) {
  628. break;
  629. }
  630. entry_addr = s->dma_tl_base + index * sizeof(dma_pagetable_entry);
  631. /* XXX: not sure. should we really use only lowest bits? */
  632. entry_addr &= 0x7fffffff;
  633. cpu_physical_memory_read(entry_addr, &entry, sizeof(entry));
  634. /* Read/write data at right place */
  635. phys_addr = entry.frame + (addr & (DMA_PAGESIZE - 1));
  636. cpu_physical_memory_rw(phys_addr, &buf[i], ncpy, is_write);
  637. i += ncpy;
  638. addr += ncpy;
  639. }
  640. }
  641. static void rc4030_do_dma(void *opaque, int n, uint8_t *buf, int len, int is_write)
  642. {
  643. rc4030State *s = opaque;
  644. target_phys_addr_t dma_addr;
  645. int dev_to_mem;
  646. s->dma_regs[n][DMA_REG_ENABLE] &= ~(DMA_FLAG_TC_INTR | DMA_FLAG_MEM_INTR | DMA_FLAG_ADDR_INTR);
  647. /* Check DMA channel consistency */
  648. dev_to_mem = (s->dma_regs[n][DMA_REG_ENABLE] & DMA_FLAG_MEM_TO_DEV) ? 0 : 1;
  649. if (!(s->dma_regs[n][DMA_REG_ENABLE] & DMA_FLAG_ENABLE) ||
  650. (is_write != dev_to_mem)) {
  651. s->dma_regs[n][DMA_REG_ENABLE] |= DMA_FLAG_MEM_INTR;
  652. s->nmi_interrupt |= 1 << n;
  653. return;
  654. }
  655. /* Get start address and len */
  656. if (len > s->dma_regs[n][DMA_REG_COUNT])
  657. len = s->dma_regs[n][DMA_REG_COUNT];
  658. dma_addr = s->dma_regs[n][DMA_REG_ADDRESS];
  659. /* Read/write data at right place */
  660. rc4030_dma_memory_rw(opaque, dma_addr, buf, len, is_write);
  661. s->dma_regs[n][DMA_REG_ENABLE] |= DMA_FLAG_TC_INTR;
  662. s->dma_regs[n][DMA_REG_COUNT] -= len;
  663. #ifdef DEBUG_RC4030_DMA
  664. {
  665. int i, j;
  666. printf("rc4030 dma: Copying %d bytes %s host %p\n",
  667. len, is_write ? "from" : "to", buf);
  668. for (i = 0; i < len; i += 16) {
  669. int n = 16;
  670. if (n > len - i) {
  671. n = len - i;
  672. }
  673. for (j = 0; j < n; j++)
  674. printf("%02x ", buf[i + j]);
  675. while (j++ < 16)
  676. printf(" ");
  677. printf("| ");
  678. for (j = 0; j < n; j++)
  679. printf("%c", isprint(buf[i + j]) ? buf[i + j] : '.');
  680. printf("\n");
  681. }
  682. }
  683. #endif
  684. }
  685. struct rc4030DMAState {
  686. void *opaque;
  687. int n;
  688. };
  689. void rc4030_dma_read(void *dma, uint8_t *buf, int len)
  690. {
  691. rc4030_dma s = dma;
  692. rc4030_do_dma(s->opaque, s->n, buf, len, 0);
  693. }
  694. void rc4030_dma_write(void *dma, uint8_t *buf, int len)
  695. {
  696. rc4030_dma s = dma;
  697. rc4030_do_dma(s->opaque, s->n, buf, len, 1);
  698. }
  699. static rc4030_dma *rc4030_allocate_dmas(void *opaque, int n)
  700. {
  701. rc4030_dma *s;
  702. struct rc4030DMAState *p;
  703. int i;
  704. s = (rc4030_dma *)g_malloc0(sizeof(rc4030_dma) * n);
  705. p = (struct rc4030DMAState *)g_malloc0(sizeof(struct rc4030DMAState) * n);
  706. for (i = 0; i < n; i++) {
  707. p->opaque = opaque;
  708. p->n = i;
  709. s[i] = p;
  710. p++;
  711. }
  712. return s;
  713. }
  714. void *rc4030_init(qemu_irq timer, qemu_irq jazz_bus,
  715. qemu_irq **irqs, rc4030_dma **dmas)
  716. {
  717. rc4030State *s;
  718. int s_chipset, s_jazzio;
  719. s = g_malloc0(sizeof(rc4030State));
  720. *irqs = qemu_allocate_irqs(rc4030_irq_jazz_request, s, 16);
  721. *dmas = rc4030_allocate_dmas(s, 4);
  722. s->periodic_timer = qemu_new_timer_ns(vm_clock, rc4030_periodic_timer, s);
  723. s->timer_irq = timer;
  724. s->jazz_bus_irq = jazz_bus;
  725. qemu_register_reset(rc4030_reset, s);
  726. register_savevm(NULL, "rc4030", 0, 2, rc4030_save, rc4030_load, s);
  727. rc4030_reset(s);
  728. s_chipset = cpu_register_io_memory(rc4030_read, rc4030_write, s,
  729. DEVICE_NATIVE_ENDIAN);
  730. cpu_register_physical_memory(0x80000000, 0x300, s_chipset);
  731. s_jazzio = cpu_register_io_memory(jazzio_read, jazzio_write, s,
  732. DEVICE_NATIVE_ENDIAN);
  733. cpu_register_physical_memory(0xf0000000, 0x00001000, s_jazzio);
  734. return s;
  735. }