2
0

omap_dss.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069
  1. /*
  2. * OMAP2 Display Subsystem.
  3. *
  4. * Copyright (C) 2008 Nokia Corporation
  5. * Written by Andrzej Zaborowski <andrew@openedhand.com>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License as
  9. * published by the Free Software Foundation; either version 2 or
  10. * (at your option) version 3 of the License.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, see <http://www.gnu.org/licenses/>.
  19. */
  20. #include "hw.h"
  21. #include "console.h"
  22. #include "omap.h"
  23. struct omap_dss_s {
  24. qemu_irq irq;
  25. qemu_irq drq;
  26. DisplayState *state;
  27. int autoidle;
  28. int control;
  29. int enable;
  30. struct omap_dss_panel_s {
  31. int enable;
  32. int nx;
  33. int ny;
  34. int x;
  35. int y;
  36. } dig, lcd;
  37. struct {
  38. uint32_t idlemode;
  39. uint32_t irqst;
  40. uint32_t irqen;
  41. uint32_t control;
  42. uint32_t config;
  43. uint32_t capable;
  44. uint32_t timing[4];
  45. int line;
  46. uint32_t bg[2];
  47. uint32_t trans[2];
  48. struct omap_dss_plane_s {
  49. int enable;
  50. int bpp;
  51. int posx;
  52. int posy;
  53. int nx;
  54. int ny;
  55. target_phys_addr_t addr[3];
  56. uint32_t attr;
  57. uint32_t tresh;
  58. int rowinc;
  59. int colinc;
  60. int wininc;
  61. } l[3];
  62. int invalidate;
  63. uint16_t palette[256];
  64. } dispc;
  65. struct {
  66. int idlemode;
  67. uint32_t control;
  68. int enable;
  69. int pixels;
  70. int busy;
  71. int skiplines;
  72. uint16_t rxbuf;
  73. uint32_t config[2];
  74. uint32_t time[4];
  75. uint32_t data[6];
  76. uint16_t vsync;
  77. uint16_t hsync;
  78. struct rfbi_chip_s *chip[2];
  79. } rfbi;
  80. };
  81. static void omap_dispc_interrupt_update(struct omap_dss_s *s)
  82. {
  83. qemu_set_irq(s->irq, s->dispc.irqst & s->dispc.irqen);
  84. }
  85. static void omap_rfbi_reset(struct omap_dss_s *s)
  86. {
  87. s->rfbi.idlemode = 0;
  88. s->rfbi.control = 2;
  89. s->rfbi.enable = 0;
  90. s->rfbi.pixels = 0;
  91. s->rfbi.skiplines = 0;
  92. s->rfbi.busy = 0;
  93. s->rfbi.config[0] = 0x00310000;
  94. s->rfbi.config[1] = 0x00310000;
  95. s->rfbi.time[0] = 0;
  96. s->rfbi.time[1] = 0;
  97. s->rfbi.time[2] = 0;
  98. s->rfbi.time[3] = 0;
  99. s->rfbi.data[0] = 0;
  100. s->rfbi.data[1] = 0;
  101. s->rfbi.data[2] = 0;
  102. s->rfbi.data[3] = 0;
  103. s->rfbi.data[4] = 0;
  104. s->rfbi.data[5] = 0;
  105. s->rfbi.vsync = 0;
  106. s->rfbi.hsync = 0;
  107. }
  108. void omap_dss_reset(struct omap_dss_s *s)
  109. {
  110. s->autoidle = 0;
  111. s->control = 0;
  112. s->enable = 0;
  113. s->dig.enable = 0;
  114. s->dig.nx = 1;
  115. s->dig.ny = 1;
  116. s->lcd.enable = 0;
  117. s->lcd.nx = 1;
  118. s->lcd.ny = 1;
  119. s->dispc.idlemode = 0;
  120. s->dispc.irqst = 0;
  121. s->dispc.irqen = 0;
  122. s->dispc.control = 0;
  123. s->dispc.config = 0;
  124. s->dispc.capable = 0x161;
  125. s->dispc.timing[0] = 0;
  126. s->dispc.timing[1] = 0;
  127. s->dispc.timing[2] = 0;
  128. s->dispc.timing[3] = 0;
  129. s->dispc.line = 0;
  130. s->dispc.bg[0] = 0;
  131. s->dispc.bg[1] = 0;
  132. s->dispc.trans[0] = 0;
  133. s->dispc.trans[1] = 0;
  134. s->dispc.l[0].enable = 0;
  135. s->dispc.l[0].bpp = 0;
  136. s->dispc.l[0].addr[0] = 0;
  137. s->dispc.l[0].addr[1] = 0;
  138. s->dispc.l[0].addr[2] = 0;
  139. s->dispc.l[0].posx = 0;
  140. s->dispc.l[0].posy = 0;
  141. s->dispc.l[0].nx = 1;
  142. s->dispc.l[0].ny = 1;
  143. s->dispc.l[0].attr = 0;
  144. s->dispc.l[0].tresh = 0;
  145. s->dispc.l[0].rowinc = 1;
  146. s->dispc.l[0].colinc = 1;
  147. s->dispc.l[0].wininc = 0;
  148. omap_rfbi_reset(s);
  149. omap_dispc_interrupt_update(s);
  150. }
  151. static uint32_t omap_diss_read(void *opaque, target_phys_addr_t addr)
  152. {
  153. struct omap_dss_s *s = (struct omap_dss_s *) opaque;
  154. switch (addr) {
  155. case 0x00: /* DSS_REVISIONNUMBER */
  156. return 0x20;
  157. case 0x10: /* DSS_SYSCONFIG */
  158. return s->autoidle;
  159. case 0x14: /* DSS_SYSSTATUS */
  160. return 1; /* RESETDONE */
  161. case 0x40: /* DSS_CONTROL */
  162. return s->control;
  163. case 0x50: /* DSS_PSA_LCD_REG_1 */
  164. case 0x54: /* DSS_PSA_LCD_REG_2 */
  165. case 0x58: /* DSS_PSA_VIDEO_REG */
  166. /* TODO: fake some values when appropriate s->control bits are set */
  167. return 0;
  168. case 0x5c: /* DSS_STATUS */
  169. return 1 + (s->control & 1);
  170. default:
  171. break;
  172. }
  173. OMAP_BAD_REG(addr);
  174. return 0;
  175. }
  176. static void omap_diss_write(void *opaque, target_phys_addr_t addr,
  177. uint32_t value)
  178. {
  179. struct omap_dss_s *s = (struct omap_dss_s *) opaque;
  180. switch (addr) {
  181. case 0x00: /* DSS_REVISIONNUMBER */
  182. case 0x14: /* DSS_SYSSTATUS */
  183. case 0x50: /* DSS_PSA_LCD_REG_1 */
  184. case 0x54: /* DSS_PSA_LCD_REG_2 */
  185. case 0x58: /* DSS_PSA_VIDEO_REG */
  186. case 0x5c: /* DSS_STATUS */
  187. OMAP_RO_REG(addr);
  188. break;
  189. case 0x10: /* DSS_SYSCONFIG */
  190. if (value & 2) /* SOFTRESET */
  191. omap_dss_reset(s);
  192. s->autoidle = value & 1;
  193. break;
  194. case 0x40: /* DSS_CONTROL */
  195. s->control = value & 0x3dd;
  196. break;
  197. default:
  198. OMAP_BAD_REG(addr);
  199. }
  200. }
  201. static CPUReadMemoryFunc * const omap_diss1_readfn[] = {
  202. omap_badwidth_read32,
  203. omap_badwidth_read32,
  204. omap_diss_read,
  205. };
  206. static CPUWriteMemoryFunc * const omap_diss1_writefn[] = {
  207. omap_badwidth_write32,
  208. omap_badwidth_write32,
  209. omap_diss_write,
  210. };
  211. static uint32_t omap_disc_read(void *opaque, target_phys_addr_t addr)
  212. {
  213. struct omap_dss_s *s = (struct omap_dss_s *) opaque;
  214. switch (addr) {
  215. case 0x000: /* DISPC_REVISION */
  216. return 0x20;
  217. case 0x010: /* DISPC_SYSCONFIG */
  218. return s->dispc.idlemode;
  219. case 0x014: /* DISPC_SYSSTATUS */
  220. return 1; /* RESETDONE */
  221. case 0x018: /* DISPC_IRQSTATUS */
  222. return s->dispc.irqst;
  223. case 0x01c: /* DISPC_IRQENABLE */
  224. return s->dispc.irqen;
  225. case 0x040: /* DISPC_CONTROL */
  226. return s->dispc.control;
  227. case 0x044: /* DISPC_CONFIG */
  228. return s->dispc.config;
  229. case 0x048: /* DISPC_CAPABLE */
  230. return s->dispc.capable;
  231. case 0x04c: /* DISPC_DEFAULT_COLOR0 */
  232. return s->dispc.bg[0];
  233. case 0x050: /* DISPC_DEFAULT_COLOR1 */
  234. return s->dispc.bg[1];
  235. case 0x054: /* DISPC_TRANS_COLOR0 */
  236. return s->dispc.trans[0];
  237. case 0x058: /* DISPC_TRANS_COLOR1 */
  238. return s->dispc.trans[1];
  239. case 0x05c: /* DISPC_LINE_STATUS */
  240. return 0x7ff;
  241. case 0x060: /* DISPC_LINE_NUMBER */
  242. return s->dispc.line;
  243. case 0x064: /* DISPC_TIMING_H */
  244. return s->dispc.timing[0];
  245. case 0x068: /* DISPC_TIMING_V */
  246. return s->dispc.timing[1];
  247. case 0x06c: /* DISPC_POL_FREQ */
  248. return s->dispc.timing[2];
  249. case 0x070: /* DISPC_DIVISOR */
  250. return s->dispc.timing[3];
  251. case 0x078: /* DISPC_SIZE_DIG */
  252. return ((s->dig.ny - 1) << 16) | (s->dig.nx - 1);
  253. case 0x07c: /* DISPC_SIZE_LCD */
  254. return ((s->lcd.ny - 1) << 16) | (s->lcd.nx - 1);
  255. case 0x080: /* DISPC_GFX_BA0 */
  256. return s->dispc.l[0].addr[0];
  257. case 0x084: /* DISPC_GFX_BA1 */
  258. return s->dispc.l[0].addr[1];
  259. case 0x088: /* DISPC_GFX_POSITION */
  260. return (s->dispc.l[0].posy << 16) | s->dispc.l[0].posx;
  261. case 0x08c: /* DISPC_GFX_SIZE */
  262. return ((s->dispc.l[0].ny - 1) << 16) | (s->dispc.l[0].nx - 1);
  263. case 0x0a0: /* DISPC_GFX_ATTRIBUTES */
  264. return s->dispc.l[0].attr;
  265. case 0x0a4: /* DISPC_GFX_FIFO_TRESHOLD */
  266. return s->dispc.l[0].tresh;
  267. case 0x0a8: /* DISPC_GFX_FIFO_SIZE_STATUS */
  268. return 256;
  269. case 0x0ac: /* DISPC_GFX_ROW_INC */
  270. return s->dispc.l[0].rowinc;
  271. case 0x0b0: /* DISPC_GFX_PIXEL_INC */
  272. return s->dispc.l[0].colinc;
  273. case 0x0b4: /* DISPC_GFX_WINDOW_SKIP */
  274. return s->dispc.l[0].wininc;
  275. case 0x0b8: /* DISPC_GFX_TABLE_BA */
  276. return s->dispc.l[0].addr[2];
  277. case 0x0bc: /* DISPC_VID1_BA0 */
  278. case 0x0c0: /* DISPC_VID1_BA1 */
  279. case 0x0c4: /* DISPC_VID1_POSITION */
  280. case 0x0c8: /* DISPC_VID1_SIZE */
  281. case 0x0cc: /* DISPC_VID1_ATTRIBUTES */
  282. case 0x0d0: /* DISPC_VID1_FIFO_TRESHOLD */
  283. case 0x0d4: /* DISPC_VID1_FIFO_SIZE_STATUS */
  284. case 0x0d8: /* DISPC_VID1_ROW_INC */
  285. case 0x0dc: /* DISPC_VID1_PIXEL_INC */
  286. case 0x0e0: /* DISPC_VID1_FIR */
  287. case 0x0e4: /* DISPC_VID1_PICTURE_SIZE */
  288. case 0x0e8: /* DISPC_VID1_ACCU0 */
  289. case 0x0ec: /* DISPC_VID1_ACCU1 */
  290. case 0x0f0 ... 0x140: /* DISPC_VID1_FIR_COEF, DISPC_VID1_CONV_COEF */
  291. case 0x14c: /* DISPC_VID2_BA0 */
  292. case 0x150: /* DISPC_VID2_BA1 */
  293. case 0x154: /* DISPC_VID2_POSITION */
  294. case 0x158: /* DISPC_VID2_SIZE */
  295. case 0x15c: /* DISPC_VID2_ATTRIBUTES */
  296. case 0x160: /* DISPC_VID2_FIFO_TRESHOLD */
  297. case 0x164: /* DISPC_VID2_FIFO_SIZE_STATUS */
  298. case 0x168: /* DISPC_VID2_ROW_INC */
  299. case 0x16c: /* DISPC_VID2_PIXEL_INC */
  300. case 0x170: /* DISPC_VID2_FIR */
  301. case 0x174: /* DISPC_VID2_PICTURE_SIZE */
  302. case 0x178: /* DISPC_VID2_ACCU0 */
  303. case 0x17c: /* DISPC_VID2_ACCU1 */
  304. case 0x180 ... 0x1d0: /* DISPC_VID2_FIR_COEF, DISPC_VID2_CONV_COEF */
  305. case 0x1d4: /* DISPC_DATA_CYCLE1 */
  306. case 0x1d8: /* DISPC_DATA_CYCLE2 */
  307. case 0x1dc: /* DISPC_DATA_CYCLE3 */
  308. return 0;
  309. default:
  310. break;
  311. }
  312. OMAP_BAD_REG(addr);
  313. return 0;
  314. }
  315. static void omap_disc_write(void *opaque, target_phys_addr_t addr,
  316. uint32_t value)
  317. {
  318. struct omap_dss_s *s = (struct omap_dss_s *) opaque;
  319. switch (addr) {
  320. case 0x010: /* DISPC_SYSCONFIG */
  321. if (value & 2) /* SOFTRESET */
  322. omap_dss_reset(s);
  323. s->dispc.idlemode = value & 0x301b;
  324. break;
  325. case 0x018: /* DISPC_IRQSTATUS */
  326. s->dispc.irqst &= ~value;
  327. omap_dispc_interrupt_update(s);
  328. break;
  329. case 0x01c: /* DISPC_IRQENABLE */
  330. s->dispc.irqen = value & 0xffff;
  331. omap_dispc_interrupt_update(s);
  332. break;
  333. case 0x040: /* DISPC_CONTROL */
  334. s->dispc.control = value & 0x07ff9fff;
  335. s->dig.enable = (value >> 1) & 1;
  336. s->lcd.enable = (value >> 0) & 1;
  337. if (value & (1 << 12)) /* OVERLAY_OPTIMIZATION */
  338. if (!((s->dispc.l[1].attr | s->dispc.l[2].attr) & 1)) {
  339. fprintf(stderr, "%s: Overlay Optimization when no overlay "
  340. "region effectively exists leads to "
  341. "unpredictable behaviour!\n", __func__);
  342. }
  343. if (value & (1 << 6)) { /* GODIGITAL */
  344. /* XXX: Shadowed fields are:
  345. * s->dispc.config
  346. * s->dispc.capable
  347. * s->dispc.bg[0]
  348. * s->dispc.bg[1]
  349. * s->dispc.trans[0]
  350. * s->dispc.trans[1]
  351. * s->dispc.line
  352. * s->dispc.timing[0]
  353. * s->dispc.timing[1]
  354. * s->dispc.timing[2]
  355. * s->dispc.timing[3]
  356. * s->lcd.nx
  357. * s->lcd.ny
  358. * s->dig.nx
  359. * s->dig.ny
  360. * s->dispc.l[0].addr[0]
  361. * s->dispc.l[0].addr[1]
  362. * s->dispc.l[0].addr[2]
  363. * s->dispc.l[0].posx
  364. * s->dispc.l[0].posy
  365. * s->dispc.l[0].nx
  366. * s->dispc.l[0].ny
  367. * s->dispc.l[0].tresh
  368. * s->dispc.l[0].rowinc
  369. * s->dispc.l[0].colinc
  370. * s->dispc.l[0].wininc
  371. * All they need to be loaded here from their shadow registers.
  372. */
  373. }
  374. if (value & (1 << 5)) { /* GOLCD */
  375. /* XXX: Likewise for LCD here. */
  376. }
  377. s->dispc.invalidate = 1;
  378. break;
  379. case 0x044: /* DISPC_CONFIG */
  380. s->dispc.config = value & 0x3fff;
  381. /* XXX:
  382. * bits 2:1 (LOADMODE) reset to 0 after set to 1 and palette loaded
  383. * bits 2:1 (LOADMODE) reset to 2 after set to 3 and palette loaded
  384. */
  385. s->dispc.invalidate = 1;
  386. break;
  387. case 0x048: /* DISPC_CAPABLE */
  388. s->dispc.capable = value & 0x3ff;
  389. break;
  390. case 0x04c: /* DISPC_DEFAULT_COLOR0 */
  391. s->dispc.bg[0] = value & 0xffffff;
  392. s->dispc.invalidate = 1;
  393. break;
  394. case 0x050: /* DISPC_DEFAULT_COLOR1 */
  395. s->dispc.bg[1] = value & 0xffffff;
  396. s->dispc.invalidate = 1;
  397. break;
  398. case 0x054: /* DISPC_TRANS_COLOR0 */
  399. s->dispc.trans[0] = value & 0xffffff;
  400. s->dispc.invalidate = 1;
  401. break;
  402. case 0x058: /* DISPC_TRANS_COLOR1 */
  403. s->dispc.trans[1] = value & 0xffffff;
  404. s->dispc.invalidate = 1;
  405. break;
  406. case 0x060: /* DISPC_LINE_NUMBER */
  407. s->dispc.line = value & 0x7ff;
  408. break;
  409. case 0x064: /* DISPC_TIMING_H */
  410. s->dispc.timing[0] = value & 0x0ff0ff3f;
  411. break;
  412. case 0x068: /* DISPC_TIMING_V */
  413. s->dispc.timing[1] = value & 0x0ff0ff3f;
  414. break;
  415. case 0x06c: /* DISPC_POL_FREQ */
  416. s->dispc.timing[2] = value & 0x0003ffff;
  417. break;
  418. case 0x070: /* DISPC_DIVISOR */
  419. s->dispc.timing[3] = value & 0x00ff00ff;
  420. break;
  421. case 0x078: /* DISPC_SIZE_DIG */
  422. s->dig.nx = ((value >> 0) & 0x7ff) + 1; /* PPL */
  423. s->dig.ny = ((value >> 16) & 0x7ff) + 1; /* LPP */
  424. s->dispc.invalidate = 1;
  425. break;
  426. case 0x07c: /* DISPC_SIZE_LCD */
  427. s->lcd.nx = ((value >> 0) & 0x7ff) + 1; /* PPL */
  428. s->lcd.ny = ((value >> 16) & 0x7ff) + 1; /* LPP */
  429. s->dispc.invalidate = 1;
  430. break;
  431. case 0x080: /* DISPC_GFX_BA0 */
  432. s->dispc.l[0].addr[0] = (target_phys_addr_t) value;
  433. s->dispc.invalidate = 1;
  434. break;
  435. case 0x084: /* DISPC_GFX_BA1 */
  436. s->dispc.l[0].addr[1] = (target_phys_addr_t) value;
  437. s->dispc.invalidate = 1;
  438. break;
  439. case 0x088: /* DISPC_GFX_POSITION */
  440. s->dispc.l[0].posx = ((value >> 0) & 0x7ff); /* GFXPOSX */
  441. s->dispc.l[0].posy = ((value >> 16) & 0x7ff); /* GFXPOSY */
  442. s->dispc.invalidate = 1;
  443. break;
  444. case 0x08c: /* DISPC_GFX_SIZE */
  445. s->dispc.l[0].nx = ((value >> 0) & 0x7ff) + 1; /* GFXSIZEX */
  446. s->dispc.l[0].ny = ((value >> 16) & 0x7ff) + 1; /* GFXSIZEY */
  447. s->dispc.invalidate = 1;
  448. break;
  449. case 0x0a0: /* DISPC_GFX_ATTRIBUTES */
  450. s->dispc.l[0].attr = value & 0x7ff;
  451. if (value & (3 << 9))
  452. fprintf(stderr, "%s: Big-endian pixel format not supported\n",
  453. __FUNCTION__);
  454. s->dispc.l[0].enable = value & 1;
  455. s->dispc.l[0].bpp = (value >> 1) & 0xf;
  456. s->dispc.invalidate = 1;
  457. break;
  458. case 0x0a4: /* DISPC_GFX_FIFO_TRESHOLD */
  459. s->dispc.l[0].tresh = value & 0x01ff01ff;
  460. break;
  461. case 0x0ac: /* DISPC_GFX_ROW_INC */
  462. s->dispc.l[0].rowinc = value;
  463. s->dispc.invalidate = 1;
  464. break;
  465. case 0x0b0: /* DISPC_GFX_PIXEL_INC */
  466. s->dispc.l[0].colinc = value;
  467. s->dispc.invalidate = 1;
  468. break;
  469. case 0x0b4: /* DISPC_GFX_WINDOW_SKIP */
  470. s->dispc.l[0].wininc = value;
  471. break;
  472. case 0x0b8: /* DISPC_GFX_TABLE_BA */
  473. s->dispc.l[0].addr[2] = (target_phys_addr_t) value;
  474. s->dispc.invalidate = 1;
  475. break;
  476. case 0x0bc: /* DISPC_VID1_BA0 */
  477. case 0x0c0: /* DISPC_VID1_BA1 */
  478. case 0x0c4: /* DISPC_VID1_POSITION */
  479. case 0x0c8: /* DISPC_VID1_SIZE */
  480. case 0x0cc: /* DISPC_VID1_ATTRIBUTES */
  481. case 0x0d0: /* DISPC_VID1_FIFO_TRESHOLD */
  482. case 0x0d8: /* DISPC_VID1_ROW_INC */
  483. case 0x0dc: /* DISPC_VID1_PIXEL_INC */
  484. case 0x0e0: /* DISPC_VID1_FIR */
  485. case 0x0e4: /* DISPC_VID1_PICTURE_SIZE */
  486. case 0x0e8: /* DISPC_VID1_ACCU0 */
  487. case 0x0ec: /* DISPC_VID1_ACCU1 */
  488. case 0x0f0 ... 0x140: /* DISPC_VID1_FIR_COEF, DISPC_VID1_CONV_COEF */
  489. case 0x14c: /* DISPC_VID2_BA0 */
  490. case 0x150: /* DISPC_VID2_BA1 */
  491. case 0x154: /* DISPC_VID2_POSITION */
  492. case 0x158: /* DISPC_VID2_SIZE */
  493. case 0x15c: /* DISPC_VID2_ATTRIBUTES */
  494. case 0x160: /* DISPC_VID2_FIFO_TRESHOLD */
  495. case 0x168: /* DISPC_VID2_ROW_INC */
  496. case 0x16c: /* DISPC_VID2_PIXEL_INC */
  497. case 0x170: /* DISPC_VID2_FIR */
  498. case 0x174: /* DISPC_VID2_PICTURE_SIZE */
  499. case 0x178: /* DISPC_VID2_ACCU0 */
  500. case 0x17c: /* DISPC_VID2_ACCU1 */
  501. case 0x180 ... 0x1d0: /* DISPC_VID2_FIR_COEF, DISPC_VID2_CONV_COEF */
  502. case 0x1d4: /* DISPC_DATA_CYCLE1 */
  503. case 0x1d8: /* DISPC_DATA_CYCLE2 */
  504. case 0x1dc: /* DISPC_DATA_CYCLE3 */
  505. break;
  506. default:
  507. OMAP_BAD_REG(addr);
  508. }
  509. }
  510. static CPUReadMemoryFunc * const omap_disc1_readfn[] = {
  511. omap_badwidth_read32,
  512. omap_badwidth_read32,
  513. omap_disc_read,
  514. };
  515. static CPUWriteMemoryFunc * const omap_disc1_writefn[] = {
  516. omap_badwidth_write32,
  517. omap_badwidth_write32,
  518. omap_disc_write,
  519. };
  520. static void omap_rfbi_transfer_stop(struct omap_dss_s *s)
  521. {
  522. if (!s->rfbi.busy)
  523. return;
  524. /* TODO: in non-Bypass mode we probably need to just deassert the DRQ. */
  525. s->rfbi.busy = 0;
  526. }
  527. static void omap_rfbi_transfer_start(struct omap_dss_s *s)
  528. {
  529. void *data;
  530. target_phys_addr_t len;
  531. target_phys_addr_t data_addr;
  532. int pitch;
  533. static void *bounce_buffer;
  534. static target_phys_addr_t bounce_len;
  535. if (!s->rfbi.enable || s->rfbi.busy)
  536. return;
  537. if (s->rfbi.control & (1 << 1)) { /* BYPASS */
  538. /* TODO: in non-Bypass mode we probably need to just assert the
  539. * DRQ and wait for DMA to write the pixels. */
  540. fprintf(stderr, "%s: Bypass mode unimplemented\n", __FUNCTION__);
  541. return;
  542. }
  543. if (!(s->dispc.control & (1 << 11))) /* RFBIMODE */
  544. return;
  545. /* TODO: check that LCD output is enabled in DISPC. */
  546. s->rfbi.busy = 1;
  547. len = s->rfbi.pixels * 2;
  548. data_addr = s->dispc.l[0].addr[0];
  549. data = cpu_physical_memory_map(data_addr, &len, 0);
  550. if (data && len != s->rfbi.pixels * 2) {
  551. cpu_physical_memory_unmap(data, len, 0, 0);
  552. data = NULL;
  553. len = s->rfbi.pixels * 2;
  554. }
  555. if (!data) {
  556. if (len > bounce_len) {
  557. bounce_buffer = g_realloc(bounce_buffer, len);
  558. }
  559. data = bounce_buffer;
  560. cpu_physical_memory_read(data_addr, data, len);
  561. }
  562. /* TODO bpp */
  563. s->rfbi.pixels = 0;
  564. /* TODO: negative values */
  565. pitch = s->dispc.l[0].nx + (s->dispc.l[0].rowinc - 1) / 2;
  566. if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0])
  567. s->rfbi.chip[0]->block(s->rfbi.chip[0]->opaque, 1, data, len, pitch);
  568. if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1])
  569. s->rfbi.chip[1]->block(s->rfbi.chip[1]->opaque, 1, data, len, pitch);
  570. if (data != bounce_buffer) {
  571. cpu_physical_memory_unmap(data, len, 0, len);
  572. }
  573. omap_rfbi_transfer_stop(s);
  574. /* TODO */
  575. s->dispc.irqst |= 1; /* FRAMEDONE */
  576. omap_dispc_interrupt_update(s);
  577. }
  578. static uint32_t omap_rfbi_read(void *opaque, target_phys_addr_t addr)
  579. {
  580. struct omap_dss_s *s = (struct omap_dss_s *) opaque;
  581. switch (addr) {
  582. case 0x00: /* RFBI_REVISION */
  583. return 0x10;
  584. case 0x10: /* RFBI_SYSCONFIG */
  585. return s->rfbi.idlemode;
  586. case 0x14: /* RFBI_SYSSTATUS */
  587. return 1 | (s->rfbi.busy << 8); /* RESETDONE */
  588. case 0x40: /* RFBI_CONTROL */
  589. return s->rfbi.control;
  590. case 0x44: /* RFBI_PIXELCNT */
  591. return s->rfbi.pixels;
  592. case 0x48: /* RFBI_LINE_NUMBER */
  593. return s->rfbi.skiplines;
  594. case 0x58: /* RFBI_READ */
  595. case 0x5c: /* RFBI_STATUS */
  596. return s->rfbi.rxbuf;
  597. case 0x60: /* RFBI_CONFIG0 */
  598. return s->rfbi.config[0];
  599. case 0x64: /* RFBI_ONOFF_TIME0 */
  600. return s->rfbi.time[0];
  601. case 0x68: /* RFBI_CYCLE_TIME0 */
  602. return s->rfbi.time[1];
  603. case 0x6c: /* RFBI_DATA_CYCLE1_0 */
  604. return s->rfbi.data[0];
  605. case 0x70: /* RFBI_DATA_CYCLE2_0 */
  606. return s->rfbi.data[1];
  607. case 0x74: /* RFBI_DATA_CYCLE3_0 */
  608. return s->rfbi.data[2];
  609. case 0x78: /* RFBI_CONFIG1 */
  610. return s->rfbi.config[1];
  611. case 0x7c: /* RFBI_ONOFF_TIME1 */
  612. return s->rfbi.time[2];
  613. case 0x80: /* RFBI_CYCLE_TIME1 */
  614. return s->rfbi.time[3];
  615. case 0x84: /* RFBI_DATA_CYCLE1_1 */
  616. return s->rfbi.data[3];
  617. case 0x88: /* RFBI_DATA_CYCLE2_1 */
  618. return s->rfbi.data[4];
  619. case 0x8c: /* RFBI_DATA_CYCLE3_1 */
  620. return s->rfbi.data[5];
  621. case 0x90: /* RFBI_VSYNC_WIDTH */
  622. return s->rfbi.vsync;
  623. case 0x94: /* RFBI_HSYNC_WIDTH */
  624. return s->rfbi.hsync;
  625. }
  626. OMAP_BAD_REG(addr);
  627. return 0;
  628. }
  629. static void omap_rfbi_write(void *opaque, target_phys_addr_t addr,
  630. uint32_t value)
  631. {
  632. struct omap_dss_s *s = (struct omap_dss_s *) opaque;
  633. switch (addr) {
  634. case 0x10: /* RFBI_SYSCONFIG */
  635. if (value & 2) /* SOFTRESET */
  636. omap_rfbi_reset(s);
  637. s->rfbi.idlemode = value & 0x19;
  638. break;
  639. case 0x40: /* RFBI_CONTROL */
  640. s->rfbi.control = value & 0xf;
  641. s->rfbi.enable = value & 1;
  642. if (value & (1 << 4) && /* ITE */
  643. !(s->rfbi.config[0] & s->rfbi.config[1] & 0xc))
  644. omap_rfbi_transfer_start(s);
  645. break;
  646. case 0x44: /* RFBI_PIXELCNT */
  647. s->rfbi.pixels = value;
  648. break;
  649. case 0x48: /* RFBI_LINE_NUMBER */
  650. s->rfbi.skiplines = value & 0x7ff;
  651. break;
  652. case 0x4c: /* RFBI_CMD */
  653. if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0])
  654. s->rfbi.chip[0]->write(s->rfbi.chip[0]->opaque, 0, value & 0xffff);
  655. if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1])
  656. s->rfbi.chip[1]->write(s->rfbi.chip[1]->opaque, 0, value & 0xffff);
  657. break;
  658. case 0x50: /* RFBI_PARAM */
  659. if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0])
  660. s->rfbi.chip[0]->write(s->rfbi.chip[0]->opaque, 1, value & 0xffff);
  661. if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1])
  662. s->rfbi.chip[1]->write(s->rfbi.chip[1]->opaque, 1, value & 0xffff);
  663. break;
  664. case 0x54: /* RFBI_DATA */
  665. /* TODO: take into account the format set up in s->rfbi.config[?] and
  666. * s->rfbi.data[?], but special-case the most usual scenario so that
  667. * speed doesn't suffer. */
  668. if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0]) {
  669. s->rfbi.chip[0]->write(s->rfbi.chip[0]->opaque, 1, value & 0xffff);
  670. s->rfbi.chip[0]->write(s->rfbi.chip[0]->opaque, 1, value >> 16);
  671. }
  672. if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1]) {
  673. s->rfbi.chip[1]->write(s->rfbi.chip[1]->opaque, 1, value & 0xffff);
  674. s->rfbi.chip[1]->write(s->rfbi.chip[1]->opaque, 1, value >> 16);
  675. }
  676. if (!-- s->rfbi.pixels)
  677. omap_rfbi_transfer_stop(s);
  678. break;
  679. case 0x58: /* RFBI_READ */
  680. if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0])
  681. s->rfbi.rxbuf = s->rfbi.chip[0]->read(s->rfbi.chip[0]->opaque, 1);
  682. else if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1])
  683. s->rfbi.rxbuf = s->rfbi.chip[0]->read(s->rfbi.chip[0]->opaque, 1);
  684. if (!-- s->rfbi.pixels)
  685. omap_rfbi_transfer_stop(s);
  686. break;
  687. case 0x5c: /* RFBI_STATUS */
  688. if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0])
  689. s->rfbi.rxbuf = s->rfbi.chip[0]->read(s->rfbi.chip[0]->opaque, 0);
  690. else if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1])
  691. s->rfbi.rxbuf = s->rfbi.chip[0]->read(s->rfbi.chip[0]->opaque, 0);
  692. if (!-- s->rfbi.pixels)
  693. omap_rfbi_transfer_stop(s);
  694. break;
  695. case 0x60: /* RFBI_CONFIG0 */
  696. s->rfbi.config[0] = value & 0x003f1fff;
  697. break;
  698. case 0x64: /* RFBI_ONOFF_TIME0 */
  699. s->rfbi.time[0] = value & 0x3fffffff;
  700. break;
  701. case 0x68: /* RFBI_CYCLE_TIME0 */
  702. s->rfbi.time[1] = value & 0x0fffffff;
  703. break;
  704. case 0x6c: /* RFBI_DATA_CYCLE1_0 */
  705. s->rfbi.data[0] = value & 0x0f1f0f1f;
  706. break;
  707. case 0x70: /* RFBI_DATA_CYCLE2_0 */
  708. s->rfbi.data[1] = value & 0x0f1f0f1f;
  709. break;
  710. case 0x74: /* RFBI_DATA_CYCLE3_0 */
  711. s->rfbi.data[2] = value & 0x0f1f0f1f;
  712. break;
  713. case 0x78: /* RFBI_CONFIG1 */
  714. s->rfbi.config[1] = value & 0x003f1fff;
  715. break;
  716. case 0x7c: /* RFBI_ONOFF_TIME1 */
  717. s->rfbi.time[2] = value & 0x3fffffff;
  718. break;
  719. case 0x80: /* RFBI_CYCLE_TIME1 */
  720. s->rfbi.time[3] = value & 0x0fffffff;
  721. break;
  722. case 0x84: /* RFBI_DATA_CYCLE1_1 */
  723. s->rfbi.data[3] = value & 0x0f1f0f1f;
  724. break;
  725. case 0x88: /* RFBI_DATA_CYCLE2_1 */
  726. s->rfbi.data[4] = value & 0x0f1f0f1f;
  727. break;
  728. case 0x8c: /* RFBI_DATA_CYCLE3_1 */
  729. s->rfbi.data[5] = value & 0x0f1f0f1f;
  730. break;
  731. case 0x90: /* RFBI_VSYNC_WIDTH */
  732. s->rfbi.vsync = value & 0xffff;
  733. break;
  734. case 0x94: /* RFBI_HSYNC_WIDTH */
  735. s->rfbi.hsync = value & 0xffff;
  736. break;
  737. default:
  738. OMAP_BAD_REG(addr);
  739. }
  740. }
  741. static CPUReadMemoryFunc * const omap_rfbi1_readfn[] = {
  742. omap_badwidth_read32,
  743. omap_badwidth_read32,
  744. omap_rfbi_read,
  745. };
  746. static CPUWriteMemoryFunc * const omap_rfbi1_writefn[] = {
  747. omap_badwidth_write32,
  748. omap_badwidth_write32,
  749. omap_rfbi_write,
  750. };
  751. static uint32_t omap_venc_read(void *opaque, target_phys_addr_t addr)
  752. {
  753. switch (addr) {
  754. case 0x00: /* REV_ID */
  755. case 0x04: /* STATUS */
  756. case 0x08: /* F_CONTROL */
  757. case 0x10: /* VIDOUT_CTRL */
  758. case 0x14: /* SYNC_CTRL */
  759. case 0x1c: /* LLEN */
  760. case 0x20: /* FLENS */
  761. case 0x24: /* HFLTR_CTRL */
  762. case 0x28: /* CC_CARR_WSS_CARR */
  763. case 0x2c: /* C_PHASE */
  764. case 0x30: /* GAIN_U */
  765. case 0x34: /* GAIN_V */
  766. case 0x38: /* GAIN_Y */
  767. case 0x3c: /* BLACK_LEVEL */
  768. case 0x40: /* BLANK_LEVEL */
  769. case 0x44: /* X_COLOR */
  770. case 0x48: /* M_CONTROL */
  771. case 0x4c: /* BSTAMP_WSS_DATA */
  772. case 0x50: /* S_CARR */
  773. case 0x54: /* LINE21 */
  774. case 0x58: /* LN_SEL */
  775. case 0x5c: /* L21__WC_CTL */
  776. case 0x60: /* HTRIGGER_VTRIGGER */
  777. case 0x64: /* SAVID__EAVID */
  778. case 0x68: /* FLEN__FAL */
  779. case 0x6c: /* LAL__PHASE_RESET */
  780. case 0x70: /* HS_INT_START_STOP_X */
  781. case 0x74: /* HS_EXT_START_STOP_X */
  782. case 0x78: /* VS_INT_START_X */
  783. case 0x7c: /* VS_INT_STOP_X__VS_INT_START_Y */
  784. case 0x80: /* VS_INT_STOP_Y__VS_INT_START_X */
  785. case 0x84: /* VS_EXT_STOP_X__VS_EXT_START_Y */
  786. case 0x88: /* VS_EXT_STOP_Y */
  787. case 0x90: /* AVID_START_STOP_X */
  788. case 0x94: /* AVID_START_STOP_Y */
  789. case 0xa0: /* FID_INT_START_X__FID_INT_START_Y */
  790. case 0xa4: /* FID_INT_OFFSET_Y__FID_EXT_START_X */
  791. case 0xa8: /* FID_EXT_START_Y__FID_EXT_OFFSET_Y */
  792. case 0xb0: /* TVDETGP_INT_START_STOP_X */
  793. case 0xb4: /* TVDETGP_INT_START_STOP_Y */
  794. case 0xb8: /* GEN_CTRL */
  795. case 0xc4: /* DAC_TST__DAC_A */
  796. case 0xc8: /* DAC_B__DAC_C */
  797. return 0;
  798. default:
  799. break;
  800. }
  801. OMAP_BAD_REG(addr);
  802. return 0;
  803. }
  804. static void omap_venc_write(void *opaque, target_phys_addr_t addr,
  805. uint32_t value)
  806. {
  807. switch (addr) {
  808. case 0x08: /* F_CONTROL */
  809. case 0x10: /* VIDOUT_CTRL */
  810. case 0x14: /* SYNC_CTRL */
  811. case 0x1c: /* LLEN */
  812. case 0x20: /* FLENS */
  813. case 0x24: /* HFLTR_CTRL */
  814. case 0x28: /* CC_CARR_WSS_CARR */
  815. case 0x2c: /* C_PHASE */
  816. case 0x30: /* GAIN_U */
  817. case 0x34: /* GAIN_V */
  818. case 0x38: /* GAIN_Y */
  819. case 0x3c: /* BLACK_LEVEL */
  820. case 0x40: /* BLANK_LEVEL */
  821. case 0x44: /* X_COLOR */
  822. case 0x48: /* M_CONTROL */
  823. case 0x4c: /* BSTAMP_WSS_DATA */
  824. case 0x50: /* S_CARR */
  825. case 0x54: /* LINE21 */
  826. case 0x58: /* LN_SEL */
  827. case 0x5c: /* L21__WC_CTL */
  828. case 0x60: /* HTRIGGER_VTRIGGER */
  829. case 0x64: /* SAVID__EAVID */
  830. case 0x68: /* FLEN__FAL */
  831. case 0x6c: /* LAL__PHASE_RESET */
  832. case 0x70: /* HS_INT_START_STOP_X */
  833. case 0x74: /* HS_EXT_START_STOP_X */
  834. case 0x78: /* VS_INT_START_X */
  835. case 0x7c: /* VS_INT_STOP_X__VS_INT_START_Y */
  836. case 0x80: /* VS_INT_STOP_Y__VS_INT_START_X */
  837. case 0x84: /* VS_EXT_STOP_X__VS_EXT_START_Y */
  838. case 0x88: /* VS_EXT_STOP_Y */
  839. case 0x90: /* AVID_START_STOP_X */
  840. case 0x94: /* AVID_START_STOP_Y */
  841. case 0xa0: /* FID_INT_START_X__FID_INT_START_Y */
  842. case 0xa4: /* FID_INT_OFFSET_Y__FID_EXT_START_X */
  843. case 0xa8: /* FID_EXT_START_Y__FID_EXT_OFFSET_Y */
  844. case 0xb0: /* TVDETGP_INT_START_STOP_X */
  845. case 0xb4: /* TVDETGP_INT_START_STOP_Y */
  846. case 0xb8: /* GEN_CTRL */
  847. case 0xc4: /* DAC_TST__DAC_A */
  848. case 0xc8: /* DAC_B__DAC_C */
  849. break;
  850. default:
  851. OMAP_BAD_REG(addr);
  852. }
  853. }
  854. static CPUReadMemoryFunc * const omap_venc1_readfn[] = {
  855. omap_badwidth_read32,
  856. omap_badwidth_read32,
  857. omap_venc_read,
  858. };
  859. static CPUWriteMemoryFunc * const omap_venc1_writefn[] = {
  860. omap_badwidth_write32,
  861. omap_badwidth_write32,
  862. omap_venc_write,
  863. };
  864. static uint32_t omap_im3_read(void *opaque, target_phys_addr_t addr)
  865. {
  866. switch (addr) {
  867. case 0x0a8: /* SBIMERRLOGA */
  868. case 0x0b0: /* SBIMERRLOG */
  869. case 0x190: /* SBIMSTATE */
  870. case 0x198: /* SBTMSTATE_L */
  871. case 0x19c: /* SBTMSTATE_H */
  872. case 0x1a8: /* SBIMCONFIG_L */
  873. case 0x1ac: /* SBIMCONFIG_H */
  874. case 0x1f8: /* SBID_L */
  875. case 0x1fc: /* SBID_H */
  876. return 0;
  877. default:
  878. break;
  879. }
  880. OMAP_BAD_REG(addr);
  881. return 0;
  882. }
  883. static void omap_im3_write(void *opaque, target_phys_addr_t addr,
  884. uint32_t value)
  885. {
  886. switch (addr) {
  887. case 0x0b0: /* SBIMERRLOG */
  888. case 0x190: /* SBIMSTATE */
  889. case 0x198: /* SBTMSTATE_L */
  890. case 0x19c: /* SBTMSTATE_H */
  891. case 0x1a8: /* SBIMCONFIG_L */
  892. case 0x1ac: /* SBIMCONFIG_H */
  893. break;
  894. default:
  895. OMAP_BAD_REG(addr);
  896. }
  897. }
  898. static CPUReadMemoryFunc * const omap_im3_readfn[] = {
  899. omap_badwidth_read32,
  900. omap_badwidth_read32,
  901. omap_im3_read,
  902. };
  903. static CPUWriteMemoryFunc * const omap_im3_writefn[] = {
  904. omap_badwidth_write32,
  905. omap_badwidth_write32,
  906. omap_im3_write,
  907. };
  908. struct omap_dss_s *omap_dss_init(struct omap_target_agent_s *ta,
  909. target_phys_addr_t l3_base,
  910. qemu_irq irq, qemu_irq drq,
  911. omap_clk fck1, omap_clk fck2, omap_clk ck54m,
  912. omap_clk ick1, omap_clk ick2)
  913. {
  914. int iomemtype[5];
  915. struct omap_dss_s *s = (struct omap_dss_s *)
  916. g_malloc0(sizeof(struct omap_dss_s));
  917. s->irq = irq;
  918. s->drq = drq;
  919. omap_dss_reset(s);
  920. iomemtype[0] = l4_register_io_memory(omap_diss1_readfn,
  921. omap_diss1_writefn, s);
  922. iomemtype[1] = l4_register_io_memory(omap_disc1_readfn,
  923. omap_disc1_writefn, s);
  924. iomemtype[2] = l4_register_io_memory(omap_rfbi1_readfn,
  925. omap_rfbi1_writefn, s);
  926. iomemtype[3] = l4_register_io_memory(omap_venc1_readfn,
  927. omap_venc1_writefn, s);
  928. iomemtype[4] = cpu_register_io_memory(omap_im3_readfn,
  929. omap_im3_writefn, s, DEVICE_NATIVE_ENDIAN);
  930. omap_l4_attach(ta, 0, iomemtype[0]);
  931. omap_l4_attach(ta, 1, iomemtype[1]);
  932. omap_l4_attach(ta, 2, iomemtype[2]);
  933. omap_l4_attach(ta, 3, iomemtype[3]);
  934. cpu_register_physical_memory(l3_base, 0x1000, iomemtype[4]);
  935. #if 0
  936. s->state = graphic_console_init(omap_update_display,
  937. omap_invalidate_display, omap_screen_dump, s);
  938. #endif
  939. return s;
  940. }
  941. void omap_rfbi_attach(struct omap_dss_s *s, int cs, struct rfbi_chip_s *chip)
  942. {
  943. if (cs < 0 || cs > 1)
  944. hw_error("%s: wrong CS %i\n", __FUNCTION__, cs);
  945. s->rfbi.chip[cs] = chip;
  946. }