omap1.c 116 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017
  1. /*
  2. * TI OMAP processors emulation.
  3. *
  4. * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 or
  9. * (at your option) version 3 of the License.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along
  17. * with this program; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "hw.h"
  20. #include "arm-misc.h"
  21. #include "omap.h"
  22. #include "sysemu.h"
  23. #include "qemu-timer.h"
  24. #include "qemu-char.h"
  25. #include "soc_dma.h"
  26. /* We use pc-style serial ports. */
  27. #include "pc.h"
  28. #include "blockdev.h"
  29. #include "range.h"
  30. #include "sysbus.h"
  31. /* Should signal the TCMI/GPMC */
  32. uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
  33. {
  34. uint8_t ret;
  35. OMAP_8B_REG(addr);
  36. cpu_physical_memory_read(addr, (void *) &ret, 1);
  37. return ret;
  38. }
  39. void omap_badwidth_write8(void *opaque, target_phys_addr_t addr,
  40. uint32_t value)
  41. {
  42. uint8_t val8 = value;
  43. OMAP_8B_REG(addr);
  44. cpu_physical_memory_write(addr, (void *) &val8, 1);
  45. }
  46. uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
  47. {
  48. uint16_t ret;
  49. OMAP_16B_REG(addr);
  50. cpu_physical_memory_read(addr, (void *) &ret, 2);
  51. return ret;
  52. }
  53. void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
  54. uint32_t value)
  55. {
  56. uint16_t val16 = value;
  57. OMAP_16B_REG(addr);
  58. cpu_physical_memory_write(addr, (void *) &val16, 2);
  59. }
  60. uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
  61. {
  62. uint32_t ret;
  63. OMAP_32B_REG(addr);
  64. cpu_physical_memory_read(addr, (void *) &ret, 4);
  65. return ret;
  66. }
  67. void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
  68. uint32_t value)
  69. {
  70. OMAP_32B_REG(addr);
  71. cpu_physical_memory_write(addr, (void *) &value, 4);
  72. }
  73. /* MPU OS timers */
  74. struct omap_mpu_timer_s {
  75. MemoryRegion iomem;
  76. qemu_irq irq;
  77. omap_clk clk;
  78. uint32_t val;
  79. int64_t time;
  80. QEMUTimer *timer;
  81. QEMUBH *tick;
  82. int64_t rate;
  83. int it_ena;
  84. int enable;
  85. int ptv;
  86. int ar;
  87. int st;
  88. uint32_t reset_val;
  89. };
  90. static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
  91. {
  92. uint64_t distance = qemu_get_clock_ns(vm_clock) - timer->time;
  93. if (timer->st && timer->enable && timer->rate)
  94. return timer->val - muldiv64(distance >> (timer->ptv + 1),
  95. timer->rate, get_ticks_per_sec());
  96. else
  97. return timer->val;
  98. }
  99. static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
  100. {
  101. timer->val = omap_timer_read(timer);
  102. timer->time = qemu_get_clock_ns(vm_clock);
  103. }
  104. static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
  105. {
  106. int64_t expires;
  107. if (timer->enable && timer->st && timer->rate) {
  108. timer->val = timer->reset_val; /* Should skip this on clk enable */
  109. expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
  110. get_ticks_per_sec(), timer->rate);
  111. /* If timer expiry would be sooner than in about 1 ms and
  112. * auto-reload isn't set, then fire immediately. This is a hack
  113. * to make systems like PalmOS run in acceptable time. PalmOS
  114. * sets the interval to a very low value and polls the status bit
  115. * in a busy loop when it wants to sleep just a couple of CPU
  116. * ticks. */
  117. if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
  118. qemu_mod_timer(timer->timer, timer->time + expires);
  119. else
  120. qemu_bh_schedule(timer->tick);
  121. } else
  122. qemu_del_timer(timer->timer);
  123. }
  124. static void omap_timer_fire(void *opaque)
  125. {
  126. struct omap_mpu_timer_s *timer = opaque;
  127. if (!timer->ar) {
  128. timer->val = 0;
  129. timer->st = 0;
  130. }
  131. if (timer->it_ena)
  132. /* Edge-triggered irq */
  133. qemu_irq_pulse(timer->irq);
  134. }
  135. static void omap_timer_tick(void *opaque)
  136. {
  137. struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
  138. omap_timer_sync(timer);
  139. omap_timer_fire(timer);
  140. omap_timer_update(timer);
  141. }
  142. static void omap_timer_clk_update(void *opaque, int line, int on)
  143. {
  144. struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
  145. omap_timer_sync(timer);
  146. timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
  147. omap_timer_update(timer);
  148. }
  149. static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
  150. {
  151. omap_clk_adduser(timer->clk,
  152. qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
  153. timer->rate = omap_clk_getrate(timer->clk);
  154. }
  155. static uint64_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr,
  156. unsigned size)
  157. {
  158. struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
  159. if (size != 4) {
  160. return omap_badwidth_read32(opaque, addr);
  161. }
  162. switch (addr) {
  163. case 0x00: /* CNTL_TIMER */
  164. return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
  165. case 0x04: /* LOAD_TIM */
  166. break;
  167. case 0x08: /* READ_TIM */
  168. return omap_timer_read(s);
  169. }
  170. OMAP_BAD_REG(addr);
  171. return 0;
  172. }
  173. static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
  174. uint64_t value, unsigned size)
  175. {
  176. struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
  177. if (size != 4) {
  178. return omap_badwidth_write32(opaque, addr, value);
  179. }
  180. switch (addr) {
  181. case 0x00: /* CNTL_TIMER */
  182. omap_timer_sync(s);
  183. s->enable = (value >> 5) & 1;
  184. s->ptv = (value >> 2) & 7;
  185. s->ar = (value >> 1) & 1;
  186. s->st = value & 1;
  187. omap_timer_update(s);
  188. return;
  189. case 0x04: /* LOAD_TIM */
  190. s->reset_val = value;
  191. return;
  192. case 0x08: /* READ_TIM */
  193. OMAP_RO_REG(addr);
  194. break;
  195. default:
  196. OMAP_BAD_REG(addr);
  197. }
  198. }
  199. static const MemoryRegionOps omap_mpu_timer_ops = {
  200. .read = omap_mpu_timer_read,
  201. .write = omap_mpu_timer_write,
  202. .endianness = DEVICE_LITTLE_ENDIAN,
  203. };
  204. static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
  205. {
  206. qemu_del_timer(s->timer);
  207. s->enable = 0;
  208. s->reset_val = 31337;
  209. s->val = 0;
  210. s->ptv = 0;
  211. s->ar = 0;
  212. s->st = 0;
  213. s->it_ena = 1;
  214. }
  215. static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
  216. target_phys_addr_t base,
  217. qemu_irq irq, omap_clk clk)
  218. {
  219. struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
  220. g_malloc0(sizeof(struct omap_mpu_timer_s));
  221. s->irq = irq;
  222. s->clk = clk;
  223. s->timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, s);
  224. s->tick = qemu_bh_new(omap_timer_fire, s);
  225. omap_mpu_timer_reset(s);
  226. omap_timer_clk_setup(s);
  227. memory_region_init_io(&s->iomem, &omap_mpu_timer_ops, s,
  228. "omap-mpu-timer", 0x100);
  229. memory_region_add_subregion(system_memory, base, &s->iomem);
  230. return s;
  231. }
  232. /* Watchdog timer */
  233. struct omap_watchdog_timer_s {
  234. struct omap_mpu_timer_s timer;
  235. MemoryRegion iomem;
  236. uint8_t last_wr;
  237. int mode;
  238. int free;
  239. int reset;
  240. };
  241. static uint64_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr,
  242. unsigned size)
  243. {
  244. struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
  245. if (size != 2) {
  246. return omap_badwidth_read16(opaque, addr);
  247. }
  248. switch (addr) {
  249. case 0x00: /* CNTL_TIMER */
  250. return (s->timer.ptv << 9) | (s->timer.ar << 8) |
  251. (s->timer.st << 7) | (s->free << 1);
  252. case 0x04: /* READ_TIMER */
  253. return omap_timer_read(&s->timer);
  254. case 0x08: /* TIMER_MODE */
  255. return s->mode << 15;
  256. }
  257. OMAP_BAD_REG(addr);
  258. return 0;
  259. }
  260. static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
  261. uint64_t value, unsigned size)
  262. {
  263. struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
  264. if (size != 2) {
  265. return omap_badwidth_write16(opaque, addr, value);
  266. }
  267. switch (addr) {
  268. case 0x00: /* CNTL_TIMER */
  269. omap_timer_sync(&s->timer);
  270. s->timer.ptv = (value >> 9) & 7;
  271. s->timer.ar = (value >> 8) & 1;
  272. s->timer.st = (value >> 7) & 1;
  273. s->free = (value >> 1) & 1;
  274. omap_timer_update(&s->timer);
  275. break;
  276. case 0x04: /* LOAD_TIMER */
  277. s->timer.reset_val = value & 0xffff;
  278. break;
  279. case 0x08: /* TIMER_MODE */
  280. if (!s->mode && ((value >> 15) & 1))
  281. omap_clk_get(s->timer.clk);
  282. s->mode |= (value >> 15) & 1;
  283. if (s->last_wr == 0xf5) {
  284. if ((value & 0xff) == 0xa0) {
  285. if (s->mode) {
  286. s->mode = 0;
  287. omap_clk_put(s->timer.clk);
  288. }
  289. } else {
  290. /* XXX: on T|E hardware somehow this has no effect,
  291. * on Zire 71 it works as specified. */
  292. s->reset = 1;
  293. qemu_system_reset_request();
  294. }
  295. }
  296. s->last_wr = value & 0xff;
  297. break;
  298. default:
  299. OMAP_BAD_REG(addr);
  300. }
  301. }
  302. static const MemoryRegionOps omap_wd_timer_ops = {
  303. .read = omap_wd_timer_read,
  304. .write = omap_wd_timer_write,
  305. .endianness = DEVICE_NATIVE_ENDIAN,
  306. };
  307. static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
  308. {
  309. qemu_del_timer(s->timer.timer);
  310. if (!s->mode)
  311. omap_clk_get(s->timer.clk);
  312. s->mode = 1;
  313. s->free = 1;
  314. s->reset = 0;
  315. s->timer.enable = 1;
  316. s->timer.it_ena = 1;
  317. s->timer.reset_val = 0xffff;
  318. s->timer.val = 0;
  319. s->timer.st = 0;
  320. s->timer.ptv = 0;
  321. s->timer.ar = 0;
  322. omap_timer_update(&s->timer);
  323. }
  324. static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
  325. target_phys_addr_t base,
  326. qemu_irq irq, omap_clk clk)
  327. {
  328. struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
  329. g_malloc0(sizeof(struct omap_watchdog_timer_s));
  330. s->timer.irq = irq;
  331. s->timer.clk = clk;
  332. s->timer.timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, &s->timer);
  333. omap_wd_timer_reset(s);
  334. omap_timer_clk_setup(&s->timer);
  335. memory_region_init_io(&s->iomem, &omap_wd_timer_ops, s,
  336. "omap-wd-timer", 0x100);
  337. memory_region_add_subregion(memory, base, &s->iomem);
  338. return s;
  339. }
  340. /* 32-kHz timer */
  341. struct omap_32khz_timer_s {
  342. struct omap_mpu_timer_s timer;
  343. MemoryRegion iomem;
  344. };
  345. static uint64_t omap_os_timer_read(void *opaque, target_phys_addr_t addr,
  346. unsigned size)
  347. {
  348. struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
  349. int offset = addr & OMAP_MPUI_REG_MASK;
  350. if (size != 4) {
  351. return omap_badwidth_read32(opaque, addr);
  352. }
  353. switch (offset) {
  354. case 0x00: /* TVR */
  355. return s->timer.reset_val;
  356. case 0x04: /* TCR */
  357. return omap_timer_read(&s->timer);
  358. case 0x08: /* CR */
  359. return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
  360. default:
  361. break;
  362. }
  363. OMAP_BAD_REG(addr);
  364. return 0;
  365. }
  366. static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
  367. uint64_t value, unsigned size)
  368. {
  369. struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
  370. int offset = addr & OMAP_MPUI_REG_MASK;
  371. if (size != 4) {
  372. return omap_badwidth_write32(opaque, addr, value);
  373. }
  374. switch (offset) {
  375. case 0x00: /* TVR */
  376. s->timer.reset_val = value & 0x00ffffff;
  377. break;
  378. case 0x04: /* TCR */
  379. OMAP_RO_REG(addr);
  380. break;
  381. case 0x08: /* CR */
  382. s->timer.ar = (value >> 3) & 1;
  383. s->timer.it_ena = (value >> 2) & 1;
  384. if (s->timer.st != (value & 1) || (value & 2)) {
  385. omap_timer_sync(&s->timer);
  386. s->timer.enable = value & 1;
  387. s->timer.st = value & 1;
  388. omap_timer_update(&s->timer);
  389. }
  390. break;
  391. default:
  392. OMAP_BAD_REG(addr);
  393. }
  394. }
  395. static const MemoryRegionOps omap_os_timer_ops = {
  396. .read = omap_os_timer_read,
  397. .write = omap_os_timer_write,
  398. .endianness = DEVICE_NATIVE_ENDIAN,
  399. };
  400. static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
  401. {
  402. qemu_del_timer(s->timer.timer);
  403. s->timer.enable = 0;
  404. s->timer.it_ena = 0;
  405. s->timer.reset_val = 0x00ffffff;
  406. s->timer.val = 0;
  407. s->timer.st = 0;
  408. s->timer.ptv = 0;
  409. s->timer.ar = 1;
  410. }
  411. static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
  412. target_phys_addr_t base,
  413. qemu_irq irq, omap_clk clk)
  414. {
  415. struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
  416. g_malloc0(sizeof(struct omap_32khz_timer_s));
  417. s->timer.irq = irq;
  418. s->timer.clk = clk;
  419. s->timer.timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, &s->timer);
  420. omap_os_timer_reset(s);
  421. omap_timer_clk_setup(&s->timer);
  422. memory_region_init_io(&s->iomem, &omap_os_timer_ops, s,
  423. "omap-os-timer", 0x800);
  424. memory_region_add_subregion(memory, base, &s->iomem);
  425. return s;
  426. }
  427. /* Ultra Low-Power Device Module */
  428. static uint64_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr,
  429. unsigned size)
  430. {
  431. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  432. uint16_t ret;
  433. if (size != 2) {
  434. return omap_badwidth_read16(opaque, addr);
  435. }
  436. switch (addr) {
  437. case 0x14: /* IT_STATUS */
  438. ret = s->ulpd_pm_regs[addr >> 2];
  439. s->ulpd_pm_regs[addr >> 2] = 0;
  440. qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
  441. return ret;
  442. case 0x18: /* Reserved */
  443. case 0x1c: /* Reserved */
  444. case 0x20: /* Reserved */
  445. case 0x28: /* Reserved */
  446. case 0x2c: /* Reserved */
  447. OMAP_BAD_REG(addr);
  448. case 0x00: /* COUNTER_32_LSB */
  449. case 0x04: /* COUNTER_32_MSB */
  450. case 0x08: /* COUNTER_HIGH_FREQ_LSB */
  451. case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
  452. case 0x10: /* GAUGING_CTRL */
  453. case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
  454. case 0x30: /* CLOCK_CTRL */
  455. case 0x34: /* SOFT_REQ */
  456. case 0x38: /* COUNTER_32_FIQ */
  457. case 0x3c: /* DPLL_CTRL */
  458. case 0x40: /* STATUS_REQ */
  459. /* XXX: check clk::usecount state for every clock */
  460. case 0x48: /* LOCL_TIME */
  461. case 0x4c: /* APLL_CTRL */
  462. case 0x50: /* POWER_CTRL */
  463. return s->ulpd_pm_regs[addr >> 2];
  464. }
  465. OMAP_BAD_REG(addr);
  466. return 0;
  467. }
  468. static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
  469. uint16_t diff, uint16_t value)
  470. {
  471. if (diff & (1 << 4)) /* USB_MCLK_EN */
  472. omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
  473. if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
  474. omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
  475. }
  476. static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
  477. uint16_t diff, uint16_t value)
  478. {
  479. if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
  480. omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
  481. if (diff & (1 << 1)) /* SOFT_COM_REQ */
  482. omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
  483. if (diff & (1 << 2)) /* SOFT_SDW_REQ */
  484. omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
  485. if (diff & (1 << 3)) /* SOFT_USB_REQ */
  486. omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
  487. }
  488. static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
  489. uint64_t value, unsigned size)
  490. {
  491. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  492. int64_t now, ticks;
  493. int div, mult;
  494. static const int bypass_div[4] = { 1, 2, 4, 4 };
  495. uint16_t diff;
  496. if (size != 2) {
  497. return omap_badwidth_write16(opaque, addr, value);
  498. }
  499. switch (addr) {
  500. case 0x00: /* COUNTER_32_LSB */
  501. case 0x04: /* COUNTER_32_MSB */
  502. case 0x08: /* COUNTER_HIGH_FREQ_LSB */
  503. case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
  504. case 0x14: /* IT_STATUS */
  505. case 0x40: /* STATUS_REQ */
  506. OMAP_RO_REG(addr);
  507. break;
  508. case 0x10: /* GAUGING_CTRL */
  509. /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
  510. if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
  511. now = qemu_get_clock_ns(vm_clock);
  512. if (value & 1)
  513. s->ulpd_gauge_start = now;
  514. else {
  515. now -= s->ulpd_gauge_start;
  516. /* 32-kHz ticks */
  517. ticks = muldiv64(now, 32768, get_ticks_per_sec());
  518. s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
  519. s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
  520. if (ticks >> 32) /* OVERFLOW_32K */
  521. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
  522. /* High frequency ticks */
  523. ticks = muldiv64(now, 12000000, get_ticks_per_sec());
  524. s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
  525. s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
  526. if (ticks >> 32) /* OVERFLOW_HI_FREQ */
  527. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
  528. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
  529. qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
  530. }
  531. }
  532. s->ulpd_pm_regs[addr >> 2] = value;
  533. break;
  534. case 0x18: /* Reserved */
  535. case 0x1c: /* Reserved */
  536. case 0x20: /* Reserved */
  537. case 0x28: /* Reserved */
  538. case 0x2c: /* Reserved */
  539. OMAP_BAD_REG(addr);
  540. case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
  541. case 0x38: /* COUNTER_32_FIQ */
  542. case 0x48: /* LOCL_TIME */
  543. case 0x50: /* POWER_CTRL */
  544. s->ulpd_pm_regs[addr >> 2] = value;
  545. break;
  546. case 0x30: /* CLOCK_CTRL */
  547. diff = s->ulpd_pm_regs[addr >> 2] ^ value;
  548. s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
  549. omap_ulpd_clk_update(s, diff, value);
  550. break;
  551. case 0x34: /* SOFT_REQ */
  552. diff = s->ulpd_pm_regs[addr >> 2] ^ value;
  553. s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
  554. omap_ulpd_req_update(s, diff, value);
  555. break;
  556. case 0x3c: /* DPLL_CTRL */
  557. /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
  558. * omitted altogether, probably a typo. */
  559. /* This register has identical semantics with DPLL(1:3) control
  560. * registers, see omap_dpll_write() */
  561. diff = s->ulpd_pm_regs[addr >> 2] & value;
  562. s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
  563. if (diff & (0x3ff << 2)) {
  564. if (value & (1 << 4)) { /* PLL_ENABLE */
  565. div = ((value >> 5) & 3) + 1; /* PLL_DIV */
  566. mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
  567. } else {
  568. div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
  569. mult = 1;
  570. }
  571. omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
  572. }
  573. /* Enter the desired mode. */
  574. s->ulpd_pm_regs[addr >> 2] =
  575. (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
  576. ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
  577. /* Act as if the lock is restored. */
  578. s->ulpd_pm_regs[addr >> 2] |= 2;
  579. break;
  580. case 0x4c: /* APLL_CTRL */
  581. diff = s->ulpd_pm_regs[addr >> 2] & value;
  582. s->ulpd_pm_regs[addr >> 2] = value & 0xf;
  583. if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
  584. omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
  585. (value & (1 << 0)) ? "apll" : "dpll4"));
  586. break;
  587. default:
  588. OMAP_BAD_REG(addr);
  589. }
  590. }
  591. static const MemoryRegionOps omap_ulpd_pm_ops = {
  592. .read = omap_ulpd_pm_read,
  593. .write = omap_ulpd_pm_write,
  594. .endianness = DEVICE_NATIVE_ENDIAN,
  595. };
  596. static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
  597. {
  598. mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
  599. mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
  600. mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
  601. mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
  602. mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
  603. mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
  604. mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
  605. mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
  606. mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
  607. mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
  608. mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
  609. omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
  610. mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
  611. omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
  612. mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
  613. mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
  614. mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
  615. mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
  616. mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
  617. mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
  618. mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
  619. omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
  620. omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
  621. }
  622. static void omap_ulpd_pm_init(MemoryRegion *system_memory,
  623. target_phys_addr_t base,
  624. struct omap_mpu_state_s *mpu)
  625. {
  626. memory_region_init_io(&mpu->ulpd_pm_iomem, &omap_ulpd_pm_ops, mpu,
  627. "omap-ulpd-pm", 0x800);
  628. memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
  629. omap_ulpd_pm_reset(mpu);
  630. }
  631. /* OMAP Pin Configuration */
  632. static uint64_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr,
  633. unsigned size)
  634. {
  635. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  636. if (size != 4) {
  637. return omap_badwidth_read32(opaque, addr);
  638. }
  639. switch (addr) {
  640. case 0x00: /* FUNC_MUX_CTRL_0 */
  641. case 0x04: /* FUNC_MUX_CTRL_1 */
  642. case 0x08: /* FUNC_MUX_CTRL_2 */
  643. return s->func_mux_ctrl[addr >> 2];
  644. case 0x0c: /* COMP_MODE_CTRL_0 */
  645. return s->comp_mode_ctrl[0];
  646. case 0x10: /* FUNC_MUX_CTRL_3 */
  647. case 0x14: /* FUNC_MUX_CTRL_4 */
  648. case 0x18: /* FUNC_MUX_CTRL_5 */
  649. case 0x1c: /* FUNC_MUX_CTRL_6 */
  650. case 0x20: /* FUNC_MUX_CTRL_7 */
  651. case 0x24: /* FUNC_MUX_CTRL_8 */
  652. case 0x28: /* FUNC_MUX_CTRL_9 */
  653. case 0x2c: /* FUNC_MUX_CTRL_A */
  654. case 0x30: /* FUNC_MUX_CTRL_B */
  655. case 0x34: /* FUNC_MUX_CTRL_C */
  656. case 0x38: /* FUNC_MUX_CTRL_D */
  657. return s->func_mux_ctrl[(addr >> 2) - 1];
  658. case 0x40: /* PULL_DWN_CTRL_0 */
  659. case 0x44: /* PULL_DWN_CTRL_1 */
  660. case 0x48: /* PULL_DWN_CTRL_2 */
  661. case 0x4c: /* PULL_DWN_CTRL_3 */
  662. return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
  663. case 0x50: /* GATE_INH_CTRL_0 */
  664. return s->gate_inh_ctrl[0];
  665. case 0x60: /* VOLTAGE_CTRL_0 */
  666. return s->voltage_ctrl[0];
  667. case 0x70: /* TEST_DBG_CTRL_0 */
  668. return s->test_dbg_ctrl[0];
  669. case 0x80: /* MOD_CONF_CTRL_0 */
  670. return s->mod_conf_ctrl[0];
  671. }
  672. OMAP_BAD_REG(addr);
  673. return 0;
  674. }
  675. static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
  676. uint32_t diff, uint32_t value)
  677. {
  678. if (s->compat1509) {
  679. if (diff & (1 << 9)) /* BLUETOOTH */
  680. omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
  681. (~value >> 9) & 1);
  682. if (diff & (1 << 7)) /* USB.CLKO */
  683. omap_clk_onoff(omap_findclk(s, "usb.clko"),
  684. (value >> 7) & 1);
  685. }
  686. }
  687. static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
  688. uint32_t diff, uint32_t value)
  689. {
  690. if (s->compat1509) {
  691. if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
  692. omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
  693. (value >> 31) & 1);
  694. if (diff & (1 << 1)) /* CLK32K */
  695. omap_clk_onoff(omap_findclk(s, "clk32k_out"),
  696. (~value >> 1) & 1);
  697. }
  698. }
  699. static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
  700. uint32_t diff, uint32_t value)
  701. {
  702. if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
  703. omap_clk_reparent(omap_findclk(s, "uart3_ck"),
  704. omap_findclk(s, ((value >> 31) & 1) ?
  705. "ck_48m" : "armper_ck"));
  706. if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
  707. omap_clk_reparent(omap_findclk(s, "uart2_ck"),
  708. omap_findclk(s, ((value >> 30) & 1) ?
  709. "ck_48m" : "armper_ck"));
  710. if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
  711. omap_clk_reparent(omap_findclk(s, "uart1_ck"),
  712. omap_findclk(s, ((value >> 29) & 1) ?
  713. "ck_48m" : "armper_ck"));
  714. if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
  715. omap_clk_reparent(omap_findclk(s, "mmc_ck"),
  716. omap_findclk(s, ((value >> 23) & 1) ?
  717. "ck_48m" : "armper_ck"));
  718. if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
  719. omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
  720. omap_findclk(s, ((value >> 12) & 1) ?
  721. "ck_48m" : "armper_ck"));
  722. if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
  723. omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
  724. }
  725. static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
  726. uint64_t value, unsigned size)
  727. {
  728. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  729. uint32_t diff;
  730. if (size != 4) {
  731. return omap_badwidth_write32(opaque, addr, value);
  732. }
  733. switch (addr) {
  734. case 0x00: /* FUNC_MUX_CTRL_0 */
  735. diff = s->func_mux_ctrl[addr >> 2] ^ value;
  736. s->func_mux_ctrl[addr >> 2] = value;
  737. omap_pin_funcmux0_update(s, diff, value);
  738. return;
  739. case 0x04: /* FUNC_MUX_CTRL_1 */
  740. diff = s->func_mux_ctrl[addr >> 2] ^ value;
  741. s->func_mux_ctrl[addr >> 2] = value;
  742. omap_pin_funcmux1_update(s, diff, value);
  743. return;
  744. case 0x08: /* FUNC_MUX_CTRL_2 */
  745. s->func_mux_ctrl[addr >> 2] = value;
  746. return;
  747. case 0x0c: /* COMP_MODE_CTRL_0 */
  748. s->comp_mode_ctrl[0] = value;
  749. s->compat1509 = (value != 0x0000eaef);
  750. omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
  751. omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
  752. return;
  753. case 0x10: /* FUNC_MUX_CTRL_3 */
  754. case 0x14: /* FUNC_MUX_CTRL_4 */
  755. case 0x18: /* FUNC_MUX_CTRL_5 */
  756. case 0x1c: /* FUNC_MUX_CTRL_6 */
  757. case 0x20: /* FUNC_MUX_CTRL_7 */
  758. case 0x24: /* FUNC_MUX_CTRL_8 */
  759. case 0x28: /* FUNC_MUX_CTRL_9 */
  760. case 0x2c: /* FUNC_MUX_CTRL_A */
  761. case 0x30: /* FUNC_MUX_CTRL_B */
  762. case 0x34: /* FUNC_MUX_CTRL_C */
  763. case 0x38: /* FUNC_MUX_CTRL_D */
  764. s->func_mux_ctrl[(addr >> 2) - 1] = value;
  765. return;
  766. case 0x40: /* PULL_DWN_CTRL_0 */
  767. case 0x44: /* PULL_DWN_CTRL_1 */
  768. case 0x48: /* PULL_DWN_CTRL_2 */
  769. case 0x4c: /* PULL_DWN_CTRL_3 */
  770. s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
  771. return;
  772. case 0x50: /* GATE_INH_CTRL_0 */
  773. s->gate_inh_ctrl[0] = value;
  774. return;
  775. case 0x60: /* VOLTAGE_CTRL_0 */
  776. s->voltage_ctrl[0] = value;
  777. return;
  778. case 0x70: /* TEST_DBG_CTRL_0 */
  779. s->test_dbg_ctrl[0] = value;
  780. return;
  781. case 0x80: /* MOD_CONF_CTRL_0 */
  782. diff = s->mod_conf_ctrl[0] ^ value;
  783. s->mod_conf_ctrl[0] = value;
  784. omap_pin_modconf1_update(s, diff, value);
  785. return;
  786. default:
  787. OMAP_BAD_REG(addr);
  788. }
  789. }
  790. static const MemoryRegionOps omap_pin_cfg_ops = {
  791. .read = omap_pin_cfg_read,
  792. .write = omap_pin_cfg_write,
  793. .endianness = DEVICE_NATIVE_ENDIAN,
  794. };
  795. static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
  796. {
  797. /* Start in Compatibility Mode. */
  798. mpu->compat1509 = 1;
  799. omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
  800. omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
  801. omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
  802. memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
  803. memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
  804. memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
  805. memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
  806. memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
  807. memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
  808. memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
  809. }
  810. static void omap_pin_cfg_init(MemoryRegion *system_memory,
  811. target_phys_addr_t base,
  812. struct omap_mpu_state_s *mpu)
  813. {
  814. memory_region_init_io(&mpu->pin_cfg_iomem, &omap_pin_cfg_ops, mpu,
  815. "omap-pin-cfg", 0x800);
  816. memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
  817. omap_pin_cfg_reset(mpu);
  818. }
  819. /* Device Identification, Die Identification */
  820. static uint64_t omap_id_read(void *opaque, target_phys_addr_t addr,
  821. unsigned size)
  822. {
  823. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  824. if (size != 4) {
  825. return omap_badwidth_read32(opaque, addr);
  826. }
  827. switch (addr) {
  828. case 0xfffe1800: /* DIE_ID_LSB */
  829. return 0xc9581f0e;
  830. case 0xfffe1804: /* DIE_ID_MSB */
  831. return 0xa8858bfa;
  832. case 0xfffe2000: /* PRODUCT_ID_LSB */
  833. return 0x00aaaafc;
  834. case 0xfffe2004: /* PRODUCT_ID_MSB */
  835. return 0xcafeb574;
  836. case 0xfffed400: /* JTAG_ID_LSB */
  837. switch (s->mpu_model) {
  838. case omap310:
  839. return 0x03310315;
  840. case omap1510:
  841. return 0x03310115;
  842. default:
  843. hw_error("%s: bad mpu model\n", __FUNCTION__);
  844. }
  845. break;
  846. case 0xfffed404: /* JTAG_ID_MSB */
  847. switch (s->mpu_model) {
  848. case omap310:
  849. return 0xfb57402f;
  850. case omap1510:
  851. return 0xfb47002f;
  852. default:
  853. hw_error("%s: bad mpu model\n", __FUNCTION__);
  854. }
  855. break;
  856. }
  857. OMAP_BAD_REG(addr);
  858. return 0;
  859. }
  860. static void omap_id_write(void *opaque, target_phys_addr_t addr,
  861. uint64_t value, unsigned size)
  862. {
  863. if (size != 4) {
  864. return omap_badwidth_write32(opaque, addr, value);
  865. }
  866. OMAP_BAD_REG(addr);
  867. }
  868. static const MemoryRegionOps omap_id_ops = {
  869. .read = omap_id_read,
  870. .write = omap_id_write,
  871. .endianness = DEVICE_NATIVE_ENDIAN,
  872. };
  873. static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
  874. {
  875. memory_region_init_io(&mpu->id_iomem, &omap_id_ops, mpu,
  876. "omap-id", 0x100000000ULL);
  877. memory_region_init_alias(&mpu->id_iomem_e18, "omap-id-e18", &mpu->id_iomem,
  878. 0xfffe1800, 0x800);
  879. memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
  880. memory_region_init_alias(&mpu->id_iomem_ed4, "omap-id-ed4", &mpu->id_iomem,
  881. 0xfffed400, 0x100);
  882. memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
  883. if (!cpu_is_omap15xx(mpu)) {
  884. memory_region_init_alias(&mpu->id_iomem_ed4, "omap-id-e20",
  885. &mpu->id_iomem, 0xfffe2000, 0x800);
  886. memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
  887. }
  888. }
  889. /* MPUI Control (Dummy) */
  890. static uint64_t omap_mpui_read(void *opaque, target_phys_addr_t addr,
  891. unsigned size)
  892. {
  893. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  894. if (size != 4) {
  895. return omap_badwidth_read32(opaque, addr);
  896. }
  897. switch (addr) {
  898. case 0x00: /* CTRL */
  899. return s->mpui_ctrl;
  900. case 0x04: /* DEBUG_ADDR */
  901. return 0x01ffffff;
  902. case 0x08: /* DEBUG_DATA */
  903. return 0xffffffff;
  904. case 0x0c: /* DEBUG_FLAG */
  905. return 0x00000800;
  906. case 0x10: /* STATUS */
  907. return 0x00000000;
  908. /* Not in OMAP310 */
  909. case 0x14: /* DSP_STATUS */
  910. case 0x18: /* DSP_BOOT_CONFIG */
  911. return 0x00000000;
  912. case 0x1c: /* DSP_MPUI_CONFIG */
  913. return 0x0000ffff;
  914. }
  915. OMAP_BAD_REG(addr);
  916. return 0;
  917. }
  918. static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
  919. uint64_t value, unsigned size)
  920. {
  921. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  922. if (size != 4) {
  923. return omap_badwidth_write32(opaque, addr, value);
  924. }
  925. switch (addr) {
  926. case 0x00: /* CTRL */
  927. s->mpui_ctrl = value & 0x007fffff;
  928. break;
  929. case 0x04: /* DEBUG_ADDR */
  930. case 0x08: /* DEBUG_DATA */
  931. case 0x0c: /* DEBUG_FLAG */
  932. case 0x10: /* STATUS */
  933. /* Not in OMAP310 */
  934. case 0x14: /* DSP_STATUS */
  935. OMAP_RO_REG(addr);
  936. case 0x18: /* DSP_BOOT_CONFIG */
  937. case 0x1c: /* DSP_MPUI_CONFIG */
  938. break;
  939. default:
  940. OMAP_BAD_REG(addr);
  941. }
  942. }
  943. static const MemoryRegionOps omap_mpui_ops = {
  944. .read = omap_mpui_read,
  945. .write = omap_mpui_write,
  946. .endianness = DEVICE_NATIVE_ENDIAN,
  947. };
  948. static void omap_mpui_reset(struct omap_mpu_state_s *s)
  949. {
  950. s->mpui_ctrl = 0x0003ff1b;
  951. }
  952. static void omap_mpui_init(MemoryRegion *memory, target_phys_addr_t base,
  953. struct omap_mpu_state_s *mpu)
  954. {
  955. memory_region_init_io(&mpu->mpui_iomem, &omap_mpui_ops, mpu,
  956. "omap-mpui", 0x100);
  957. memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
  958. omap_mpui_reset(mpu);
  959. }
  960. /* TIPB Bridges */
  961. struct omap_tipb_bridge_s {
  962. qemu_irq abort;
  963. MemoryRegion iomem;
  964. int width_intr;
  965. uint16_t control;
  966. uint16_t alloc;
  967. uint16_t buffer;
  968. uint16_t enh_control;
  969. };
  970. static uint64_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr,
  971. unsigned size)
  972. {
  973. struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
  974. if (size < 2) {
  975. return omap_badwidth_read16(opaque, addr);
  976. }
  977. switch (addr) {
  978. case 0x00: /* TIPB_CNTL */
  979. return s->control;
  980. case 0x04: /* TIPB_BUS_ALLOC */
  981. return s->alloc;
  982. case 0x08: /* MPU_TIPB_CNTL */
  983. return s->buffer;
  984. case 0x0c: /* ENHANCED_TIPB_CNTL */
  985. return s->enh_control;
  986. case 0x10: /* ADDRESS_DBG */
  987. case 0x14: /* DATA_DEBUG_LOW */
  988. case 0x18: /* DATA_DEBUG_HIGH */
  989. return 0xffff;
  990. case 0x1c: /* DEBUG_CNTR_SIG */
  991. return 0x00f8;
  992. }
  993. OMAP_BAD_REG(addr);
  994. return 0;
  995. }
  996. static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
  997. uint64_t value, unsigned size)
  998. {
  999. struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
  1000. if (size < 2) {
  1001. return omap_badwidth_write16(opaque, addr, value);
  1002. }
  1003. switch (addr) {
  1004. case 0x00: /* TIPB_CNTL */
  1005. s->control = value & 0xffff;
  1006. break;
  1007. case 0x04: /* TIPB_BUS_ALLOC */
  1008. s->alloc = value & 0x003f;
  1009. break;
  1010. case 0x08: /* MPU_TIPB_CNTL */
  1011. s->buffer = value & 0x0003;
  1012. break;
  1013. case 0x0c: /* ENHANCED_TIPB_CNTL */
  1014. s->width_intr = !(value & 2);
  1015. s->enh_control = value & 0x000f;
  1016. break;
  1017. case 0x10: /* ADDRESS_DBG */
  1018. case 0x14: /* DATA_DEBUG_LOW */
  1019. case 0x18: /* DATA_DEBUG_HIGH */
  1020. case 0x1c: /* DEBUG_CNTR_SIG */
  1021. OMAP_RO_REG(addr);
  1022. break;
  1023. default:
  1024. OMAP_BAD_REG(addr);
  1025. }
  1026. }
  1027. static const MemoryRegionOps omap_tipb_bridge_ops = {
  1028. .read = omap_tipb_bridge_read,
  1029. .write = omap_tipb_bridge_write,
  1030. .endianness = DEVICE_NATIVE_ENDIAN,
  1031. };
  1032. static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
  1033. {
  1034. s->control = 0xffff;
  1035. s->alloc = 0x0009;
  1036. s->buffer = 0x0000;
  1037. s->enh_control = 0x000f;
  1038. }
  1039. static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
  1040. MemoryRegion *memory, target_phys_addr_t base,
  1041. qemu_irq abort_irq, omap_clk clk)
  1042. {
  1043. struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
  1044. g_malloc0(sizeof(struct omap_tipb_bridge_s));
  1045. s->abort = abort_irq;
  1046. omap_tipb_bridge_reset(s);
  1047. memory_region_init_io(&s->iomem, &omap_tipb_bridge_ops, s,
  1048. "omap-tipb-bridge", 0x100);
  1049. memory_region_add_subregion(memory, base, &s->iomem);
  1050. return s;
  1051. }
  1052. /* Dummy Traffic Controller's Memory Interface */
  1053. static uint64_t omap_tcmi_read(void *opaque, target_phys_addr_t addr,
  1054. unsigned size)
  1055. {
  1056. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1057. uint32_t ret;
  1058. if (size != 4) {
  1059. return omap_badwidth_read32(opaque, addr);
  1060. }
  1061. switch (addr) {
  1062. case 0x00: /* IMIF_PRIO */
  1063. case 0x04: /* EMIFS_PRIO */
  1064. case 0x08: /* EMIFF_PRIO */
  1065. case 0x0c: /* EMIFS_CONFIG */
  1066. case 0x10: /* EMIFS_CS0_CONFIG */
  1067. case 0x14: /* EMIFS_CS1_CONFIG */
  1068. case 0x18: /* EMIFS_CS2_CONFIG */
  1069. case 0x1c: /* EMIFS_CS3_CONFIG */
  1070. case 0x24: /* EMIFF_MRS */
  1071. case 0x28: /* TIMEOUT1 */
  1072. case 0x2c: /* TIMEOUT2 */
  1073. case 0x30: /* TIMEOUT3 */
  1074. case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
  1075. case 0x40: /* EMIFS_CFG_DYN_WAIT */
  1076. return s->tcmi_regs[addr >> 2];
  1077. case 0x20: /* EMIFF_SDRAM_CONFIG */
  1078. ret = s->tcmi_regs[addr >> 2];
  1079. s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
  1080. /* XXX: We can try using the VGA_DIRTY flag for this */
  1081. return ret;
  1082. }
  1083. OMAP_BAD_REG(addr);
  1084. return 0;
  1085. }
  1086. static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
  1087. uint64_t value, unsigned size)
  1088. {
  1089. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1090. if (size != 4) {
  1091. return omap_badwidth_write32(opaque, addr, value);
  1092. }
  1093. switch (addr) {
  1094. case 0x00: /* IMIF_PRIO */
  1095. case 0x04: /* EMIFS_PRIO */
  1096. case 0x08: /* EMIFF_PRIO */
  1097. case 0x10: /* EMIFS_CS0_CONFIG */
  1098. case 0x14: /* EMIFS_CS1_CONFIG */
  1099. case 0x18: /* EMIFS_CS2_CONFIG */
  1100. case 0x1c: /* EMIFS_CS3_CONFIG */
  1101. case 0x20: /* EMIFF_SDRAM_CONFIG */
  1102. case 0x24: /* EMIFF_MRS */
  1103. case 0x28: /* TIMEOUT1 */
  1104. case 0x2c: /* TIMEOUT2 */
  1105. case 0x30: /* TIMEOUT3 */
  1106. case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
  1107. case 0x40: /* EMIFS_CFG_DYN_WAIT */
  1108. s->tcmi_regs[addr >> 2] = value;
  1109. break;
  1110. case 0x0c: /* EMIFS_CONFIG */
  1111. s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
  1112. break;
  1113. default:
  1114. OMAP_BAD_REG(addr);
  1115. }
  1116. }
  1117. static const MemoryRegionOps omap_tcmi_ops = {
  1118. .read = omap_tcmi_read,
  1119. .write = omap_tcmi_write,
  1120. .endianness = DEVICE_NATIVE_ENDIAN,
  1121. };
  1122. static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
  1123. {
  1124. mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
  1125. mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
  1126. mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
  1127. mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
  1128. mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
  1129. mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
  1130. mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
  1131. mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
  1132. mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
  1133. mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
  1134. mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
  1135. mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
  1136. mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
  1137. mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
  1138. mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
  1139. }
  1140. static void omap_tcmi_init(MemoryRegion *memory, target_phys_addr_t base,
  1141. struct omap_mpu_state_s *mpu)
  1142. {
  1143. memory_region_init_io(&mpu->tcmi_iomem, &omap_tcmi_ops, mpu,
  1144. "omap-tcmi", 0x100);
  1145. memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
  1146. omap_tcmi_reset(mpu);
  1147. }
  1148. /* Digital phase-locked loops control */
  1149. static uint64_t omap_dpll_read(void *opaque, target_phys_addr_t addr,
  1150. unsigned size)
  1151. {
  1152. struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
  1153. if (size != 2) {
  1154. return omap_badwidth_read16(opaque, addr);
  1155. }
  1156. if (addr == 0x00) /* CTL_REG */
  1157. return s->mode;
  1158. OMAP_BAD_REG(addr);
  1159. return 0;
  1160. }
  1161. static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
  1162. uint64_t value, unsigned size)
  1163. {
  1164. struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
  1165. uint16_t diff;
  1166. static const int bypass_div[4] = { 1, 2, 4, 4 };
  1167. int div, mult;
  1168. if (size != 2) {
  1169. return omap_badwidth_write16(opaque, addr, value);
  1170. }
  1171. if (addr == 0x00) { /* CTL_REG */
  1172. /* See omap_ulpd_pm_write() too */
  1173. diff = s->mode & value;
  1174. s->mode = value & 0x2fff;
  1175. if (diff & (0x3ff << 2)) {
  1176. if (value & (1 << 4)) { /* PLL_ENABLE */
  1177. div = ((value >> 5) & 3) + 1; /* PLL_DIV */
  1178. mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
  1179. } else {
  1180. div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
  1181. mult = 1;
  1182. }
  1183. omap_clk_setrate(s->dpll, div, mult);
  1184. }
  1185. /* Enter the desired mode. */
  1186. s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
  1187. /* Act as if the lock is restored. */
  1188. s->mode |= 2;
  1189. } else {
  1190. OMAP_BAD_REG(addr);
  1191. }
  1192. }
  1193. static const MemoryRegionOps omap_dpll_ops = {
  1194. .read = omap_dpll_read,
  1195. .write = omap_dpll_write,
  1196. .endianness = DEVICE_NATIVE_ENDIAN,
  1197. };
  1198. static void omap_dpll_reset(struct dpll_ctl_s *s)
  1199. {
  1200. s->mode = 0x2002;
  1201. omap_clk_setrate(s->dpll, 1, 1);
  1202. }
  1203. static void omap_dpll_init(MemoryRegion *memory, struct dpll_ctl_s *s,
  1204. target_phys_addr_t base, omap_clk clk)
  1205. {
  1206. memory_region_init_io(&s->iomem, &omap_dpll_ops, s, "omap-dpll", 0x100);
  1207. s->dpll = clk;
  1208. omap_dpll_reset(s);
  1209. memory_region_add_subregion(memory, base, &s->iomem);
  1210. }
  1211. /* MPU Clock/Reset/Power Mode Control */
  1212. static uint64_t omap_clkm_read(void *opaque, target_phys_addr_t addr,
  1213. unsigned size)
  1214. {
  1215. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1216. if (size != 2) {
  1217. return omap_badwidth_read16(opaque, addr);
  1218. }
  1219. switch (addr) {
  1220. case 0x00: /* ARM_CKCTL */
  1221. return s->clkm.arm_ckctl;
  1222. case 0x04: /* ARM_IDLECT1 */
  1223. return s->clkm.arm_idlect1;
  1224. case 0x08: /* ARM_IDLECT2 */
  1225. return s->clkm.arm_idlect2;
  1226. case 0x0c: /* ARM_EWUPCT */
  1227. return s->clkm.arm_ewupct;
  1228. case 0x10: /* ARM_RSTCT1 */
  1229. return s->clkm.arm_rstct1;
  1230. case 0x14: /* ARM_RSTCT2 */
  1231. return s->clkm.arm_rstct2;
  1232. case 0x18: /* ARM_SYSST */
  1233. return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
  1234. case 0x1c: /* ARM_CKOUT1 */
  1235. return s->clkm.arm_ckout1;
  1236. case 0x20: /* ARM_CKOUT2 */
  1237. break;
  1238. }
  1239. OMAP_BAD_REG(addr);
  1240. return 0;
  1241. }
  1242. static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
  1243. uint16_t diff, uint16_t value)
  1244. {
  1245. omap_clk clk;
  1246. if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
  1247. if (value & (1 << 14))
  1248. /* Reserved */;
  1249. else {
  1250. clk = omap_findclk(s, "arminth_ck");
  1251. omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
  1252. }
  1253. }
  1254. if (diff & (1 << 12)) { /* ARM_TIMXO */
  1255. clk = omap_findclk(s, "armtim_ck");
  1256. if (value & (1 << 12))
  1257. omap_clk_reparent(clk, omap_findclk(s, "clkin"));
  1258. else
  1259. omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
  1260. }
  1261. /* XXX: en_dspck */
  1262. if (diff & (3 << 10)) { /* DSPMMUDIV */
  1263. clk = omap_findclk(s, "dspmmu_ck");
  1264. omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
  1265. }
  1266. if (diff & (3 << 8)) { /* TCDIV */
  1267. clk = omap_findclk(s, "tc_ck");
  1268. omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
  1269. }
  1270. if (diff & (3 << 6)) { /* DSPDIV */
  1271. clk = omap_findclk(s, "dsp_ck");
  1272. omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
  1273. }
  1274. if (diff & (3 << 4)) { /* ARMDIV */
  1275. clk = omap_findclk(s, "arm_ck");
  1276. omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
  1277. }
  1278. if (diff & (3 << 2)) { /* LCDDIV */
  1279. clk = omap_findclk(s, "lcd_ck");
  1280. omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
  1281. }
  1282. if (diff & (3 << 0)) { /* PERDIV */
  1283. clk = omap_findclk(s, "armper_ck");
  1284. omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
  1285. }
  1286. }
  1287. static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
  1288. uint16_t diff, uint16_t value)
  1289. {
  1290. omap_clk clk;
  1291. if (value & (1 << 11)) /* SETARM_IDLE */
  1292. cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
  1293. if (!(value & (1 << 10))) /* WKUP_MODE */
  1294. qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
  1295. #define SET_CANIDLE(clock, bit) \
  1296. if (diff & (1 << bit)) { \
  1297. clk = omap_findclk(s, clock); \
  1298. omap_clk_canidle(clk, (value >> bit) & 1); \
  1299. }
  1300. SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
  1301. SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
  1302. SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
  1303. SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
  1304. SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
  1305. SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
  1306. SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
  1307. SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
  1308. SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
  1309. SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
  1310. SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
  1311. SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
  1312. SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
  1313. SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
  1314. }
  1315. static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
  1316. uint16_t diff, uint16_t value)
  1317. {
  1318. omap_clk clk;
  1319. #define SET_ONOFF(clock, bit) \
  1320. if (diff & (1 << bit)) { \
  1321. clk = omap_findclk(s, clock); \
  1322. omap_clk_onoff(clk, (value >> bit) & 1); \
  1323. }
  1324. SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
  1325. SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
  1326. SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
  1327. SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
  1328. SET_ONOFF("lb_ck", 4) /* EN_LBCK */
  1329. SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
  1330. SET_ONOFF("mpui_ck", 6) /* EN_APICK */
  1331. SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
  1332. SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
  1333. SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
  1334. SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
  1335. }
  1336. static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
  1337. uint16_t diff, uint16_t value)
  1338. {
  1339. omap_clk clk;
  1340. if (diff & (3 << 4)) { /* TCLKOUT */
  1341. clk = omap_findclk(s, "tclk_out");
  1342. switch ((value >> 4) & 3) {
  1343. case 1:
  1344. omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
  1345. omap_clk_onoff(clk, 1);
  1346. break;
  1347. case 2:
  1348. omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
  1349. omap_clk_onoff(clk, 1);
  1350. break;
  1351. default:
  1352. omap_clk_onoff(clk, 0);
  1353. }
  1354. }
  1355. if (diff & (3 << 2)) { /* DCLKOUT */
  1356. clk = omap_findclk(s, "dclk_out");
  1357. switch ((value >> 2) & 3) {
  1358. case 0:
  1359. omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
  1360. break;
  1361. case 1:
  1362. omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
  1363. break;
  1364. case 2:
  1365. omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
  1366. break;
  1367. case 3:
  1368. omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
  1369. break;
  1370. }
  1371. }
  1372. if (diff & (3 << 0)) { /* ACLKOUT */
  1373. clk = omap_findclk(s, "aclk_out");
  1374. switch ((value >> 0) & 3) {
  1375. case 1:
  1376. omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
  1377. omap_clk_onoff(clk, 1);
  1378. break;
  1379. case 2:
  1380. omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
  1381. omap_clk_onoff(clk, 1);
  1382. break;
  1383. case 3:
  1384. omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
  1385. omap_clk_onoff(clk, 1);
  1386. break;
  1387. default:
  1388. omap_clk_onoff(clk, 0);
  1389. }
  1390. }
  1391. }
  1392. static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
  1393. uint64_t value, unsigned size)
  1394. {
  1395. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1396. uint16_t diff;
  1397. omap_clk clk;
  1398. static const char *clkschemename[8] = {
  1399. "fully synchronous", "fully asynchronous", "synchronous scalable",
  1400. "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
  1401. };
  1402. if (size != 2) {
  1403. return omap_badwidth_write16(opaque, addr, value);
  1404. }
  1405. switch (addr) {
  1406. case 0x00: /* ARM_CKCTL */
  1407. diff = s->clkm.arm_ckctl ^ value;
  1408. s->clkm.arm_ckctl = value & 0x7fff;
  1409. omap_clkm_ckctl_update(s, diff, value);
  1410. return;
  1411. case 0x04: /* ARM_IDLECT1 */
  1412. diff = s->clkm.arm_idlect1 ^ value;
  1413. s->clkm.arm_idlect1 = value & 0x0fff;
  1414. omap_clkm_idlect1_update(s, diff, value);
  1415. return;
  1416. case 0x08: /* ARM_IDLECT2 */
  1417. diff = s->clkm.arm_idlect2 ^ value;
  1418. s->clkm.arm_idlect2 = value & 0x07ff;
  1419. omap_clkm_idlect2_update(s, diff, value);
  1420. return;
  1421. case 0x0c: /* ARM_EWUPCT */
  1422. s->clkm.arm_ewupct = value & 0x003f;
  1423. return;
  1424. case 0x10: /* ARM_RSTCT1 */
  1425. diff = s->clkm.arm_rstct1 ^ value;
  1426. s->clkm.arm_rstct1 = value & 0x0007;
  1427. if (value & 9) {
  1428. qemu_system_reset_request();
  1429. s->clkm.cold_start = 0xa;
  1430. }
  1431. if (diff & ~value & 4) { /* DSP_RST */
  1432. omap_mpui_reset(s);
  1433. omap_tipb_bridge_reset(s->private_tipb);
  1434. omap_tipb_bridge_reset(s->public_tipb);
  1435. }
  1436. if (diff & 2) { /* DSP_EN */
  1437. clk = omap_findclk(s, "dsp_ck");
  1438. omap_clk_canidle(clk, (~value >> 1) & 1);
  1439. }
  1440. return;
  1441. case 0x14: /* ARM_RSTCT2 */
  1442. s->clkm.arm_rstct2 = value & 0x0001;
  1443. return;
  1444. case 0x18: /* ARM_SYSST */
  1445. if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
  1446. s->clkm.clocking_scheme = (value >> 11) & 7;
  1447. printf("%s: clocking scheme set to %s\n", __FUNCTION__,
  1448. clkschemename[s->clkm.clocking_scheme]);
  1449. }
  1450. s->clkm.cold_start &= value & 0x3f;
  1451. return;
  1452. case 0x1c: /* ARM_CKOUT1 */
  1453. diff = s->clkm.arm_ckout1 ^ value;
  1454. s->clkm.arm_ckout1 = value & 0x003f;
  1455. omap_clkm_ckout1_update(s, diff, value);
  1456. return;
  1457. case 0x20: /* ARM_CKOUT2 */
  1458. default:
  1459. OMAP_BAD_REG(addr);
  1460. }
  1461. }
  1462. static const MemoryRegionOps omap_clkm_ops = {
  1463. .read = omap_clkm_read,
  1464. .write = omap_clkm_write,
  1465. .endianness = DEVICE_NATIVE_ENDIAN,
  1466. };
  1467. static uint64_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr,
  1468. unsigned size)
  1469. {
  1470. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1471. if (size != 2) {
  1472. return omap_badwidth_read16(opaque, addr);
  1473. }
  1474. switch (addr) {
  1475. case 0x04: /* DSP_IDLECT1 */
  1476. return s->clkm.dsp_idlect1;
  1477. case 0x08: /* DSP_IDLECT2 */
  1478. return s->clkm.dsp_idlect2;
  1479. case 0x14: /* DSP_RSTCT2 */
  1480. return s->clkm.dsp_rstct2;
  1481. case 0x18: /* DSP_SYSST */
  1482. return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
  1483. (s->env->halted << 6); /* Quite useless... */
  1484. }
  1485. OMAP_BAD_REG(addr);
  1486. return 0;
  1487. }
  1488. static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
  1489. uint16_t diff, uint16_t value)
  1490. {
  1491. omap_clk clk;
  1492. SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
  1493. }
  1494. static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
  1495. uint16_t diff, uint16_t value)
  1496. {
  1497. omap_clk clk;
  1498. SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
  1499. }
  1500. static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
  1501. uint64_t value, unsigned size)
  1502. {
  1503. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1504. uint16_t diff;
  1505. if (size != 2) {
  1506. return omap_badwidth_write16(opaque, addr, value);
  1507. }
  1508. switch (addr) {
  1509. case 0x04: /* DSP_IDLECT1 */
  1510. diff = s->clkm.dsp_idlect1 ^ value;
  1511. s->clkm.dsp_idlect1 = value & 0x01f7;
  1512. omap_clkdsp_idlect1_update(s, diff, value);
  1513. break;
  1514. case 0x08: /* DSP_IDLECT2 */
  1515. s->clkm.dsp_idlect2 = value & 0x0037;
  1516. diff = s->clkm.dsp_idlect1 ^ value;
  1517. omap_clkdsp_idlect2_update(s, diff, value);
  1518. break;
  1519. case 0x14: /* DSP_RSTCT2 */
  1520. s->clkm.dsp_rstct2 = value & 0x0001;
  1521. break;
  1522. case 0x18: /* DSP_SYSST */
  1523. s->clkm.cold_start &= value & 0x3f;
  1524. break;
  1525. default:
  1526. OMAP_BAD_REG(addr);
  1527. }
  1528. }
  1529. static const MemoryRegionOps omap_clkdsp_ops = {
  1530. .read = omap_clkdsp_read,
  1531. .write = omap_clkdsp_write,
  1532. .endianness = DEVICE_NATIVE_ENDIAN,
  1533. };
  1534. static void omap_clkm_reset(struct omap_mpu_state_s *s)
  1535. {
  1536. if (s->wdt && s->wdt->reset)
  1537. s->clkm.cold_start = 0x6;
  1538. s->clkm.clocking_scheme = 0;
  1539. omap_clkm_ckctl_update(s, ~0, 0x3000);
  1540. s->clkm.arm_ckctl = 0x3000;
  1541. omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
  1542. s->clkm.arm_idlect1 = 0x0400;
  1543. omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
  1544. s->clkm.arm_idlect2 = 0x0100;
  1545. s->clkm.arm_ewupct = 0x003f;
  1546. s->clkm.arm_rstct1 = 0x0000;
  1547. s->clkm.arm_rstct2 = 0x0000;
  1548. s->clkm.arm_ckout1 = 0x0015;
  1549. s->clkm.dpll1_mode = 0x2002;
  1550. omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
  1551. s->clkm.dsp_idlect1 = 0x0040;
  1552. omap_clkdsp_idlect2_update(s, ~0, 0x0000);
  1553. s->clkm.dsp_idlect2 = 0x0000;
  1554. s->clkm.dsp_rstct2 = 0x0000;
  1555. }
  1556. static void omap_clkm_init(MemoryRegion *memory, target_phys_addr_t mpu_base,
  1557. target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
  1558. {
  1559. memory_region_init_io(&s->clkm_iomem, &omap_clkm_ops, s,
  1560. "omap-clkm", 0x100);
  1561. memory_region_init_io(&s->clkdsp_iomem, &omap_clkdsp_ops, s,
  1562. "omap-clkdsp", 0x1000);
  1563. s->clkm.arm_idlect1 = 0x03ff;
  1564. s->clkm.arm_idlect2 = 0x0100;
  1565. s->clkm.dsp_idlect1 = 0x0002;
  1566. omap_clkm_reset(s);
  1567. s->clkm.cold_start = 0x3a;
  1568. memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
  1569. memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
  1570. }
  1571. /* MPU I/O */
  1572. struct omap_mpuio_s {
  1573. qemu_irq irq;
  1574. qemu_irq kbd_irq;
  1575. qemu_irq *in;
  1576. qemu_irq handler[16];
  1577. qemu_irq wakeup;
  1578. MemoryRegion iomem;
  1579. uint16_t inputs;
  1580. uint16_t outputs;
  1581. uint16_t dir;
  1582. uint16_t edge;
  1583. uint16_t mask;
  1584. uint16_t ints;
  1585. uint16_t debounce;
  1586. uint16_t latch;
  1587. uint8_t event;
  1588. uint8_t buttons[5];
  1589. uint8_t row_latch;
  1590. uint8_t cols;
  1591. int kbd_mask;
  1592. int clk;
  1593. };
  1594. static void omap_mpuio_set(void *opaque, int line, int level)
  1595. {
  1596. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  1597. uint16_t prev = s->inputs;
  1598. if (level)
  1599. s->inputs |= 1 << line;
  1600. else
  1601. s->inputs &= ~(1 << line);
  1602. if (((1 << line) & s->dir & ~s->mask) && s->clk) {
  1603. if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
  1604. s->ints |= 1 << line;
  1605. qemu_irq_raise(s->irq);
  1606. /* TODO: wakeup */
  1607. }
  1608. if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
  1609. (s->event >> 1) == line) /* PIN_SELECT */
  1610. s->latch = s->inputs;
  1611. }
  1612. }
  1613. static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
  1614. {
  1615. int i;
  1616. uint8_t *row, rows = 0, cols = ~s->cols;
  1617. for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
  1618. if (*row & cols)
  1619. rows |= i;
  1620. qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
  1621. s->row_latch = ~rows;
  1622. }
  1623. static uint64_t omap_mpuio_read(void *opaque, target_phys_addr_t addr,
  1624. unsigned size)
  1625. {
  1626. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  1627. int offset = addr & OMAP_MPUI_REG_MASK;
  1628. uint16_t ret;
  1629. if (size != 2) {
  1630. return omap_badwidth_read16(opaque, addr);
  1631. }
  1632. switch (offset) {
  1633. case 0x00: /* INPUT_LATCH */
  1634. return s->inputs;
  1635. case 0x04: /* OUTPUT_REG */
  1636. return s->outputs;
  1637. case 0x08: /* IO_CNTL */
  1638. return s->dir;
  1639. case 0x10: /* KBR_LATCH */
  1640. return s->row_latch;
  1641. case 0x14: /* KBC_REG */
  1642. return s->cols;
  1643. case 0x18: /* GPIO_EVENT_MODE_REG */
  1644. return s->event;
  1645. case 0x1c: /* GPIO_INT_EDGE_REG */
  1646. return s->edge;
  1647. case 0x20: /* KBD_INT */
  1648. return (~s->row_latch & 0x1f) && !s->kbd_mask;
  1649. case 0x24: /* GPIO_INT */
  1650. ret = s->ints;
  1651. s->ints &= s->mask;
  1652. if (ret)
  1653. qemu_irq_lower(s->irq);
  1654. return ret;
  1655. case 0x28: /* KBD_MASKIT */
  1656. return s->kbd_mask;
  1657. case 0x2c: /* GPIO_MASKIT */
  1658. return s->mask;
  1659. case 0x30: /* GPIO_DEBOUNCING_REG */
  1660. return s->debounce;
  1661. case 0x34: /* GPIO_LATCH_REG */
  1662. return s->latch;
  1663. }
  1664. OMAP_BAD_REG(addr);
  1665. return 0;
  1666. }
  1667. static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
  1668. uint64_t value, unsigned size)
  1669. {
  1670. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  1671. int offset = addr & OMAP_MPUI_REG_MASK;
  1672. uint16_t diff;
  1673. int ln;
  1674. if (size != 2) {
  1675. return omap_badwidth_write16(opaque, addr, value);
  1676. }
  1677. switch (offset) {
  1678. case 0x04: /* OUTPUT_REG */
  1679. diff = (s->outputs ^ value) & ~s->dir;
  1680. s->outputs = value;
  1681. while ((ln = ffs(diff))) {
  1682. ln --;
  1683. if (s->handler[ln])
  1684. qemu_set_irq(s->handler[ln], (value >> ln) & 1);
  1685. diff &= ~(1 << ln);
  1686. }
  1687. break;
  1688. case 0x08: /* IO_CNTL */
  1689. diff = s->outputs & (s->dir ^ value);
  1690. s->dir = value;
  1691. value = s->outputs & ~s->dir;
  1692. while ((ln = ffs(diff))) {
  1693. ln --;
  1694. if (s->handler[ln])
  1695. qemu_set_irq(s->handler[ln], (value >> ln) & 1);
  1696. diff &= ~(1 << ln);
  1697. }
  1698. break;
  1699. case 0x14: /* KBC_REG */
  1700. s->cols = value;
  1701. omap_mpuio_kbd_update(s);
  1702. break;
  1703. case 0x18: /* GPIO_EVENT_MODE_REG */
  1704. s->event = value & 0x1f;
  1705. break;
  1706. case 0x1c: /* GPIO_INT_EDGE_REG */
  1707. s->edge = value;
  1708. break;
  1709. case 0x28: /* KBD_MASKIT */
  1710. s->kbd_mask = value & 1;
  1711. omap_mpuio_kbd_update(s);
  1712. break;
  1713. case 0x2c: /* GPIO_MASKIT */
  1714. s->mask = value;
  1715. break;
  1716. case 0x30: /* GPIO_DEBOUNCING_REG */
  1717. s->debounce = value & 0x1ff;
  1718. break;
  1719. case 0x00: /* INPUT_LATCH */
  1720. case 0x10: /* KBR_LATCH */
  1721. case 0x20: /* KBD_INT */
  1722. case 0x24: /* GPIO_INT */
  1723. case 0x34: /* GPIO_LATCH_REG */
  1724. OMAP_RO_REG(addr);
  1725. return;
  1726. default:
  1727. OMAP_BAD_REG(addr);
  1728. return;
  1729. }
  1730. }
  1731. static const MemoryRegionOps omap_mpuio_ops = {
  1732. .read = omap_mpuio_read,
  1733. .write = omap_mpuio_write,
  1734. .endianness = DEVICE_NATIVE_ENDIAN,
  1735. };
  1736. static void omap_mpuio_reset(struct omap_mpuio_s *s)
  1737. {
  1738. s->inputs = 0;
  1739. s->outputs = 0;
  1740. s->dir = ~0;
  1741. s->event = 0;
  1742. s->edge = 0;
  1743. s->kbd_mask = 0;
  1744. s->mask = 0;
  1745. s->debounce = 0;
  1746. s->latch = 0;
  1747. s->ints = 0;
  1748. s->row_latch = 0x1f;
  1749. s->clk = 1;
  1750. }
  1751. static void omap_mpuio_onoff(void *opaque, int line, int on)
  1752. {
  1753. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  1754. s->clk = on;
  1755. if (on)
  1756. omap_mpuio_kbd_update(s);
  1757. }
  1758. struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
  1759. target_phys_addr_t base,
  1760. qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
  1761. omap_clk clk)
  1762. {
  1763. struct omap_mpuio_s *s = (struct omap_mpuio_s *)
  1764. g_malloc0(sizeof(struct omap_mpuio_s));
  1765. s->irq = gpio_int;
  1766. s->kbd_irq = kbd_int;
  1767. s->wakeup = wakeup;
  1768. s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
  1769. omap_mpuio_reset(s);
  1770. memory_region_init_io(&s->iomem, &omap_mpuio_ops, s,
  1771. "omap-mpuio", 0x800);
  1772. memory_region_add_subregion(memory, base, &s->iomem);
  1773. omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
  1774. return s;
  1775. }
  1776. qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
  1777. {
  1778. return s->in;
  1779. }
  1780. void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
  1781. {
  1782. if (line >= 16 || line < 0)
  1783. hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
  1784. s->handler[line] = handler;
  1785. }
  1786. void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
  1787. {
  1788. if (row >= 5 || row < 0)
  1789. hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
  1790. if (down)
  1791. s->buttons[row] |= 1 << col;
  1792. else
  1793. s->buttons[row] &= ~(1 << col);
  1794. omap_mpuio_kbd_update(s);
  1795. }
  1796. /* MicroWire Interface */
  1797. struct omap_uwire_s {
  1798. MemoryRegion iomem;
  1799. qemu_irq txirq;
  1800. qemu_irq rxirq;
  1801. qemu_irq txdrq;
  1802. uint16_t txbuf;
  1803. uint16_t rxbuf;
  1804. uint16_t control;
  1805. uint16_t setup[5];
  1806. uWireSlave *chip[4];
  1807. };
  1808. static void omap_uwire_transfer_start(struct omap_uwire_s *s)
  1809. {
  1810. int chipselect = (s->control >> 10) & 3; /* INDEX */
  1811. uWireSlave *slave = s->chip[chipselect];
  1812. if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
  1813. if (s->control & (1 << 12)) /* CS_CMD */
  1814. if (slave && slave->send)
  1815. slave->send(slave->opaque,
  1816. s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
  1817. s->control &= ~(1 << 14); /* CSRB */
  1818. /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
  1819. * a DRQ. When is the level IRQ supposed to be reset? */
  1820. }
  1821. if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
  1822. if (s->control & (1 << 12)) /* CS_CMD */
  1823. if (slave && slave->receive)
  1824. s->rxbuf = slave->receive(slave->opaque);
  1825. s->control |= 1 << 15; /* RDRB */
  1826. /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
  1827. * a DRQ. When is the level IRQ supposed to be reset? */
  1828. }
  1829. }
  1830. static uint64_t omap_uwire_read(void *opaque, target_phys_addr_t addr,
  1831. unsigned size)
  1832. {
  1833. struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
  1834. int offset = addr & OMAP_MPUI_REG_MASK;
  1835. if (size != 2) {
  1836. return omap_badwidth_read16(opaque, addr);
  1837. }
  1838. switch (offset) {
  1839. case 0x00: /* RDR */
  1840. s->control &= ~(1 << 15); /* RDRB */
  1841. return s->rxbuf;
  1842. case 0x04: /* CSR */
  1843. return s->control;
  1844. case 0x08: /* SR1 */
  1845. return s->setup[0];
  1846. case 0x0c: /* SR2 */
  1847. return s->setup[1];
  1848. case 0x10: /* SR3 */
  1849. return s->setup[2];
  1850. case 0x14: /* SR4 */
  1851. return s->setup[3];
  1852. case 0x18: /* SR5 */
  1853. return s->setup[4];
  1854. }
  1855. OMAP_BAD_REG(addr);
  1856. return 0;
  1857. }
  1858. static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
  1859. uint64_t value, unsigned size)
  1860. {
  1861. struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
  1862. int offset = addr & OMAP_MPUI_REG_MASK;
  1863. if (size != 2) {
  1864. return omap_badwidth_write16(opaque, addr, value);
  1865. }
  1866. switch (offset) {
  1867. case 0x00: /* TDR */
  1868. s->txbuf = value; /* TD */
  1869. if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
  1870. ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
  1871. (s->control & (1 << 12)))) { /* CS_CMD */
  1872. s->control |= 1 << 14; /* CSRB */
  1873. omap_uwire_transfer_start(s);
  1874. }
  1875. break;
  1876. case 0x04: /* CSR */
  1877. s->control = value & 0x1fff;
  1878. if (value & (1 << 13)) /* START */
  1879. omap_uwire_transfer_start(s);
  1880. break;
  1881. case 0x08: /* SR1 */
  1882. s->setup[0] = value & 0x003f;
  1883. break;
  1884. case 0x0c: /* SR2 */
  1885. s->setup[1] = value & 0x0fc0;
  1886. break;
  1887. case 0x10: /* SR3 */
  1888. s->setup[2] = value & 0x0003;
  1889. break;
  1890. case 0x14: /* SR4 */
  1891. s->setup[3] = value & 0x0001;
  1892. break;
  1893. case 0x18: /* SR5 */
  1894. s->setup[4] = value & 0x000f;
  1895. break;
  1896. default:
  1897. OMAP_BAD_REG(addr);
  1898. return;
  1899. }
  1900. }
  1901. static const MemoryRegionOps omap_uwire_ops = {
  1902. .read = omap_uwire_read,
  1903. .write = omap_uwire_write,
  1904. .endianness = DEVICE_NATIVE_ENDIAN,
  1905. };
  1906. static void omap_uwire_reset(struct omap_uwire_s *s)
  1907. {
  1908. s->control = 0;
  1909. s->setup[0] = 0;
  1910. s->setup[1] = 0;
  1911. s->setup[2] = 0;
  1912. s->setup[3] = 0;
  1913. s->setup[4] = 0;
  1914. }
  1915. static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
  1916. target_phys_addr_t base,
  1917. qemu_irq txirq, qemu_irq rxirq,
  1918. qemu_irq dma,
  1919. omap_clk clk)
  1920. {
  1921. struct omap_uwire_s *s = (struct omap_uwire_s *)
  1922. g_malloc0(sizeof(struct omap_uwire_s));
  1923. s->txirq = txirq;
  1924. s->rxirq = rxirq;
  1925. s->txdrq = dma;
  1926. omap_uwire_reset(s);
  1927. memory_region_init_io(&s->iomem, &omap_uwire_ops, s, "omap-uwire", 0x800);
  1928. memory_region_add_subregion(system_memory, base, &s->iomem);
  1929. return s;
  1930. }
  1931. void omap_uwire_attach(struct omap_uwire_s *s,
  1932. uWireSlave *slave, int chipselect)
  1933. {
  1934. if (chipselect < 0 || chipselect > 3) {
  1935. fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
  1936. exit(-1);
  1937. }
  1938. s->chip[chipselect] = slave;
  1939. }
  1940. /* Pseudonoise Pulse-Width Light Modulator */
  1941. static void omap_pwl_update(struct omap_mpu_state_s *s)
  1942. {
  1943. int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0;
  1944. if (output != s->pwl.output) {
  1945. s->pwl.output = output;
  1946. printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
  1947. }
  1948. }
  1949. static uint64_t omap_pwl_read(void *opaque, target_phys_addr_t addr,
  1950. unsigned size)
  1951. {
  1952. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1953. int offset = addr & OMAP_MPUI_REG_MASK;
  1954. if (size != 1) {
  1955. return omap_badwidth_read8(opaque, addr);
  1956. }
  1957. switch (offset) {
  1958. case 0x00: /* PWL_LEVEL */
  1959. return s->pwl.level;
  1960. case 0x04: /* PWL_CTRL */
  1961. return s->pwl.enable;
  1962. }
  1963. OMAP_BAD_REG(addr);
  1964. return 0;
  1965. }
  1966. static void omap_pwl_write(void *opaque, target_phys_addr_t addr,
  1967. uint64_t value, unsigned size)
  1968. {
  1969. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1970. int offset = addr & OMAP_MPUI_REG_MASK;
  1971. if (size != 1) {
  1972. return omap_badwidth_write8(opaque, addr, value);
  1973. }
  1974. switch (offset) {
  1975. case 0x00: /* PWL_LEVEL */
  1976. s->pwl.level = value;
  1977. omap_pwl_update(s);
  1978. break;
  1979. case 0x04: /* PWL_CTRL */
  1980. s->pwl.enable = value & 1;
  1981. omap_pwl_update(s);
  1982. break;
  1983. default:
  1984. OMAP_BAD_REG(addr);
  1985. return;
  1986. }
  1987. }
  1988. static const MemoryRegionOps omap_pwl_ops = {
  1989. .read = omap_pwl_read,
  1990. .write = omap_pwl_write,
  1991. .endianness = DEVICE_NATIVE_ENDIAN,
  1992. };
  1993. static void omap_pwl_reset(struct omap_mpu_state_s *s)
  1994. {
  1995. s->pwl.output = 0;
  1996. s->pwl.level = 0;
  1997. s->pwl.enable = 0;
  1998. s->pwl.clk = 1;
  1999. omap_pwl_update(s);
  2000. }
  2001. static void omap_pwl_clk_update(void *opaque, int line, int on)
  2002. {
  2003. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  2004. s->pwl.clk = on;
  2005. omap_pwl_update(s);
  2006. }
  2007. static void omap_pwl_init(MemoryRegion *system_memory,
  2008. target_phys_addr_t base, struct omap_mpu_state_s *s,
  2009. omap_clk clk)
  2010. {
  2011. omap_pwl_reset(s);
  2012. memory_region_init_io(&s->pwl_iomem, &omap_pwl_ops, s,
  2013. "omap-pwl", 0x800);
  2014. memory_region_add_subregion(system_memory, base, &s->pwl_iomem);
  2015. omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
  2016. }
  2017. /* Pulse-Width Tone module */
  2018. static uint64_t omap_pwt_read(void *opaque, target_phys_addr_t addr,
  2019. unsigned size)
  2020. {
  2021. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  2022. int offset = addr & OMAP_MPUI_REG_MASK;
  2023. if (size != 1) {
  2024. return omap_badwidth_read8(opaque, addr);
  2025. }
  2026. switch (offset) {
  2027. case 0x00: /* FRC */
  2028. return s->pwt.frc;
  2029. case 0x04: /* VCR */
  2030. return s->pwt.vrc;
  2031. case 0x08: /* GCR */
  2032. return s->pwt.gcr;
  2033. }
  2034. OMAP_BAD_REG(addr);
  2035. return 0;
  2036. }
  2037. static void omap_pwt_write(void *opaque, target_phys_addr_t addr,
  2038. uint64_t value, unsigned size)
  2039. {
  2040. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  2041. int offset = addr & OMAP_MPUI_REG_MASK;
  2042. if (size != 1) {
  2043. return omap_badwidth_write8(opaque, addr, value);
  2044. }
  2045. switch (offset) {
  2046. case 0x00: /* FRC */
  2047. s->pwt.frc = value & 0x3f;
  2048. break;
  2049. case 0x04: /* VRC */
  2050. if ((value ^ s->pwt.vrc) & 1) {
  2051. if (value & 1)
  2052. printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
  2053. /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
  2054. ((omap_clk_getrate(s->pwt.clk) >> 3) /
  2055. /* Pre-multiplexer divider */
  2056. ((s->pwt.gcr & 2) ? 1 : 154) /
  2057. /* Octave multiplexer */
  2058. (2 << (value & 3)) *
  2059. /* 101/107 divider */
  2060. ((value & (1 << 2)) ? 101 : 107) *
  2061. /* 49/55 divider */
  2062. ((value & (1 << 3)) ? 49 : 55) *
  2063. /* 50/63 divider */
  2064. ((value & (1 << 4)) ? 50 : 63) *
  2065. /* 80/127 divider */
  2066. ((value & (1 << 5)) ? 80 : 127) /
  2067. (107 * 55 * 63 * 127)));
  2068. else
  2069. printf("%s: silence!\n", __FUNCTION__);
  2070. }
  2071. s->pwt.vrc = value & 0x7f;
  2072. break;
  2073. case 0x08: /* GCR */
  2074. s->pwt.gcr = value & 3;
  2075. break;
  2076. default:
  2077. OMAP_BAD_REG(addr);
  2078. return;
  2079. }
  2080. }
  2081. static const MemoryRegionOps omap_pwt_ops = {
  2082. .read =omap_pwt_read,
  2083. .write = omap_pwt_write,
  2084. .endianness = DEVICE_NATIVE_ENDIAN,
  2085. };
  2086. static void omap_pwt_reset(struct omap_mpu_state_s *s)
  2087. {
  2088. s->pwt.frc = 0;
  2089. s->pwt.vrc = 0;
  2090. s->pwt.gcr = 0;
  2091. }
  2092. static void omap_pwt_init(MemoryRegion *system_memory,
  2093. target_phys_addr_t base, struct omap_mpu_state_s *s,
  2094. omap_clk clk)
  2095. {
  2096. s->pwt.clk = clk;
  2097. omap_pwt_reset(s);
  2098. memory_region_init_io(&s->pwt_iomem, &omap_pwt_ops, s,
  2099. "omap-pwt", 0x800);
  2100. memory_region_add_subregion(system_memory, base, &s->pwt_iomem);
  2101. }
  2102. /* Real-time Clock module */
  2103. struct omap_rtc_s {
  2104. MemoryRegion iomem;
  2105. qemu_irq irq;
  2106. qemu_irq alarm;
  2107. QEMUTimer *clk;
  2108. uint8_t interrupts;
  2109. uint8_t status;
  2110. int16_t comp_reg;
  2111. int running;
  2112. int pm_am;
  2113. int auto_comp;
  2114. int round;
  2115. struct tm alarm_tm;
  2116. time_t alarm_ti;
  2117. struct tm current_tm;
  2118. time_t ti;
  2119. uint64_t tick;
  2120. };
  2121. static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
  2122. {
  2123. /* s->alarm is level-triggered */
  2124. qemu_set_irq(s->alarm, (s->status >> 6) & 1);
  2125. }
  2126. static void omap_rtc_alarm_update(struct omap_rtc_s *s)
  2127. {
  2128. s->alarm_ti = mktimegm(&s->alarm_tm);
  2129. if (s->alarm_ti == -1)
  2130. printf("%s: conversion failed\n", __FUNCTION__);
  2131. }
  2132. static uint64_t omap_rtc_read(void *opaque, target_phys_addr_t addr,
  2133. unsigned size)
  2134. {
  2135. struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
  2136. int offset = addr & OMAP_MPUI_REG_MASK;
  2137. uint8_t i;
  2138. if (size != 1) {
  2139. return omap_badwidth_read8(opaque, addr);
  2140. }
  2141. switch (offset) {
  2142. case 0x00: /* SECONDS_REG */
  2143. return to_bcd(s->current_tm.tm_sec);
  2144. case 0x04: /* MINUTES_REG */
  2145. return to_bcd(s->current_tm.tm_min);
  2146. case 0x08: /* HOURS_REG */
  2147. if (s->pm_am)
  2148. return ((s->current_tm.tm_hour > 11) << 7) |
  2149. to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
  2150. else
  2151. return to_bcd(s->current_tm.tm_hour);
  2152. case 0x0c: /* DAYS_REG */
  2153. return to_bcd(s->current_tm.tm_mday);
  2154. case 0x10: /* MONTHS_REG */
  2155. return to_bcd(s->current_tm.tm_mon + 1);
  2156. case 0x14: /* YEARS_REG */
  2157. return to_bcd(s->current_tm.tm_year % 100);
  2158. case 0x18: /* WEEK_REG */
  2159. return s->current_tm.tm_wday;
  2160. case 0x20: /* ALARM_SECONDS_REG */
  2161. return to_bcd(s->alarm_tm.tm_sec);
  2162. case 0x24: /* ALARM_MINUTES_REG */
  2163. return to_bcd(s->alarm_tm.tm_min);
  2164. case 0x28: /* ALARM_HOURS_REG */
  2165. if (s->pm_am)
  2166. return ((s->alarm_tm.tm_hour > 11) << 7) |
  2167. to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
  2168. else
  2169. return to_bcd(s->alarm_tm.tm_hour);
  2170. case 0x2c: /* ALARM_DAYS_REG */
  2171. return to_bcd(s->alarm_tm.tm_mday);
  2172. case 0x30: /* ALARM_MONTHS_REG */
  2173. return to_bcd(s->alarm_tm.tm_mon + 1);
  2174. case 0x34: /* ALARM_YEARS_REG */
  2175. return to_bcd(s->alarm_tm.tm_year % 100);
  2176. case 0x40: /* RTC_CTRL_REG */
  2177. return (s->pm_am << 3) | (s->auto_comp << 2) |
  2178. (s->round << 1) | s->running;
  2179. case 0x44: /* RTC_STATUS_REG */
  2180. i = s->status;
  2181. s->status &= ~0x3d;
  2182. return i;
  2183. case 0x48: /* RTC_INTERRUPTS_REG */
  2184. return s->interrupts;
  2185. case 0x4c: /* RTC_COMP_LSB_REG */
  2186. return ((uint16_t) s->comp_reg) & 0xff;
  2187. case 0x50: /* RTC_COMP_MSB_REG */
  2188. return ((uint16_t) s->comp_reg) >> 8;
  2189. }
  2190. OMAP_BAD_REG(addr);
  2191. return 0;
  2192. }
  2193. static void omap_rtc_write(void *opaque, target_phys_addr_t addr,
  2194. uint64_t value, unsigned size)
  2195. {
  2196. struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
  2197. int offset = addr & OMAP_MPUI_REG_MASK;
  2198. struct tm new_tm;
  2199. time_t ti[2];
  2200. if (size != 1) {
  2201. return omap_badwidth_write8(opaque, addr, value);
  2202. }
  2203. switch (offset) {
  2204. case 0x00: /* SECONDS_REG */
  2205. #ifdef ALMDEBUG
  2206. printf("RTC SEC_REG <-- %02x\n", value);
  2207. #endif
  2208. s->ti -= s->current_tm.tm_sec;
  2209. s->ti += from_bcd(value);
  2210. return;
  2211. case 0x04: /* MINUTES_REG */
  2212. #ifdef ALMDEBUG
  2213. printf("RTC MIN_REG <-- %02x\n", value);
  2214. #endif
  2215. s->ti -= s->current_tm.tm_min * 60;
  2216. s->ti += from_bcd(value) * 60;
  2217. return;
  2218. case 0x08: /* HOURS_REG */
  2219. #ifdef ALMDEBUG
  2220. printf("RTC HRS_REG <-- %02x\n", value);
  2221. #endif
  2222. s->ti -= s->current_tm.tm_hour * 3600;
  2223. if (s->pm_am) {
  2224. s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
  2225. s->ti += ((value >> 7) & 1) * 43200;
  2226. } else
  2227. s->ti += from_bcd(value & 0x3f) * 3600;
  2228. return;
  2229. case 0x0c: /* DAYS_REG */
  2230. #ifdef ALMDEBUG
  2231. printf("RTC DAY_REG <-- %02x\n", value);
  2232. #endif
  2233. s->ti -= s->current_tm.tm_mday * 86400;
  2234. s->ti += from_bcd(value) * 86400;
  2235. return;
  2236. case 0x10: /* MONTHS_REG */
  2237. #ifdef ALMDEBUG
  2238. printf("RTC MTH_REG <-- %02x\n", value);
  2239. #endif
  2240. memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
  2241. new_tm.tm_mon = from_bcd(value);
  2242. ti[0] = mktimegm(&s->current_tm);
  2243. ti[1] = mktimegm(&new_tm);
  2244. if (ti[0] != -1 && ti[1] != -1) {
  2245. s->ti -= ti[0];
  2246. s->ti += ti[1];
  2247. } else {
  2248. /* A less accurate version */
  2249. s->ti -= s->current_tm.tm_mon * 2592000;
  2250. s->ti += from_bcd(value) * 2592000;
  2251. }
  2252. return;
  2253. case 0x14: /* YEARS_REG */
  2254. #ifdef ALMDEBUG
  2255. printf("RTC YRS_REG <-- %02x\n", value);
  2256. #endif
  2257. memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
  2258. new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
  2259. ti[0] = mktimegm(&s->current_tm);
  2260. ti[1] = mktimegm(&new_tm);
  2261. if (ti[0] != -1 && ti[1] != -1) {
  2262. s->ti -= ti[0];
  2263. s->ti += ti[1];
  2264. } else {
  2265. /* A less accurate version */
  2266. s->ti -= (s->current_tm.tm_year % 100) * 31536000;
  2267. s->ti += from_bcd(value) * 31536000;
  2268. }
  2269. return;
  2270. case 0x18: /* WEEK_REG */
  2271. return; /* Ignored */
  2272. case 0x20: /* ALARM_SECONDS_REG */
  2273. #ifdef ALMDEBUG
  2274. printf("ALM SEC_REG <-- %02x\n", value);
  2275. #endif
  2276. s->alarm_tm.tm_sec = from_bcd(value);
  2277. omap_rtc_alarm_update(s);
  2278. return;
  2279. case 0x24: /* ALARM_MINUTES_REG */
  2280. #ifdef ALMDEBUG
  2281. printf("ALM MIN_REG <-- %02x\n", value);
  2282. #endif
  2283. s->alarm_tm.tm_min = from_bcd(value);
  2284. omap_rtc_alarm_update(s);
  2285. return;
  2286. case 0x28: /* ALARM_HOURS_REG */
  2287. #ifdef ALMDEBUG
  2288. printf("ALM HRS_REG <-- %02x\n", value);
  2289. #endif
  2290. if (s->pm_am)
  2291. s->alarm_tm.tm_hour =
  2292. ((from_bcd(value & 0x3f)) % 12) +
  2293. ((value >> 7) & 1) * 12;
  2294. else
  2295. s->alarm_tm.tm_hour = from_bcd(value);
  2296. omap_rtc_alarm_update(s);
  2297. return;
  2298. case 0x2c: /* ALARM_DAYS_REG */
  2299. #ifdef ALMDEBUG
  2300. printf("ALM DAY_REG <-- %02x\n", value);
  2301. #endif
  2302. s->alarm_tm.tm_mday = from_bcd(value);
  2303. omap_rtc_alarm_update(s);
  2304. return;
  2305. case 0x30: /* ALARM_MONTHS_REG */
  2306. #ifdef ALMDEBUG
  2307. printf("ALM MON_REG <-- %02x\n", value);
  2308. #endif
  2309. s->alarm_tm.tm_mon = from_bcd(value);
  2310. omap_rtc_alarm_update(s);
  2311. return;
  2312. case 0x34: /* ALARM_YEARS_REG */
  2313. #ifdef ALMDEBUG
  2314. printf("ALM YRS_REG <-- %02x\n", value);
  2315. #endif
  2316. s->alarm_tm.tm_year = from_bcd(value);
  2317. omap_rtc_alarm_update(s);
  2318. return;
  2319. case 0x40: /* RTC_CTRL_REG */
  2320. #ifdef ALMDEBUG
  2321. printf("RTC CONTROL <-- %02x\n", value);
  2322. #endif
  2323. s->pm_am = (value >> 3) & 1;
  2324. s->auto_comp = (value >> 2) & 1;
  2325. s->round = (value >> 1) & 1;
  2326. s->running = value & 1;
  2327. s->status &= 0xfd;
  2328. s->status |= s->running << 1;
  2329. return;
  2330. case 0x44: /* RTC_STATUS_REG */
  2331. #ifdef ALMDEBUG
  2332. printf("RTC STATUSL <-- %02x\n", value);
  2333. #endif
  2334. s->status &= ~((value & 0xc0) ^ 0x80);
  2335. omap_rtc_interrupts_update(s);
  2336. return;
  2337. case 0x48: /* RTC_INTERRUPTS_REG */
  2338. #ifdef ALMDEBUG
  2339. printf("RTC INTRS <-- %02x\n", value);
  2340. #endif
  2341. s->interrupts = value;
  2342. return;
  2343. case 0x4c: /* RTC_COMP_LSB_REG */
  2344. #ifdef ALMDEBUG
  2345. printf("RTC COMPLSB <-- %02x\n", value);
  2346. #endif
  2347. s->comp_reg &= 0xff00;
  2348. s->comp_reg |= 0x00ff & value;
  2349. return;
  2350. case 0x50: /* RTC_COMP_MSB_REG */
  2351. #ifdef ALMDEBUG
  2352. printf("RTC COMPMSB <-- %02x\n", value);
  2353. #endif
  2354. s->comp_reg &= 0x00ff;
  2355. s->comp_reg |= 0xff00 & (value << 8);
  2356. return;
  2357. default:
  2358. OMAP_BAD_REG(addr);
  2359. return;
  2360. }
  2361. }
  2362. static const MemoryRegionOps omap_rtc_ops = {
  2363. .read = omap_rtc_read,
  2364. .write = omap_rtc_write,
  2365. .endianness = DEVICE_NATIVE_ENDIAN,
  2366. };
  2367. static void omap_rtc_tick(void *opaque)
  2368. {
  2369. struct omap_rtc_s *s = opaque;
  2370. if (s->round) {
  2371. /* Round to nearest full minute. */
  2372. if (s->current_tm.tm_sec < 30)
  2373. s->ti -= s->current_tm.tm_sec;
  2374. else
  2375. s->ti += 60 - s->current_tm.tm_sec;
  2376. s->round = 0;
  2377. }
  2378. memcpy(&s->current_tm, localtime(&s->ti), sizeof(s->current_tm));
  2379. if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
  2380. s->status |= 0x40;
  2381. omap_rtc_interrupts_update(s);
  2382. }
  2383. if (s->interrupts & 0x04)
  2384. switch (s->interrupts & 3) {
  2385. case 0:
  2386. s->status |= 0x04;
  2387. qemu_irq_pulse(s->irq);
  2388. break;
  2389. case 1:
  2390. if (s->current_tm.tm_sec)
  2391. break;
  2392. s->status |= 0x08;
  2393. qemu_irq_pulse(s->irq);
  2394. break;
  2395. case 2:
  2396. if (s->current_tm.tm_sec || s->current_tm.tm_min)
  2397. break;
  2398. s->status |= 0x10;
  2399. qemu_irq_pulse(s->irq);
  2400. break;
  2401. case 3:
  2402. if (s->current_tm.tm_sec ||
  2403. s->current_tm.tm_min || s->current_tm.tm_hour)
  2404. break;
  2405. s->status |= 0x20;
  2406. qemu_irq_pulse(s->irq);
  2407. break;
  2408. }
  2409. /* Move on */
  2410. if (s->running)
  2411. s->ti ++;
  2412. s->tick += 1000;
  2413. /*
  2414. * Every full hour add a rough approximation of the compensation
  2415. * register to the 32kHz Timer (which drives the RTC) value.
  2416. */
  2417. if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
  2418. s->tick += s->comp_reg * 1000 / 32768;
  2419. qemu_mod_timer(s->clk, s->tick);
  2420. }
  2421. static void omap_rtc_reset(struct omap_rtc_s *s)
  2422. {
  2423. struct tm tm;
  2424. s->interrupts = 0;
  2425. s->comp_reg = 0;
  2426. s->running = 0;
  2427. s->pm_am = 0;
  2428. s->auto_comp = 0;
  2429. s->round = 0;
  2430. s->tick = qemu_get_clock_ms(rt_clock);
  2431. memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
  2432. s->alarm_tm.tm_mday = 0x01;
  2433. s->status = 1 << 7;
  2434. qemu_get_timedate(&tm, 0);
  2435. s->ti = mktimegm(&tm);
  2436. omap_rtc_alarm_update(s);
  2437. omap_rtc_tick(s);
  2438. }
  2439. static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
  2440. target_phys_addr_t base,
  2441. qemu_irq timerirq, qemu_irq alarmirq,
  2442. omap_clk clk)
  2443. {
  2444. struct omap_rtc_s *s = (struct omap_rtc_s *)
  2445. g_malloc0(sizeof(struct omap_rtc_s));
  2446. s->irq = timerirq;
  2447. s->alarm = alarmirq;
  2448. s->clk = qemu_new_timer_ms(rt_clock, omap_rtc_tick, s);
  2449. omap_rtc_reset(s);
  2450. memory_region_init_io(&s->iomem, &omap_rtc_ops, s,
  2451. "omap-rtc", 0x800);
  2452. memory_region_add_subregion(system_memory, base, &s->iomem);
  2453. return s;
  2454. }
  2455. /* Multi-channel Buffered Serial Port interfaces */
  2456. struct omap_mcbsp_s {
  2457. MemoryRegion iomem;
  2458. qemu_irq txirq;
  2459. qemu_irq rxirq;
  2460. qemu_irq txdrq;
  2461. qemu_irq rxdrq;
  2462. uint16_t spcr[2];
  2463. uint16_t rcr[2];
  2464. uint16_t xcr[2];
  2465. uint16_t srgr[2];
  2466. uint16_t mcr[2];
  2467. uint16_t pcr;
  2468. uint16_t rcer[8];
  2469. uint16_t xcer[8];
  2470. int tx_rate;
  2471. int rx_rate;
  2472. int tx_req;
  2473. int rx_req;
  2474. I2SCodec *codec;
  2475. QEMUTimer *source_timer;
  2476. QEMUTimer *sink_timer;
  2477. };
  2478. static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
  2479. {
  2480. int irq;
  2481. switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
  2482. case 0:
  2483. irq = (s->spcr[0] >> 1) & 1; /* RRDY */
  2484. break;
  2485. case 3:
  2486. irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
  2487. break;
  2488. default:
  2489. irq = 0;
  2490. break;
  2491. }
  2492. if (irq)
  2493. qemu_irq_pulse(s->rxirq);
  2494. switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
  2495. case 0:
  2496. irq = (s->spcr[1] >> 1) & 1; /* XRDY */
  2497. break;
  2498. case 3:
  2499. irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
  2500. break;
  2501. default:
  2502. irq = 0;
  2503. break;
  2504. }
  2505. if (irq)
  2506. qemu_irq_pulse(s->txirq);
  2507. }
  2508. static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
  2509. {
  2510. if ((s->spcr[0] >> 1) & 1) /* RRDY */
  2511. s->spcr[0] |= 1 << 2; /* RFULL */
  2512. s->spcr[0] |= 1 << 1; /* RRDY */
  2513. qemu_irq_raise(s->rxdrq);
  2514. omap_mcbsp_intr_update(s);
  2515. }
  2516. static void omap_mcbsp_source_tick(void *opaque)
  2517. {
  2518. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2519. static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
  2520. if (!s->rx_rate)
  2521. return;
  2522. if (s->rx_req)
  2523. printf("%s: Rx FIFO overrun\n", __FUNCTION__);
  2524. s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
  2525. omap_mcbsp_rx_newdata(s);
  2526. qemu_mod_timer(s->source_timer, qemu_get_clock_ns(vm_clock) +
  2527. get_ticks_per_sec());
  2528. }
  2529. static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
  2530. {
  2531. if (!s->codec || !s->codec->rts)
  2532. omap_mcbsp_source_tick(s);
  2533. else if (s->codec->in.len) {
  2534. s->rx_req = s->codec->in.len;
  2535. omap_mcbsp_rx_newdata(s);
  2536. }
  2537. }
  2538. static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
  2539. {
  2540. qemu_del_timer(s->source_timer);
  2541. }
  2542. static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
  2543. {
  2544. s->spcr[0] &= ~(1 << 1); /* RRDY */
  2545. qemu_irq_lower(s->rxdrq);
  2546. omap_mcbsp_intr_update(s);
  2547. }
  2548. static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
  2549. {
  2550. s->spcr[1] |= 1 << 1; /* XRDY */
  2551. qemu_irq_raise(s->txdrq);
  2552. omap_mcbsp_intr_update(s);
  2553. }
  2554. static void omap_mcbsp_sink_tick(void *opaque)
  2555. {
  2556. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2557. static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
  2558. if (!s->tx_rate)
  2559. return;
  2560. if (s->tx_req)
  2561. printf("%s: Tx FIFO underrun\n", __FUNCTION__);
  2562. s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
  2563. omap_mcbsp_tx_newdata(s);
  2564. qemu_mod_timer(s->sink_timer, qemu_get_clock_ns(vm_clock) +
  2565. get_ticks_per_sec());
  2566. }
  2567. static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
  2568. {
  2569. if (!s->codec || !s->codec->cts)
  2570. omap_mcbsp_sink_tick(s);
  2571. else if (s->codec->out.size) {
  2572. s->tx_req = s->codec->out.size;
  2573. omap_mcbsp_tx_newdata(s);
  2574. }
  2575. }
  2576. static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
  2577. {
  2578. s->spcr[1] &= ~(1 << 1); /* XRDY */
  2579. qemu_irq_lower(s->txdrq);
  2580. omap_mcbsp_intr_update(s);
  2581. if (s->codec && s->codec->cts)
  2582. s->codec->tx_swallow(s->codec->opaque);
  2583. }
  2584. static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
  2585. {
  2586. s->tx_req = 0;
  2587. omap_mcbsp_tx_done(s);
  2588. qemu_del_timer(s->sink_timer);
  2589. }
  2590. static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
  2591. {
  2592. int prev_rx_rate, prev_tx_rate;
  2593. int rx_rate = 0, tx_rate = 0;
  2594. int cpu_rate = 1500000; /* XXX */
  2595. /* TODO: check CLKSTP bit */
  2596. if (s->spcr[1] & (1 << 6)) { /* GRST */
  2597. if (s->spcr[0] & (1 << 0)) { /* RRST */
  2598. if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
  2599. (s->pcr & (1 << 8))) { /* CLKRM */
  2600. if (~s->pcr & (1 << 7)) /* SCLKME */
  2601. rx_rate = cpu_rate /
  2602. ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
  2603. } else
  2604. if (s->codec)
  2605. rx_rate = s->codec->rx_rate;
  2606. }
  2607. if (s->spcr[1] & (1 << 0)) { /* XRST */
  2608. if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
  2609. (s->pcr & (1 << 9))) { /* CLKXM */
  2610. if (~s->pcr & (1 << 7)) /* SCLKME */
  2611. tx_rate = cpu_rate /
  2612. ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
  2613. } else
  2614. if (s->codec)
  2615. tx_rate = s->codec->tx_rate;
  2616. }
  2617. }
  2618. prev_tx_rate = s->tx_rate;
  2619. prev_rx_rate = s->rx_rate;
  2620. s->tx_rate = tx_rate;
  2621. s->rx_rate = rx_rate;
  2622. if (s->codec)
  2623. s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
  2624. if (!prev_tx_rate && tx_rate)
  2625. omap_mcbsp_tx_start(s);
  2626. else if (s->tx_rate && !tx_rate)
  2627. omap_mcbsp_tx_stop(s);
  2628. if (!prev_rx_rate && rx_rate)
  2629. omap_mcbsp_rx_start(s);
  2630. else if (prev_tx_rate && !tx_rate)
  2631. omap_mcbsp_rx_stop(s);
  2632. }
  2633. static uint64_t omap_mcbsp_read(void *opaque, target_phys_addr_t addr,
  2634. unsigned size)
  2635. {
  2636. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2637. int offset = addr & OMAP_MPUI_REG_MASK;
  2638. uint16_t ret;
  2639. if (size != 2) {
  2640. return omap_badwidth_read16(opaque, addr);
  2641. }
  2642. switch (offset) {
  2643. case 0x00: /* DRR2 */
  2644. if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
  2645. return 0x0000;
  2646. /* Fall through. */
  2647. case 0x02: /* DRR1 */
  2648. if (s->rx_req < 2) {
  2649. printf("%s: Rx FIFO underrun\n", __FUNCTION__);
  2650. omap_mcbsp_rx_done(s);
  2651. } else {
  2652. s->tx_req -= 2;
  2653. if (s->codec && s->codec->in.len >= 2) {
  2654. ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
  2655. ret |= s->codec->in.fifo[s->codec->in.start ++];
  2656. s->codec->in.len -= 2;
  2657. } else
  2658. ret = 0x0000;
  2659. if (!s->tx_req)
  2660. omap_mcbsp_rx_done(s);
  2661. return ret;
  2662. }
  2663. return 0x0000;
  2664. case 0x04: /* DXR2 */
  2665. case 0x06: /* DXR1 */
  2666. return 0x0000;
  2667. case 0x08: /* SPCR2 */
  2668. return s->spcr[1];
  2669. case 0x0a: /* SPCR1 */
  2670. return s->spcr[0];
  2671. case 0x0c: /* RCR2 */
  2672. return s->rcr[1];
  2673. case 0x0e: /* RCR1 */
  2674. return s->rcr[0];
  2675. case 0x10: /* XCR2 */
  2676. return s->xcr[1];
  2677. case 0x12: /* XCR1 */
  2678. return s->xcr[0];
  2679. case 0x14: /* SRGR2 */
  2680. return s->srgr[1];
  2681. case 0x16: /* SRGR1 */
  2682. return s->srgr[0];
  2683. case 0x18: /* MCR2 */
  2684. return s->mcr[1];
  2685. case 0x1a: /* MCR1 */
  2686. return s->mcr[0];
  2687. case 0x1c: /* RCERA */
  2688. return s->rcer[0];
  2689. case 0x1e: /* RCERB */
  2690. return s->rcer[1];
  2691. case 0x20: /* XCERA */
  2692. return s->xcer[0];
  2693. case 0x22: /* XCERB */
  2694. return s->xcer[1];
  2695. case 0x24: /* PCR0 */
  2696. return s->pcr;
  2697. case 0x26: /* RCERC */
  2698. return s->rcer[2];
  2699. case 0x28: /* RCERD */
  2700. return s->rcer[3];
  2701. case 0x2a: /* XCERC */
  2702. return s->xcer[2];
  2703. case 0x2c: /* XCERD */
  2704. return s->xcer[3];
  2705. case 0x2e: /* RCERE */
  2706. return s->rcer[4];
  2707. case 0x30: /* RCERF */
  2708. return s->rcer[5];
  2709. case 0x32: /* XCERE */
  2710. return s->xcer[4];
  2711. case 0x34: /* XCERF */
  2712. return s->xcer[5];
  2713. case 0x36: /* RCERG */
  2714. return s->rcer[6];
  2715. case 0x38: /* RCERH */
  2716. return s->rcer[7];
  2717. case 0x3a: /* XCERG */
  2718. return s->xcer[6];
  2719. case 0x3c: /* XCERH */
  2720. return s->xcer[7];
  2721. }
  2722. OMAP_BAD_REG(addr);
  2723. return 0;
  2724. }
  2725. static void omap_mcbsp_writeh(void *opaque, target_phys_addr_t addr,
  2726. uint32_t value)
  2727. {
  2728. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2729. int offset = addr & OMAP_MPUI_REG_MASK;
  2730. switch (offset) {
  2731. case 0x00: /* DRR2 */
  2732. case 0x02: /* DRR1 */
  2733. OMAP_RO_REG(addr);
  2734. return;
  2735. case 0x04: /* DXR2 */
  2736. if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
  2737. return;
  2738. /* Fall through. */
  2739. case 0x06: /* DXR1 */
  2740. if (s->tx_req > 1) {
  2741. s->tx_req -= 2;
  2742. if (s->codec && s->codec->cts) {
  2743. s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
  2744. s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
  2745. }
  2746. if (s->tx_req < 2)
  2747. omap_mcbsp_tx_done(s);
  2748. } else
  2749. printf("%s: Tx FIFO overrun\n", __FUNCTION__);
  2750. return;
  2751. case 0x08: /* SPCR2 */
  2752. s->spcr[1] &= 0x0002;
  2753. s->spcr[1] |= 0x03f9 & value;
  2754. s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
  2755. if (~value & 1) /* XRST */
  2756. s->spcr[1] &= ~6;
  2757. omap_mcbsp_req_update(s);
  2758. return;
  2759. case 0x0a: /* SPCR1 */
  2760. s->spcr[0] &= 0x0006;
  2761. s->spcr[0] |= 0xf8f9 & value;
  2762. if (value & (1 << 15)) /* DLB */
  2763. printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
  2764. if (~value & 1) { /* RRST */
  2765. s->spcr[0] &= ~6;
  2766. s->rx_req = 0;
  2767. omap_mcbsp_rx_done(s);
  2768. }
  2769. omap_mcbsp_req_update(s);
  2770. return;
  2771. case 0x0c: /* RCR2 */
  2772. s->rcr[1] = value & 0xffff;
  2773. return;
  2774. case 0x0e: /* RCR1 */
  2775. s->rcr[0] = value & 0x7fe0;
  2776. return;
  2777. case 0x10: /* XCR2 */
  2778. s->xcr[1] = value & 0xffff;
  2779. return;
  2780. case 0x12: /* XCR1 */
  2781. s->xcr[0] = value & 0x7fe0;
  2782. return;
  2783. case 0x14: /* SRGR2 */
  2784. s->srgr[1] = value & 0xffff;
  2785. omap_mcbsp_req_update(s);
  2786. return;
  2787. case 0x16: /* SRGR1 */
  2788. s->srgr[0] = value & 0xffff;
  2789. omap_mcbsp_req_update(s);
  2790. return;
  2791. case 0x18: /* MCR2 */
  2792. s->mcr[1] = value & 0x03e3;
  2793. if (value & 3) /* XMCM */
  2794. printf("%s: Tx channel selection mode enable attempt\n",
  2795. __FUNCTION__);
  2796. return;
  2797. case 0x1a: /* MCR1 */
  2798. s->mcr[0] = value & 0x03e1;
  2799. if (value & 1) /* RMCM */
  2800. printf("%s: Rx channel selection mode enable attempt\n",
  2801. __FUNCTION__);
  2802. return;
  2803. case 0x1c: /* RCERA */
  2804. s->rcer[0] = value & 0xffff;
  2805. return;
  2806. case 0x1e: /* RCERB */
  2807. s->rcer[1] = value & 0xffff;
  2808. return;
  2809. case 0x20: /* XCERA */
  2810. s->xcer[0] = value & 0xffff;
  2811. return;
  2812. case 0x22: /* XCERB */
  2813. s->xcer[1] = value & 0xffff;
  2814. return;
  2815. case 0x24: /* PCR0 */
  2816. s->pcr = value & 0x7faf;
  2817. return;
  2818. case 0x26: /* RCERC */
  2819. s->rcer[2] = value & 0xffff;
  2820. return;
  2821. case 0x28: /* RCERD */
  2822. s->rcer[3] = value & 0xffff;
  2823. return;
  2824. case 0x2a: /* XCERC */
  2825. s->xcer[2] = value & 0xffff;
  2826. return;
  2827. case 0x2c: /* XCERD */
  2828. s->xcer[3] = value & 0xffff;
  2829. return;
  2830. case 0x2e: /* RCERE */
  2831. s->rcer[4] = value & 0xffff;
  2832. return;
  2833. case 0x30: /* RCERF */
  2834. s->rcer[5] = value & 0xffff;
  2835. return;
  2836. case 0x32: /* XCERE */
  2837. s->xcer[4] = value & 0xffff;
  2838. return;
  2839. case 0x34: /* XCERF */
  2840. s->xcer[5] = value & 0xffff;
  2841. return;
  2842. case 0x36: /* RCERG */
  2843. s->rcer[6] = value & 0xffff;
  2844. return;
  2845. case 0x38: /* RCERH */
  2846. s->rcer[7] = value & 0xffff;
  2847. return;
  2848. case 0x3a: /* XCERG */
  2849. s->xcer[6] = value & 0xffff;
  2850. return;
  2851. case 0x3c: /* XCERH */
  2852. s->xcer[7] = value & 0xffff;
  2853. return;
  2854. }
  2855. OMAP_BAD_REG(addr);
  2856. }
  2857. static void omap_mcbsp_writew(void *opaque, target_phys_addr_t addr,
  2858. uint32_t value)
  2859. {
  2860. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2861. int offset = addr & OMAP_MPUI_REG_MASK;
  2862. if (offset == 0x04) { /* DXR */
  2863. if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
  2864. return;
  2865. if (s->tx_req > 3) {
  2866. s->tx_req -= 4;
  2867. if (s->codec && s->codec->cts) {
  2868. s->codec->out.fifo[s->codec->out.len ++] =
  2869. (value >> 24) & 0xff;
  2870. s->codec->out.fifo[s->codec->out.len ++] =
  2871. (value >> 16) & 0xff;
  2872. s->codec->out.fifo[s->codec->out.len ++] =
  2873. (value >> 8) & 0xff;
  2874. s->codec->out.fifo[s->codec->out.len ++] =
  2875. (value >> 0) & 0xff;
  2876. }
  2877. if (s->tx_req < 4)
  2878. omap_mcbsp_tx_done(s);
  2879. } else
  2880. printf("%s: Tx FIFO overrun\n", __FUNCTION__);
  2881. return;
  2882. }
  2883. omap_badwidth_write16(opaque, addr, value);
  2884. }
  2885. static void omap_mcbsp_write(void *opaque, target_phys_addr_t addr,
  2886. uint64_t value, unsigned size)
  2887. {
  2888. switch (size) {
  2889. case 2: return omap_mcbsp_writeh(opaque, addr, value);
  2890. case 4: return omap_mcbsp_writew(opaque, addr, value);
  2891. default: return omap_badwidth_write16(opaque, addr, value);
  2892. }
  2893. }
  2894. static const MemoryRegionOps omap_mcbsp_ops = {
  2895. .read = omap_mcbsp_read,
  2896. .write = omap_mcbsp_write,
  2897. .endianness = DEVICE_NATIVE_ENDIAN,
  2898. };
  2899. static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
  2900. {
  2901. memset(&s->spcr, 0, sizeof(s->spcr));
  2902. memset(&s->rcr, 0, sizeof(s->rcr));
  2903. memset(&s->xcr, 0, sizeof(s->xcr));
  2904. s->srgr[0] = 0x0001;
  2905. s->srgr[1] = 0x2000;
  2906. memset(&s->mcr, 0, sizeof(s->mcr));
  2907. memset(&s->pcr, 0, sizeof(s->pcr));
  2908. memset(&s->rcer, 0, sizeof(s->rcer));
  2909. memset(&s->xcer, 0, sizeof(s->xcer));
  2910. s->tx_req = 0;
  2911. s->rx_req = 0;
  2912. s->tx_rate = 0;
  2913. s->rx_rate = 0;
  2914. qemu_del_timer(s->source_timer);
  2915. qemu_del_timer(s->sink_timer);
  2916. }
  2917. static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
  2918. target_phys_addr_t base,
  2919. qemu_irq txirq, qemu_irq rxirq,
  2920. qemu_irq *dma, omap_clk clk)
  2921. {
  2922. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
  2923. g_malloc0(sizeof(struct omap_mcbsp_s));
  2924. s->txirq = txirq;
  2925. s->rxirq = rxirq;
  2926. s->txdrq = dma[0];
  2927. s->rxdrq = dma[1];
  2928. s->sink_timer = qemu_new_timer_ns(vm_clock, omap_mcbsp_sink_tick, s);
  2929. s->source_timer = qemu_new_timer_ns(vm_clock, omap_mcbsp_source_tick, s);
  2930. omap_mcbsp_reset(s);
  2931. memory_region_init_io(&s->iomem, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
  2932. memory_region_add_subregion(system_memory, base, &s->iomem);
  2933. return s;
  2934. }
  2935. static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
  2936. {
  2937. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2938. if (s->rx_rate) {
  2939. s->rx_req = s->codec->in.len;
  2940. omap_mcbsp_rx_newdata(s);
  2941. }
  2942. }
  2943. static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
  2944. {
  2945. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2946. if (s->tx_rate) {
  2947. s->tx_req = s->codec->out.size;
  2948. omap_mcbsp_tx_newdata(s);
  2949. }
  2950. }
  2951. void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
  2952. {
  2953. s->codec = slave;
  2954. slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
  2955. slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
  2956. }
  2957. /* LED Pulse Generators */
  2958. struct omap_lpg_s {
  2959. MemoryRegion iomem;
  2960. QEMUTimer *tm;
  2961. uint8_t control;
  2962. uint8_t power;
  2963. int64_t on;
  2964. int64_t period;
  2965. int clk;
  2966. int cycle;
  2967. };
  2968. static void omap_lpg_tick(void *opaque)
  2969. {
  2970. struct omap_lpg_s *s = opaque;
  2971. if (s->cycle)
  2972. qemu_mod_timer(s->tm, qemu_get_clock_ms(rt_clock) + s->period - s->on);
  2973. else
  2974. qemu_mod_timer(s->tm, qemu_get_clock_ms(rt_clock) + s->on);
  2975. s->cycle = !s->cycle;
  2976. printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
  2977. }
  2978. static void omap_lpg_update(struct omap_lpg_s *s)
  2979. {
  2980. int64_t on, period = 1, ticks = 1000;
  2981. static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
  2982. if (~s->control & (1 << 6)) /* LPGRES */
  2983. on = 0;
  2984. else if (s->control & (1 << 7)) /* PERM_ON */
  2985. on = period;
  2986. else {
  2987. period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
  2988. 256 / 32);
  2989. on = (s->clk && s->power) ? muldiv64(ticks,
  2990. per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
  2991. }
  2992. qemu_del_timer(s->tm);
  2993. if (on == period && s->on < s->period)
  2994. printf("%s: LED is on\n", __FUNCTION__);
  2995. else if (on == 0 && s->on)
  2996. printf("%s: LED is off\n", __FUNCTION__);
  2997. else if (on && (on != s->on || period != s->period)) {
  2998. s->cycle = 0;
  2999. s->on = on;
  3000. s->period = period;
  3001. omap_lpg_tick(s);
  3002. return;
  3003. }
  3004. s->on = on;
  3005. s->period = period;
  3006. }
  3007. static void omap_lpg_reset(struct omap_lpg_s *s)
  3008. {
  3009. s->control = 0x00;
  3010. s->power = 0x00;
  3011. s->clk = 1;
  3012. omap_lpg_update(s);
  3013. }
  3014. static uint64_t omap_lpg_read(void *opaque, target_phys_addr_t addr,
  3015. unsigned size)
  3016. {
  3017. struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
  3018. int offset = addr & OMAP_MPUI_REG_MASK;
  3019. if (size != 1) {
  3020. return omap_badwidth_read8(opaque, addr);
  3021. }
  3022. switch (offset) {
  3023. case 0x00: /* LCR */
  3024. return s->control;
  3025. case 0x04: /* PMR */
  3026. return s->power;
  3027. }
  3028. OMAP_BAD_REG(addr);
  3029. return 0;
  3030. }
  3031. static void omap_lpg_write(void *opaque, target_phys_addr_t addr,
  3032. uint64_t value, unsigned size)
  3033. {
  3034. struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
  3035. int offset = addr & OMAP_MPUI_REG_MASK;
  3036. if (size != 1) {
  3037. return omap_badwidth_write8(opaque, addr, value);
  3038. }
  3039. switch (offset) {
  3040. case 0x00: /* LCR */
  3041. if (~value & (1 << 6)) /* LPGRES */
  3042. omap_lpg_reset(s);
  3043. s->control = value & 0xff;
  3044. omap_lpg_update(s);
  3045. return;
  3046. case 0x04: /* PMR */
  3047. s->power = value & 0x01;
  3048. omap_lpg_update(s);
  3049. return;
  3050. default:
  3051. OMAP_BAD_REG(addr);
  3052. return;
  3053. }
  3054. }
  3055. static const MemoryRegionOps omap_lpg_ops = {
  3056. .read = omap_lpg_read,
  3057. .write = omap_lpg_write,
  3058. .endianness = DEVICE_NATIVE_ENDIAN,
  3059. };
  3060. static void omap_lpg_clk_update(void *opaque, int line, int on)
  3061. {
  3062. struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
  3063. s->clk = on;
  3064. omap_lpg_update(s);
  3065. }
  3066. static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
  3067. target_phys_addr_t base, omap_clk clk)
  3068. {
  3069. struct omap_lpg_s *s = (struct omap_lpg_s *)
  3070. g_malloc0(sizeof(struct omap_lpg_s));
  3071. s->tm = qemu_new_timer_ms(rt_clock, omap_lpg_tick, s);
  3072. omap_lpg_reset(s);
  3073. memory_region_init_io(&s->iomem, &omap_lpg_ops, s, "omap-lpg", 0x800);
  3074. memory_region_add_subregion(system_memory, base, &s->iomem);
  3075. omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
  3076. return s;
  3077. }
  3078. /* MPUI Peripheral Bridge configuration */
  3079. static uint64_t omap_mpui_io_read(void *opaque, target_phys_addr_t addr,
  3080. unsigned size)
  3081. {
  3082. if (size != 2) {
  3083. return omap_badwidth_read16(opaque, addr);
  3084. }
  3085. if (addr == OMAP_MPUI_BASE) /* CMR */
  3086. return 0xfe4d;
  3087. OMAP_BAD_REG(addr);
  3088. return 0;
  3089. }
  3090. static void omap_mpui_io_write(void *opaque, target_phys_addr_t addr,
  3091. uint64_t value, unsigned size)
  3092. {
  3093. /* FIXME: infinite loop */
  3094. omap_badwidth_write16(opaque, addr, value);
  3095. }
  3096. static const MemoryRegionOps omap_mpui_io_ops = {
  3097. .read = omap_mpui_io_read,
  3098. .write = omap_mpui_io_write,
  3099. .endianness = DEVICE_NATIVE_ENDIAN,
  3100. };
  3101. static void omap_setup_mpui_io(MemoryRegion *system_memory,
  3102. struct omap_mpu_state_s *mpu)
  3103. {
  3104. memory_region_init_io(&mpu->mpui_io_iomem, &omap_mpui_io_ops, mpu,
  3105. "omap-mpui-io", 0x7fff);
  3106. memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
  3107. &mpu->mpui_io_iomem);
  3108. }
  3109. /* General chip reset */
  3110. static void omap1_mpu_reset(void *opaque)
  3111. {
  3112. struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
  3113. omap_dma_reset(mpu->dma);
  3114. omap_mpu_timer_reset(mpu->timer[0]);
  3115. omap_mpu_timer_reset(mpu->timer[1]);
  3116. omap_mpu_timer_reset(mpu->timer[2]);
  3117. omap_wd_timer_reset(mpu->wdt);
  3118. omap_os_timer_reset(mpu->os_timer);
  3119. omap_lcdc_reset(mpu->lcd);
  3120. omap_ulpd_pm_reset(mpu);
  3121. omap_pin_cfg_reset(mpu);
  3122. omap_mpui_reset(mpu);
  3123. omap_tipb_bridge_reset(mpu->private_tipb);
  3124. omap_tipb_bridge_reset(mpu->public_tipb);
  3125. omap_dpll_reset(&mpu->dpll[0]);
  3126. omap_dpll_reset(&mpu->dpll[1]);
  3127. omap_dpll_reset(&mpu->dpll[2]);
  3128. omap_uart_reset(mpu->uart[0]);
  3129. omap_uart_reset(mpu->uart[1]);
  3130. omap_uart_reset(mpu->uart[2]);
  3131. omap_mmc_reset(mpu->mmc);
  3132. omap_mpuio_reset(mpu->mpuio);
  3133. omap_uwire_reset(mpu->microwire);
  3134. omap_pwl_reset(mpu);
  3135. omap_pwt_reset(mpu);
  3136. omap_i2c_reset(mpu->i2c[0]);
  3137. omap_rtc_reset(mpu->rtc);
  3138. omap_mcbsp_reset(mpu->mcbsp1);
  3139. omap_mcbsp_reset(mpu->mcbsp2);
  3140. omap_mcbsp_reset(mpu->mcbsp3);
  3141. omap_lpg_reset(mpu->led[0]);
  3142. omap_lpg_reset(mpu->led[1]);
  3143. omap_clkm_reset(mpu);
  3144. cpu_reset(mpu->env);
  3145. }
  3146. static const struct omap_map_s {
  3147. target_phys_addr_t phys_dsp;
  3148. target_phys_addr_t phys_mpu;
  3149. uint32_t size;
  3150. const char *name;
  3151. } omap15xx_dsp_mm[] = {
  3152. /* Strobe 0 */
  3153. { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
  3154. { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
  3155. { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
  3156. { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
  3157. { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
  3158. { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
  3159. { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
  3160. { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
  3161. { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
  3162. { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
  3163. { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
  3164. { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
  3165. { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
  3166. { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
  3167. { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
  3168. { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
  3169. { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
  3170. /* Strobe 1 */
  3171. { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
  3172. { 0 }
  3173. };
  3174. static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
  3175. const struct omap_map_s *map)
  3176. {
  3177. MemoryRegion *io;
  3178. for (; map->phys_dsp; map ++) {
  3179. io = g_new(MemoryRegion, 1);
  3180. memory_region_init_alias(io, map->name,
  3181. system_memory, map->phys_mpu, map->size);
  3182. memory_region_add_subregion(system_memory, map->phys_dsp, io);
  3183. }
  3184. }
  3185. void omap_mpu_wakeup(void *opaque, int irq, int req)
  3186. {
  3187. struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
  3188. if (mpu->env->halted)
  3189. cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
  3190. }
  3191. static const struct dma_irq_map omap1_dma_irq_map[] = {
  3192. { 0, OMAP_INT_DMA_CH0_6 },
  3193. { 0, OMAP_INT_DMA_CH1_7 },
  3194. { 0, OMAP_INT_DMA_CH2_8 },
  3195. { 0, OMAP_INT_DMA_CH3 },
  3196. { 0, OMAP_INT_DMA_CH4 },
  3197. { 0, OMAP_INT_DMA_CH5 },
  3198. { 1, OMAP_INT_1610_DMA_CH6 },
  3199. { 1, OMAP_INT_1610_DMA_CH7 },
  3200. { 1, OMAP_INT_1610_DMA_CH8 },
  3201. { 1, OMAP_INT_1610_DMA_CH9 },
  3202. { 1, OMAP_INT_1610_DMA_CH10 },
  3203. { 1, OMAP_INT_1610_DMA_CH11 },
  3204. { 1, OMAP_INT_1610_DMA_CH12 },
  3205. { 1, OMAP_INT_1610_DMA_CH13 },
  3206. { 1, OMAP_INT_1610_DMA_CH14 },
  3207. { 1, OMAP_INT_1610_DMA_CH15 }
  3208. };
  3209. /* DMA ports for OMAP1 */
  3210. static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
  3211. target_phys_addr_t addr)
  3212. {
  3213. return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
  3214. }
  3215. static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
  3216. target_phys_addr_t addr)
  3217. {
  3218. return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
  3219. addr);
  3220. }
  3221. static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
  3222. target_phys_addr_t addr)
  3223. {
  3224. return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
  3225. }
  3226. static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
  3227. target_phys_addr_t addr)
  3228. {
  3229. return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
  3230. }
  3231. static int omap_validate_local_addr(struct omap_mpu_state_s *s,
  3232. target_phys_addr_t addr)
  3233. {
  3234. return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
  3235. }
  3236. static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
  3237. target_phys_addr_t addr)
  3238. {
  3239. return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
  3240. }
  3241. struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
  3242. unsigned long sdram_size,
  3243. const char *core)
  3244. {
  3245. int i;
  3246. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
  3247. g_malloc0(sizeof(struct omap_mpu_state_s));
  3248. qemu_irq *cpu_irq;
  3249. qemu_irq dma_irqs[6];
  3250. DriveInfo *dinfo;
  3251. SysBusDevice *busdev;
  3252. if (!core)
  3253. core = "ti925t";
  3254. /* Core */
  3255. s->mpu_model = omap310;
  3256. s->env = cpu_init(core);
  3257. if (!s->env) {
  3258. fprintf(stderr, "Unable to find CPU definition\n");
  3259. exit(1);
  3260. }
  3261. s->sdram_size = sdram_size;
  3262. s->sram_size = OMAP15XX_SRAM_SIZE;
  3263. s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
  3264. /* Clocks */
  3265. omap_clk_init(s);
  3266. /* Memory-mapped stuff */
  3267. memory_region_init_ram(&s->emiff_ram, NULL, "omap1.dram", s->sdram_size);
  3268. memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
  3269. memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size);
  3270. memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
  3271. omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
  3272. cpu_irq = arm_pic_init_cpu(s->env);
  3273. s->ih[0] = qdev_create(NULL, "omap-intc");
  3274. qdev_prop_set_uint32(s->ih[0], "size", 0x100);
  3275. qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
  3276. qdev_init_nofail(s->ih[0]);
  3277. busdev = sysbus_from_qdev(s->ih[0]);
  3278. sysbus_connect_irq(busdev, 0, cpu_irq[ARM_PIC_CPU_IRQ]);
  3279. sysbus_connect_irq(busdev, 1, cpu_irq[ARM_PIC_CPU_FIQ]);
  3280. sysbus_mmio_map(busdev, 0, 0xfffecb00);
  3281. s->ih[1] = qdev_create(NULL, "omap-intc");
  3282. qdev_prop_set_uint32(s->ih[1], "size", 0x800);
  3283. qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
  3284. qdev_init_nofail(s->ih[1]);
  3285. busdev = sysbus_from_qdev(s->ih[1]);
  3286. sysbus_connect_irq(busdev, 0,
  3287. qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
  3288. /* The second interrupt controller's FIQ output is not wired up */
  3289. sysbus_mmio_map(busdev, 0, 0xfffe0000);
  3290. for (i = 0; i < 6; i++) {
  3291. dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
  3292. omap1_dma_irq_map[i].intr);
  3293. }
  3294. s->dma = omap_dma_init(0xfffed800, dma_irqs,
  3295. qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
  3296. s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
  3297. s->port[emiff ].addr_valid = omap_validate_emiff_addr;
  3298. s->port[emifs ].addr_valid = omap_validate_emifs_addr;
  3299. s->port[imif ].addr_valid = omap_validate_imif_addr;
  3300. s->port[tipb ].addr_valid = omap_validate_tipb_addr;
  3301. s->port[local ].addr_valid = omap_validate_local_addr;
  3302. s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
  3303. /* Register SDRAM and SRAM DMA ports for fast transfers. */
  3304. soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
  3305. OMAP_EMIFF_BASE, s->sdram_size);
  3306. soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
  3307. OMAP_IMIF_BASE, s->sram_size);
  3308. s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
  3309. qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
  3310. omap_findclk(s, "mputim_ck"));
  3311. s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
  3312. qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
  3313. omap_findclk(s, "mputim_ck"));
  3314. s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
  3315. qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
  3316. omap_findclk(s, "mputim_ck"));
  3317. s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
  3318. qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
  3319. omap_findclk(s, "armwdt_ck"));
  3320. s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
  3321. qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
  3322. omap_findclk(s, "clk32-kHz"));
  3323. s->lcd = omap_lcdc_init(0xfffec000,
  3324. qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
  3325. omap_dma_get_lcdch(s->dma),
  3326. omap_findclk(s, "lcd_ck"));
  3327. omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
  3328. omap_pin_cfg_init(system_memory, 0xfffe1000, s);
  3329. omap_id_init(system_memory, s);
  3330. omap_mpui_init(system_memory, 0xfffec900, s);
  3331. s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
  3332. qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
  3333. omap_findclk(s, "tipb_ck"));
  3334. s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
  3335. qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
  3336. omap_findclk(s, "tipb_ck"));
  3337. omap_tcmi_init(system_memory, 0xfffecc00, s);
  3338. s->uart[0] = omap_uart_init(0xfffb0000,
  3339. qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
  3340. omap_findclk(s, "uart1_ck"),
  3341. omap_findclk(s, "uart1_ck"),
  3342. s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
  3343. "uart1",
  3344. serial_hds[0]);
  3345. s->uart[1] = omap_uart_init(0xfffb0800,
  3346. qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
  3347. omap_findclk(s, "uart2_ck"),
  3348. omap_findclk(s, "uart2_ck"),
  3349. s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
  3350. "uart2",
  3351. serial_hds[0] ? serial_hds[1] : NULL);
  3352. s->uart[2] = omap_uart_init(0xfffb9800,
  3353. qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
  3354. omap_findclk(s, "uart3_ck"),
  3355. omap_findclk(s, "uart3_ck"),
  3356. s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
  3357. "uart3",
  3358. serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
  3359. omap_dpll_init(system_memory,
  3360. &s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
  3361. omap_dpll_init(system_memory,
  3362. &s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
  3363. omap_dpll_init(system_memory,
  3364. &s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
  3365. dinfo = drive_get(IF_SD, 0, 0);
  3366. if (!dinfo) {
  3367. fprintf(stderr, "qemu: missing SecureDigital device\n");
  3368. exit(1);
  3369. }
  3370. s->mmc = omap_mmc_init(0xfffb7800, dinfo->bdrv,
  3371. qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
  3372. &s->drq[OMAP_DMA_MMC_TX],
  3373. omap_findclk(s, "mmc_ck"));
  3374. s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
  3375. qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
  3376. qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
  3377. s->wakeup, omap_findclk(s, "clk32-kHz"));
  3378. s->gpio = qdev_create(NULL, "omap-gpio");
  3379. qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
  3380. qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
  3381. qdev_init_nofail(s->gpio);
  3382. sysbus_connect_irq(sysbus_from_qdev(s->gpio), 0,
  3383. qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
  3384. sysbus_mmio_map(sysbus_from_qdev(s->gpio), 0, 0xfffce000);
  3385. s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
  3386. qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
  3387. qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
  3388. s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
  3389. omap_pwl_init(system_memory, 0xfffb5800, s, omap_findclk(s, "armxor_ck"));
  3390. omap_pwt_init(system_memory, 0xfffb6000, s, omap_findclk(s, "armxor_ck"));
  3391. s->i2c[0] = omap_i2c_init(0xfffb3800,
  3392. qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C),
  3393. &s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck"));
  3394. s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
  3395. qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
  3396. qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
  3397. omap_findclk(s, "clk32-kHz"));
  3398. s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
  3399. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
  3400. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
  3401. &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
  3402. s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
  3403. qdev_get_gpio_in(s->ih[0],
  3404. OMAP_INT_310_McBSP2_TX),
  3405. qdev_get_gpio_in(s->ih[0],
  3406. OMAP_INT_310_McBSP2_RX),
  3407. &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
  3408. s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
  3409. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
  3410. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
  3411. &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
  3412. s->led[0] = omap_lpg_init(system_memory,
  3413. 0xfffbd000, omap_findclk(s, "clk32-kHz"));
  3414. s->led[1] = omap_lpg_init(system_memory,
  3415. 0xfffbd800, omap_findclk(s, "clk32-kHz"));
  3416. /* Register mappings not currenlty implemented:
  3417. * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
  3418. * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
  3419. * USB W2FC fffb4000 - fffb47ff
  3420. * Camera Interface fffb6800 - fffb6fff
  3421. * USB Host fffba000 - fffba7ff
  3422. * FAC fffba800 - fffbafff
  3423. * HDQ/1-Wire fffbc000 - fffbc7ff
  3424. * TIPB switches fffbc800 - fffbcfff
  3425. * Mailbox fffcf000 - fffcf7ff
  3426. * Local bus IF fffec100 - fffec1ff
  3427. * Local bus MMU fffec200 - fffec2ff
  3428. * DSP MMU fffed200 - fffed2ff
  3429. */
  3430. omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
  3431. omap_setup_mpui_io(system_memory, s);
  3432. qemu_register_reset(omap1_mpu_reset, s);
  3433. return s;
  3434. }