2
0

ne2000.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809
  1. /*
  2. * QEMU NE2000 emulation
  3. *
  4. * Copyright (c) 2003-2004 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "hw.h"
  25. #include "pci.h"
  26. #include "net.h"
  27. #include "ne2000.h"
  28. #include "loader.h"
  29. #include "sysemu.h"
  30. /* debug NE2000 card */
  31. //#define DEBUG_NE2000
  32. #define MAX_ETH_FRAME_SIZE 1514
  33. #define E8390_CMD 0x00 /* The command register (for all pages) */
  34. /* Page 0 register offsets. */
  35. #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
  36. #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
  37. #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
  38. #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
  39. #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
  40. #define EN0_TSR 0x04 /* Transmit status reg RD */
  41. #define EN0_TPSR 0x04 /* Transmit starting page WR */
  42. #define EN0_NCR 0x05 /* Number of collision reg RD */
  43. #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
  44. #define EN0_FIFO 0x06 /* FIFO RD */
  45. #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
  46. #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
  47. #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
  48. #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
  49. #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
  50. #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
  51. #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
  52. #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
  53. #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
  54. #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
  55. #define EN0_RSR 0x0c /* rx status reg RD */
  56. #define EN0_RXCR 0x0c /* RX configuration reg WR */
  57. #define EN0_TXCR 0x0d /* TX configuration reg WR */
  58. #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
  59. #define EN0_DCFG 0x0e /* Data configuration reg WR */
  60. #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
  61. #define EN0_IMR 0x0f /* Interrupt mask reg WR */
  62. #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
  63. #define EN1_PHYS 0x11
  64. #define EN1_CURPAG 0x17
  65. #define EN1_MULT 0x18
  66. #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
  67. #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
  68. #define EN3_CONFIG0 0x33
  69. #define EN3_CONFIG1 0x34
  70. #define EN3_CONFIG2 0x35
  71. #define EN3_CONFIG3 0x36
  72. /* Register accessed at EN_CMD, the 8390 base addr. */
  73. #define E8390_STOP 0x01 /* Stop and reset the chip */
  74. #define E8390_START 0x02 /* Start the chip, clear reset */
  75. #define E8390_TRANS 0x04 /* Transmit a frame */
  76. #define E8390_RREAD 0x08 /* Remote read */
  77. #define E8390_RWRITE 0x10 /* Remote write */
  78. #define E8390_NODMA 0x20 /* Remote DMA */
  79. #define E8390_PAGE0 0x00 /* Select page chip registers */
  80. #define E8390_PAGE1 0x40 /* using the two high-order bits */
  81. #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
  82. /* Bits in EN0_ISR - Interrupt status register */
  83. #define ENISR_RX 0x01 /* Receiver, no error */
  84. #define ENISR_TX 0x02 /* Transmitter, no error */
  85. #define ENISR_RX_ERR 0x04 /* Receiver, with error */
  86. #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
  87. #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
  88. #define ENISR_COUNTERS 0x20 /* Counters need emptying */
  89. #define ENISR_RDC 0x40 /* remote dma complete */
  90. #define ENISR_RESET 0x80 /* Reset completed */
  91. #define ENISR_ALL 0x3f /* Interrupts we will enable */
  92. /* Bits in received packet status byte and EN0_RSR*/
  93. #define ENRSR_RXOK 0x01 /* Received a good packet */
  94. #define ENRSR_CRC 0x02 /* CRC error */
  95. #define ENRSR_FAE 0x04 /* frame alignment error */
  96. #define ENRSR_FO 0x08 /* FIFO overrun */
  97. #define ENRSR_MPA 0x10 /* missed pkt */
  98. #define ENRSR_PHY 0x20 /* physical/multicast address */
  99. #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
  100. #define ENRSR_DEF 0x80 /* deferring */
  101. /* Transmitted packet status, EN0_TSR. */
  102. #define ENTSR_PTX 0x01 /* Packet transmitted without error */
  103. #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
  104. #define ENTSR_COL 0x04 /* The transmit collided at least once. */
  105. #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
  106. #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
  107. #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
  108. #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
  109. #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
  110. typedef struct PCINE2000State {
  111. PCIDevice dev;
  112. NE2000State ne2000;
  113. } PCINE2000State;
  114. void ne2000_reset(NE2000State *s)
  115. {
  116. int i;
  117. s->isr = ENISR_RESET;
  118. memcpy(s->mem, &s->c.macaddr, 6);
  119. s->mem[14] = 0x57;
  120. s->mem[15] = 0x57;
  121. /* duplicate prom data */
  122. for(i = 15;i >= 0; i--) {
  123. s->mem[2 * i] = s->mem[i];
  124. s->mem[2 * i + 1] = s->mem[i];
  125. }
  126. }
  127. static void ne2000_update_irq(NE2000State *s)
  128. {
  129. int isr;
  130. isr = (s->isr & s->imr) & 0x7f;
  131. #if defined(DEBUG_NE2000)
  132. printf("NE2000: Set IRQ to %d (%02x %02x)\n",
  133. isr ? 1 : 0, s->isr, s->imr);
  134. #endif
  135. qemu_set_irq(s->irq, (isr != 0));
  136. }
  137. #define POLYNOMIAL 0x04c11db6
  138. /* From FreeBSD */
  139. /* XXX: optimize */
  140. static int compute_mcast_idx(const uint8_t *ep)
  141. {
  142. uint32_t crc;
  143. int carry, i, j;
  144. uint8_t b;
  145. crc = 0xffffffff;
  146. for (i = 0; i < 6; i++) {
  147. b = *ep++;
  148. for (j = 0; j < 8; j++) {
  149. carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
  150. crc <<= 1;
  151. b >>= 1;
  152. if (carry)
  153. crc = ((crc ^ POLYNOMIAL) | carry);
  154. }
  155. }
  156. return (crc >> 26);
  157. }
  158. static int ne2000_buffer_full(NE2000State *s)
  159. {
  160. int avail, index, boundary;
  161. index = s->curpag << 8;
  162. boundary = s->boundary << 8;
  163. if (index < boundary)
  164. avail = boundary - index;
  165. else
  166. avail = (s->stop - s->start) - (index - boundary);
  167. if (avail < (MAX_ETH_FRAME_SIZE + 4))
  168. return 1;
  169. return 0;
  170. }
  171. int ne2000_can_receive(VLANClientState *nc)
  172. {
  173. NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
  174. if (s->cmd & E8390_STOP)
  175. return 1;
  176. return !ne2000_buffer_full(s);
  177. }
  178. #define MIN_BUF_SIZE 60
  179. ssize_t ne2000_receive(VLANClientState *nc, const uint8_t *buf, size_t size_)
  180. {
  181. NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
  182. int size = size_;
  183. uint8_t *p;
  184. unsigned int total_len, next, avail, len, index, mcast_idx;
  185. uint8_t buf1[60];
  186. static const uint8_t broadcast_macaddr[6] =
  187. { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
  188. #if defined(DEBUG_NE2000)
  189. printf("NE2000: received len=%d\n", size);
  190. #endif
  191. if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
  192. return -1;
  193. /* XXX: check this */
  194. if (s->rxcr & 0x10) {
  195. /* promiscuous: receive all */
  196. } else {
  197. if (!memcmp(buf, broadcast_macaddr, 6)) {
  198. /* broadcast address */
  199. if (!(s->rxcr & 0x04))
  200. return size;
  201. } else if (buf[0] & 0x01) {
  202. /* multicast */
  203. if (!(s->rxcr & 0x08))
  204. return size;
  205. mcast_idx = compute_mcast_idx(buf);
  206. if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
  207. return size;
  208. } else if (s->mem[0] == buf[0] &&
  209. s->mem[2] == buf[1] &&
  210. s->mem[4] == buf[2] &&
  211. s->mem[6] == buf[3] &&
  212. s->mem[8] == buf[4] &&
  213. s->mem[10] == buf[5]) {
  214. /* match */
  215. } else {
  216. return size;
  217. }
  218. }
  219. /* if too small buffer, then expand it */
  220. if (size < MIN_BUF_SIZE) {
  221. memcpy(buf1, buf, size);
  222. memset(buf1 + size, 0, MIN_BUF_SIZE - size);
  223. buf = buf1;
  224. size = MIN_BUF_SIZE;
  225. }
  226. index = s->curpag << 8;
  227. /* 4 bytes for header */
  228. total_len = size + 4;
  229. /* address for next packet (4 bytes for CRC) */
  230. next = index + ((total_len + 4 + 255) & ~0xff);
  231. if (next >= s->stop)
  232. next -= (s->stop - s->start);
  233. /* prepare packet header */
  234. p = s->mem + index;
  235. s->rsr = ENRSR_RXOK; /* receive status */
  236. /* XXX: check this */
  237. if (buf[0] & 0x01)
  238. s->rsr |= ENRSR_PHY;
  239. p[0] = s->rsr;
  240. p[1] = next >> 8;
  241. p[2] = total_len;
  242. p[3] = total_len >> 8;
  243. index += 4;
  244. /* write packet data */
  245. while (size > 0) {
  246. if (index <= s->stop)
  247. avail = s->stop - index;
  248. else
  249. avail = 0;
  250. len = size;
  251. if (len > avail)
  252. len = avail;
  253. memcpy(s->mem + index, buf, len);
  254. buf += len;
  255. index += len;
  256. if (index == s->stop)
  257. index = s->start;
  258. size -= len;
  259. }
  260. s->curpag = next >> 8;
  261. /* now we can signal we have received something */
  262. s->isr |= ENISR_RX;
  263. ne2000_update_irq(s);
  264. return size_;
  265. }
  266. static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
  267. {
  268. NE2000State *s = opaque;
  269. int offset, page, index;
  270. addr &= 0xf;
  271. #ifdef DEBUG_NE2000
  272. printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
  273. #endif
  274. if (addr == E8390_CMD) {
  275. /* control register */
  276. s->cmd = val;
  277. if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
  278. s->isr &= ~ENISR_RESET;
  279. /* test specific case: zero length transfer */
  280. if ((val & (E8390_RREAD | E8390_RWRITE)) &&
  281. s->rcnt == 0) {
  282. s->isr |= ENISR_RDC;
  283. ne2000_update_irq(s);
  284. }
  285. if (val & E8390_TRANS) {
  286. index = (s->tpsr << 8);
  287. /* XXX: next 2 lines are a hack to make netware 3.11 work */
  288. if (index >= NE2000_PMEM_END)
  289. index -= NE2000_PMEM_SIZE;
  290. /* fail safe: check range on the transmitted length */
  291. if (index + s->tcnt <= NE2000_PMEM_END) {
  292. qemu_send_packet(&s->nic->nc, s->mem + index, s->tcnt);
  293. }
  294. /* signal end of transfer */
  295. s->tsr = ENTSR_PTX;
  296. s->isr |= ENISR_TX;
  297. s->cmd &= ~E8390_TRANS;
  298. ne2000_update_irq(s);
  299. }
  300. }
  301. } else {
  302. page = s->cmd >> 6;
  303. offset = addr | (page << 4);
  304. switch(offset) {
  305. case EN0_STARTPG:
  306. s->start = val << 8;
  307. break;
  308. case EN0_STOPPG:
  309. s->stop = val << 8;
  310. break;
  311. case EN0_BOUNDARY:
  312. s->boundary = val;
  313. break;
  314. case EN0_IMR:
  315. s->imr = val;
  316. ne2000_update_irq(s);
  317. break;
  318. case EN0_TPSR:
  319. s->tpsr = val;
  320. break;
  321. case EN0_TCNTLO:
  322. s->tcnt = (s->tcnt & 0xff00) | val;
  323. break;
  324. case EN0_TCNTHI:
  325. s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
  326. break;
  327. case EN0_RSARLO:
  328. s->rsar = (s->rsar & 0xff00) | val;
  329. break;
  330. case EN0_RSARHI:
  331. s->rsar = (s->rsar & 0x00ff) | (val << 8);
  332. break;
  333. case EN0_RCNTLO:
  334. s->rcnt = (s->rcnt & 0xff00) | val;
  335. break;
  336. case EN0_RCNTHI:
  337. s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
  338. break;
  339. case EN0_RXCR:
  340. s->rxcr = val;
  341. break;
  342. case EN0_DCFG:
  343. s->dcfg = val;
  344. break;
  345. case EN0_ISR:
  346. s->isr &= ~(val & 0x7f);
  347. ne2000_update_irq(s);
  348. break;
  349. case EN1_PHYS ... EN1_PHYS + 5:
  350. s->phys[offset - EN1_PHYS] = val;
  351. break;
  352. case EN1_CURPAG:
  353. s->curpag = val;
  354. break;
  355. case EN1_MULT ... EN1_MULT + 7:
  356. s->mult[offset - EN1_MULT] = val;
  357. break;
  358. }
  359. }
  360. }
  361. static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
  362. {
  363. NE2000State *s = opaque;
  364. int offset, page, ret;
  365. addr &= 0xf;
  366. if (addr == E8390_CMD) {
  367. ret = s->cmd;
  368. } else {
  369. page = s->cmd >> 6;
  370. offset = addr | (page << 4);
  371. switch(offset) {
  372. case EN0_TSR:
  373. ret = s->tsr;
  374. break;
  375. case EN0_BOUNDARY:
  376. ret = s->boundary;
  377. break;
  378. case EN0_ISR:
  379. ret = s->isr;
  380. break;
  381. case EN0_RSARLO:
  382. ret = s->rsar & 0x00ff;
  383. break;
  384. case EN0_RSARHI:
  385. ret = s->rsar >> 8;
  386. break;
  387. case EN1_PHYS ... EN1_PHYS + 5:
  388. ret = s->phys[offset - EN1_PHYS];
  389. break;
  390. case EN1_CURPAG:
  391. ret = s->curpag;
  392. break;
  393. case EN1_MULT ... EN1_MULT + 7:
  394. ret = s->mult[offset - EN1_MULT];
  395. break;
  396. case EN0_RSR:
  397. ret = s->rsr;
  398. break;
  399. case EN2_STARTPG:
  400. ret = s->start >> 8;
  401. break;
  402. case EN2_STOPPG:
  403. ret = s->stop >> 8;
  404. break;
  405. case EN0_RTL8029ID0:
  406. ret = 0x50;
  407. break;
  408. case EN0_RTL8029ID1:
  409. ret = 0x43;
  410. break;
  411. case EN3_CONFIG0:
  412. ret = 0; /* 10baseT media */
  413. break;
  414. case EN3_CONFIG2:
  415. ret = 0x40; /* 10baseT active */
  416. break;
  417. case EN3_CONFIG3:
  418. ret = 0x40; /* Full duplex */
  419. break;
  420. default:
  421. ret = 0x00;
  422. break;
  423. }
  424. }
  425. #ifdef DEBUG_NE2000
  426. printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
  427. #endif
  428. return ret;
  429. }
  430. static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
  431. uint32_t val)
  432. {
  433. if (addr < 32 ||
  434. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  435. s->mem[addr] = val;
  436. }
  437. }
  438. static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
  439. uint32_t val)
  440. {
  441. addr &= ~1; /* XXX: check exact behaviour if not even */
  442. if (addr < 32 ||
  443. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  444. *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
  445. }
  446. }
  447. static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
  448. uint32_t val)
  449. {
  450. addr &= ~1; /* XXX: check exact behaviour if not even */
  451. if (addr < 32 ||
  452. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  453. cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
  454. }
  455. }
  456. static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
  457. {
  458. if (addr < 32 ||
  459. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  460. return s->mem[addr];
  461. } else {
  462. return 0xff;
  463. }
  464. }
  465. static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
  466. {
  467. addr &= ~1; /* XXX: check exact behaviour if not even */
  468. if (addr < 32 ||
  469. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  470. return le16_to_cpu(*(uint16_t *)(s->mem + addr));
  471. } else {
  472. return 0xffff;
  473. }
  474. }
  475. static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
  476. {
  477. addr &= ~1; /* XXX: check exact behaviour if not even */
  478. if (addr < 32 ||
  479. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  480. return le32_to_cpupu((uint32_t *)(s->mem + addr));
  481. } else {
  482. return 0xffffffff;
  483. }
  484. }
  485. static inline void ne2000_dma_update(NE2000State *s, int len)
  486. {
  487. s->rsar += len;
  488. /* wrap */
  489. /* XXX: check what to do if rsar > stop */
  490. if (s->rsar == s->stop)
  491. s->rsar = s->start;
  492. if (s->rcnt <= len) {
  493. s->rcnt = 0;
  494. /* signal end of transfer */
  495. s->isr |= ENISR_RDC;
  496. ne2000_update_irq(s);
  497. } else {
  498. s->rcnt -= len;
  499. }
  500. }
  501. static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
  502. {
  503. NE2000State *s = opaque;
  504. #ifdef DEBUG_NE2000
  505. printf("NE2000: asic write val=0x%04x\n", val);
  506. #endif
  507. if (s->rcnt == 0)
  508. return;
  509. if (s->dcfg & 0x01) {
  510. /* 16 bit access */
  511. ne2000_mem_writew(s, s->rsar, val);
  512. ne2000_dma_update(s, 2);
  513. } else {
  514. /* 8 bit access */
  515. ne2000_mem_writeb(s, s->rsar, val);
  516. ne2000_dma_update(s, 1);
  517. }
  518. }
  519. static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
  520. {
  521. NE2000State *s = opaque;
  522. int ret;
  523. if (s->dcfg & 0x01) {
  524. /* 16 bit access */
  525. ret = ne2000_mem_readw(s, s->rsar);
  526. ne2000_dma_update(s, 2);
  527. } else {
  528. /* 8 bit access */
  529. ret = ne2000_mem_readb(s, s->rsar);
  530. ne2000_dma_update(s, 1);
  531. }
  532. #ifdef DEBUG_NE2000
  533. printf("NE2000: asic read val=0x%04x\n", ret);
  534. #endif
  535. return ret;
  536. }
  537. static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
  538. {
  539. NE2000State *s = opaque;
  540. #ifdef DEBUG_NE2000
  541. printf("NE2000: asic writel val=0x%04x\n", val);
  542. #endif
  543. if (s->rcnt == 0)
  544. return;
  545. /* 32 bit access */
  546. ne2000_mem_writel(s, s->rsar, val);
  547. ne2000_dma_update(s, 4);
  548. }
  549. static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
  550. {
  551. NE2000State *s = opaque;
  552. int ret;
  553. /* 32 bit access */
  554. ret = ne2000_mem_readl(s, s->rsar);
  555. ne2000_dma_update(s, 4);
  556. #ifdef DEBUG_NE2000
  557. printf("NE2000: asic readl val=0x%04x\n", ret);
  558. #endif
  559. return ret;
  560. }
  561. static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
  562. {
  563. /* nothing to do (end of reset pulse) */
  564. }
  565. static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
  566. {
  567. NE2000State *s = opaque;
  568. ne2000_reset(s);
  569. return 0;
  570. }
  571. static int ne2000_post_load(void* opaque, int version_id)
  572. {
  573. NE2000State* s = opaque;
  574. if (version_id < 2) {
  575. s->rxcr = 0x0c;
  576. }
  577. return 0;
  578. }
  579. const VMStateDescription vmstate_ne2000 = {
  580. .name = "ne2000",
  581. .version_id = 2,
  582. .minimum_version_id = 0,
  583. .minimum_version_id_old = 0,
  584. .post_load = ne2000_post_load,
  585. .fields = (VMStateField []) {
  586. VMSTATE_UINT8_V(rxcr, NE2000State, 2),
  587. VMSTATE_UINT8(cmd, NE2000State),
  588. VMSTATE_UINT32(start, NE2000State),
  589. VMSTATE_UINT32(stop, NE2000State),
  590. VMSTATE_UINT8(boundary, NE2000State),
  591. VMSTATE_UINT8(tsr, NE2000State),
  592. VMSTATE_UINT8(tpsr, NE2000State),
  593. VMSTATE_UINT16(tcnt, NE2000State),
  594. VMSTATE_UINT16(rcnt, NE2000State),
  595. VMSTATE_UINT32(rsar, NE2000State),
  596. VMSTATE_UINT8(rsr, NE2000State),
  597. VMSTATE_UINT8(isr, NE2000State),
  598. VMSTATE_UINT8(dcfg, NE2000State),
  599. VMSTATE_UINT8(imr, NE2000State),
  600. VMSTATE_BUFFER(phys, NE2000State),
  601. VMSTATE_UINT8(curpag, NE2000State),
  602. VMSTATE_BUFFER(mult, NE2000State),
  603. VMSTATE_UNUSED(4), /* was irq */
  604. VMSTATE_BUFFER(mem, NE2000State),
  605. VMSTATE_END_OF_LIST()
  606. }
  607. };
  608. static const VMStateDescription vmstate_pci_ne2000 = {
  609. .name = "ne2000",
  610. .version_id = 3,
  611. .minimum_version_id = 3,
  612. .minimum_version_id_old = 3,
  613. .fields = (VMStateField []) {
  614. VMSTATE_PCI_DEVICE(dev, PCINE2000State),
  615. VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
  616. VMSTATE_END_OF_LIST()
  617. }
  618. };
  619. static uint64_t ne2000_read(void *opaque, target_phys_addr_t addr,
  620. unsigned size)
  621. {
  622. NE2000State *s = opaque;
  623. if (addr < 0x10 && size == 1) {
  624. return ne2000_ioport_read(s, addr);
  625. } else if (addr == 0x10) {
  626. if (size <= 2) {
  627. return ne2000_asic_ioport_read(s, addr);
  628. } else {
  629. return ne2000_asic_ioport_readl(s, addr);
  630. }
  631. } else if (addr == 0x1f && size == 1) {
  632. return ne2000_reset_ioport_read(s, addr);
  633. }
  634. return ((uint64_t)1 << (size * 8)) - 1;
  635. }
  636. static void ne2000_write(void *opaque, target_phys_addr_t addr,
  637. uint64_t data, unsigned size)
  638. {
  639. NE2000State *s = opaque;
  640. if (addr < 0x10 && size == 1) {
  641. return ne2000_ioport_write(s, addr, data);
  642. } else if (addr == 0x10) {
  643. if (size <= 2) {
  644. return ne2000_asic_ioport_write(s, addr, data);
  645. } else {
  646. return ne2000_asic_ioport_writel(s, addr, data);
  647. }
  648. } else if (addr == 0x1f && size == 1) {
  649. return ne2000_reset_ioport_write(s, addr, data);
  650. }
  651. }
  652. static const MemoryRegionOps ne2000_ops = {
  653. .read = ne2000_read,
  654. .write = ne2000_write,
  655. .endianness = DEVICE_NATIVE_ENDIAN,
  656. };
  657. /***********************************************************/
  658. /* PCI NE2000 definitions */
  659. void ne2000_setup_io(NE2000State *s, unsigned size)
  660. {
  661. memory_region_init_io(&s->io, &ne2000_ops, s, "ne2000", size);
  662. }
  663. static void ne2000_cleanup(VLANClientState *nc)
  664. {
  665. NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
  666. s->nic = NULL;
  667. }
  668. static NetClientInfo net_ne2000_info = {
  669. .type = NET_CLIENT_TYPE_NIC,
  670. .size = sizeof(NICState),
  671. .can_receive = ne2000_can_receive,
  672. .receive = ne2000_receive,
  673. .cleanup = ne2000_cleanup,
  674. };
  675. static int pci_ne2000_init(PCIDevice *pci_dev)
  676. {
  677. PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
  678. NE2000State *s;
  679. uint8_t *pci_conf;
  680. pci_conf = d->dev.config;
  681. pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
  682. s = &d->ne2000;
  683. ne2000_setup_io(s, 0x100);
  684. pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
  685. s->irq = d->dev.irq[0];
  686. qemu_macaddr_default_if_unset(&s->c.macaddr);
  687. ne2000_reset(s);
  688. s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
  689. pci_dev->qdev.info->name, pci_dev->qdev.id, s);
  690. qemu_format_nic_info_str(&s->nic->nc, s->c.macaddr.a);
  691. if (!pci_dev->qdev.hotplugged) {
  692. static int loaded = 0;
  693. if (!loaded) {
  694. rom_add_option("pxe-ne2k_pci.rom", -1);
  695. loaded = 1;
  696. }
  697. }
  698. add_boot_device_path(s->c.bootindex, &pci_dev->qdev, "/ethernet-phy@0");
  699. return 0;
  700. }
  701. static int pci_ne2000_exit(PCIDevice *pci_dev)
  702. {
  703. PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
  704. NE2000State *s = &d->ne2000;
  705. memory_region_destroy(&s->io);
  706. qemu_del_vlan_client(&s->nic->nc);
  707. return 0;
  708. }
  709. static PCIDeviceInfo ne2000_info = {
  710. .qdev.name = "ne2k_pci",
  711. .qdev.size = sizeof(PCINE2000State),
  712. .qdev.vmsd = &vmstate_pci_ne2000,
  713. .init = pci_ne2000_init,
  714. .exit = pci_ne2000_exit,
  715. .vendor_id = PCI_VENDOR_ID_REALTEK,
  716. .device_id = PCI_DEVICE_ID_REALTEK_8029,
  717. .class_id = PCI_CLASS_NETWORK_ETHERNET,
  718. .qdev.props = (Property[]) {
  719. DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
  720. DEFINE_PROP_END_OF_LIST(),
  721. }
  722. };
  723. static void ne2000_register_devices(void)
  724. {
  725. pci_qdev_register(&ne2000_info);
  726. }
  727. device_init(ne2000_register_devices)