2
0

nand.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765
  1. /*
  2. * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
  3. * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
  4. * Samsung Electronic.
  5. *
  6. * Copyright (c) 2006 Openedhand Ltd.
  7. * Written by Andrzej Zaborowski <balrog@zabor.org>
  8. *
  9. * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
  10. * datasheet from Micron Technology and "NAND02G-B2C" datasheet
  11. * from ST Microelectronics.
  12. *
  13. * This code is licensed under the GNU GPL v2.
  14. */
  15. #ifndef NAND_IO
  16. # include "hw.h"
  17. # include "flash.h"
  18. # include "blockdev.h"
  19. # include "sysbus.h"
  20. #include "qemu-error.h"
  21. # define NAND_CMD_READ0 0x00
  22. # define NAND_CMD_READ1 0x01
  23. # define NAND_CMD_READ2 0x50
  24. # define NAND_CMD_LPREAD2 0x30
  25. # define NAND_CMD_NOSERIALREAD2 0x35
  26. # define NAND_CMD_RANDOMREAD1 0x05
  27. # define NAND_CMD_RANDOMREAD2 0xe0
  28. # define NAND_CMD_READID 0x90
  29. # define NAND_CMD_RESET 0xff
  30. # define NAND_CMD_PAGEPROGRAM1 0x80
  31. # define NAND_CMD_PAGEPROGRAM2 0x10
  32. # define NAND_CMD_CACHEPROGRAM2 0x15
  33. # define NAND_CMD_BLOCKERASE1 0x60
  34. # define NAND_CMD_BLOCKERASE2 0xd0
  35. # define NAND_CMD_READSTATUS 0x70
  36. # define NAND_CMD_COPYBACKPRG1 0x85
  37. # define NAND_IOSTATUS_ERROR (1 << 0)
  38. # define NAND_IOSTATUS_PLANE0 (1 << 1)
  39. # define NAND_IOSTATUS_PLANE1 (1 << 2)
  40. # define NAND_IOSTATUS_PLANE2 (1 << 3)
  41. # define NAND_IOSTATUS_PLANE3 (1 << 4)
  42. # define NAND_IOSTATUS_BUSY (1 << 6)
  43. # define NAND_IOSTATUS_UNPROTCT (1 << 7)
  44. # define MAX_PAGE 0x800
  45. # define MAX_OOB 0x40
  46. typedef struct NANDFlashState NANDFlashState;
  47. struct NANDFlashState {
  48. SysBusDevice busdev;
  49. uint8_t manf_id, chip_id;
  50. uint8_t buswidth; /* in BYTES */
  51. int size, pages;
  52. int page_shift, oob_shift, erase_shift, addr_shift;
  53. uint8_t *storage;
  54. BlockDriverState *bdrv;
  55. int mem_oob;
  56. uint8_t cle, ale, ce, wp, gnd;
  57. uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
  58. uint8_t *ioaddr;
  59. int iolen;
  60. uint32_t cmd;
  61. uint64_t addr;
  62. int addrlen;
  63. int status;
  64. int offset;
  65. void (*blk_write)(NANDFlashState *s);
  66. void (*blk_erase)(NANDFlashState *s);
  67. void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
  68. uint32_t ioaddr_vmstate;
  69. };
  70. static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
  71. {
  72. /* Like memcpy() but we logical-AND the data into the destination */
  73. int i;
  74. for (i = 0; i < n; i++) {
  75. dest[i] &= src[i];
  76. }
  77. }
  78. # define NAND_NO_AUTOINCR 0x00000001
  79. # define NAND_BUSWIDTH_16 0x00000002
  80. # define NAND_NO_PADDING 0x00000004
  81. # define NAND_CACHEPRG 0x00000008
  82. # define NAND_COPYBACK 0x00000010
  83. # define NAND_IS_AND 0x00000020
  84. # define NAND_4PAGE_ARRAY 0x00000040
  85. # define NAND_NO_READRDY 0x00000100
  86. # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
  87. # define NAND_IO
  88. # define PAGE(addr) ((addr) >> ADDR_SHIFT)
  89. # define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
  90. # define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
  91. # define OOB_SHIFT (PAGE_SHIFT - 5)
  92. # define OOB_SIZE (1 << OOB_SHIFT)
  93. # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
  94. # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
  95. # define PAGE_SIZE 256
  96. # define PAGE_SHIFT 8
  97. # define PAGE_SECTORS 1
  98. # define ADDR_SHIFT 8
  99. # include "nand.c"
  100. # define PAGE_SIZE 512
  101. # define PAGE_SHIFT 9
  102. # define PAGE_SECTORS 1
  103. # define ADDR_SHIFT 8
  104. # include "nand.c"
  105. # define PAGE_SIZE 2048
  106. # define PAGE_SHIFT 11
  107. # define PAGE_SECTORS 4
  108. # define ADDR_SHIFT 16
  109. # include "nand.c"
  110. /* Information based on Linux drivers/mtd/nand/nand_ids.c */
  111. static const struct {
  112. int size;
  113. int width;
  114. int page_shift;
  115. int erase_shift;
  116. uint32_t options;
  117. } nand_flash_ids[0x100] = {
  118. [0 ... 0xff] = { 0 },
  119. [0x6e] = { 1, 8, 8, 4, 0 },
  120. [0x64] = { 2, 8, 8, 4, 0 },
  121. [0x6b] = { 4, 8, 9, 4, 0 },
  122. [0xe8] = { 1, 8, 8, 4, 0 },
  123. [0xec] = { 1, 8, 8, 4, 0 },
  124. [0xea] = { 2, 8, 8, 4, 0 },
  125. [0xd5] = { 4, 8, 9, 4, 0 },
  126. [0xe3] = { 4, 8, 9, 4, 0 },
  127. [0xe5] = { 4, 8, 9, 4, 0 },
  128. [0xd6] = { 8, 8, 9, 4, 0 },
  129. [0x39] = { 8, 8, 9, 4, 0 },
  130. [0xe6] = { 8, 8, 9, 4, 0 },
  131. [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
  132. [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
  133. [0x33] = { 16, 8, 9, 5, 0 },
  134. [0x73] = { 16, 8, 9, 5, 0 },
  135. [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
  136. [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
  137. [0x35] = { 32, 8, 9, 5, 0 },
  138. [0x75] = { 32, 8, 9, 5, 0 },
  139. [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
  140. [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
  141. [0x36] = { 64, 8, 9, 5, 0 },
  142. [0x76] = { 64, 8, 9, 5, 0 },
  143. [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
  144. [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
  145. [0x78] = { 128, 8, 9, 5, 0 },
  146. [0x39] = { 128, 8, 9, 5, 0 },
  147. [0x79] = { 128, 8, 9, 5, 0 },
  148. [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
  149. [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
  150. [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
  151. [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
  152. [0x71] = { 256, 8, 9, 5, 0 },
  153. /*
  154. * These are the new chips with large page size. The pagesize and the
  155. * erasesize is determined from the extended id bytes
  156. */
  157. # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
  158. # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
  159. /* 512 Megabit */
  160. [0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
  161. [0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
  162. [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
  163. [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
  164. /* 1 Gigabit */
  165. [0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
  166. [0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
  167. [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
  168. [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
  169. /* 2 Gigabit */
  170. [0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
  171. [0xda] = { 256, 8, 0, 0, LP_OPTIONS },
  172. [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
  173. [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
  174. /* 4 Gigabit */
  175. [0xac] = { 512, 8, 0, 0, LP_OPTIONS },
  176. [0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
  177. [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
  178. [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
  179. /* 8 Gigabit */
  180. [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
  181. [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
  182. [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
  183. [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
  184. /* 16 Gigabit */
  185. [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
  186. [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
  187. [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
  188. [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
  189. };
  190. static void nand_reset(DeviceState *dev)
  191. {
  192. NANDFlashState *s = FROM_SYSBUS(NANDFlashState, sysbus_from_qdev(dev));
  193. s->cmd = NAND_CMD_READ0;
  194. s->addr = 0;
  195. s->addrlen = 0;
  196. s->iolen = 0;
  197. s->offset = 0;
  198. s->status &= NAND_IOSTATUS_UNPROTCT;
  199. }
  200. static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
  201. {
  202. s->ioaddr[s->iolen++] = value;
  203. for (value = s->buswidth; --value;) {
  204. s->ioaddr[s->iolen++] = 0;
  205. }
  206. }
  207. static void nand_command(NANDFlashState *s)
  208. {
  209. unsigned int offset;
  210. switch (s->cmd) {
  211. case NAND_CMD_READ0:
  212. s->iolen = 0;
  213. break;
  214. case NAND_CMD_READID:
  215. s->ioaddr = s->io;
  216. s->iolen = 0;
  217. nand_pushio_byte(s, s->manf_id);
  218. nand_pushio_byte(s, s->chip_id);
  219. nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
  220. if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
  221. /* Page Size, Block Size, Spare Size; bit 6 indicates
  222. * 8 vs 16 bit width NAND.
  223. */
  224. nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
  225. } else {
  226. nand_pushio_byte(s, 0xc0); /* Multi-plane */
  227. }
  228. break;
  229. case NAND_CMD_RANDOMREAD2:
  230. case NAND_CMD_NOSERIALREAD2:
  231. if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
  232. break;
  233. offset = s->addr & ((1 << s->addr_shift) - 1);
  234. s->blk_load(s, s->addr, offset);
  235. if (s->gnd)
  236. s->iolen = (1 << s->page_shift) - offset;
  237. else
  238. s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
  239. break;
  240. case NAND_CMD_RESET:
  241. nand_reset(&s->busdev.qdev);
  242. break;
  243. case NAND_CMD_PAGEPROGRAM1:
  244. s->ioaddr = s->io;
  245. s->iolen = 0;
  246. break;
  247. case NAND_CMD_PAGEPROGRAM2:
  248. if (s->wp) {
  249. s->blk_write(s);
  250. }
  251. break;
  252. case NAND_CMD_BLOCKERASE1:
  253. break;
  254. case NAND_CMD_BLOCKERASE2:
  255. if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
  256. s->addr <<= 16;
  257. else
  258. s->addr <<= 8;
  259. if (s->wp) {
  260. s->blk_erase(s);
  261. }
  262. break;
  263. case NAND_CMD_READSTATUS:
  264. s->ioaddr = s->io;
  265. s->iolen = 0;
  266. nand_pushio_byte(s, s->status);
  267. break;
  268. default:
  269. printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
  270. }
  271. }
  272. static void nand_pre_save(void *opaque)
  273. {
  274. NANDFlashState *s = opaque;
  275. s->ioaddr_vmstate = s->ioaddr - s->io;
  276. }
  277. static int nand_post_load(void *opaque, int version_id)
  278. {
  279. NANDFlashState *s = opaque;
  280. if (s->ioaddr_vmstate > sizeof(s->io)) {
  281. return -EINVAL;
  282. }
  283. s->ioaddr = s->io + s->ioaddr_vmstate;
  284. return 0;
  285. }
  286. static const VMStateDescription vmstate_nand = {
  287. .name = "nand",
  288. .version_id = 1,
  289. .minimum_version_id = 1,
  290. .minimum_version_id_old = 1,
  291. .pre_save = nand_pre_save,
  292. .post_load = nand_post_load,
  293. .fields = (VMStateField[]) {
  294. VMSTATE_UINT8(cle, NANDFlashState),
  295. VMSTATE_UINT8(ale, NANDFlashState),
  296. VMSTATE_UINT8(ce, NANDFlashState),
  297. VMSTATE_UINT8(wp, NANDFlashState),
  298. VMSTATE_UINT8(gnd, NANDFlashState),
  299. VMSTATE_BUFFER(io, NANDFlashState),
  300. VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
  301. VMSTATE_INT32(iolen, NANDFlashState),
  302. VMSTATE_UINT32(cmd, NANDFlashState),
  303. VMSTATE_UINT64(addr, NANDFlashState),
  304. VMSTATE_INT32(addrlen, NANDFlashState),
  305. VMSTATE_INT32(status, NANDFlashState),
  306. VMSTATE_INT32(offset, NANDFlashState),
  307. /* XXX: do we want to save s->storage too? */
  308. VMSTATE_END_OF_LIST()
  309. }
  310. };
  311. static int nand_device_init(SysBusDevice *dev)
  312. {
  313. int pagesize;
  314. NANDFlashState *s = FROM_SYSBUS(NANDFlashState, dev);
  315. s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
  316. s->size = nand_flash_ids[s->chip_id].size << 20;
  317. if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
  318. s->page_shift = 11;
  319. s->erase_shift = 6;
  320. } else {
  321. s->page_shift = nand_flash_ids[s->chip_id].page_shift;
  322. s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
  323. }
  324. switch (1 << s->page_shift) {
  325. case 256:
  326. nand_init_256(s);
  327. break;
  328. case 512:
  329. nand_init_512(s);
  330. break;
  331. case 2048:
  332. nand_init_2048(s);
  333. break;
  334. default:
  335. error_report("Unsupported NAND block size");
  336. return -1;
  337. }
  338. pagesize = 1 << s->oob_shift;
  339. s->mem_oob = 1;
  340. if (s->bdrv) {
  341. if (bdrv_is_read_only(s->bdrv)) {
  342. error_report("Can't use a read-only drive");
  343. return -1;
  344. }
  345. if (bdrv_getlength(s->bdrv) >=
  346. (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
  347. pagesize = 0;
  348. s->mem_oob = 0;
  349. }
  350. } else {
  351. pagesize += 1 << s->page_shift;
  352. }
  353. if (pagesize) {
  354. s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
  355. 0xff, s->pages * pagesize);
  356. }
  357. /* Give s->ioaddr a sane value in case we save state before it is used. */
  358. s->ioaddr = s->io;
  359. return 0;
  360. }
  361. static SysBusDeviceInfo nand_info = {
  362. .init = nand_device_init,
  363. .qdev.name = "nand",
  364. .qdev.size = sizeof(NANDFlashState),
  365. .qdev.reset = nand_reset,
  366. .qdev.vmsd = &vmstate_nand,
  367. .qdev.props = (Property[]) {
  368. DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
  369. DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
  370. DEFINE_PROP_DRIVE("drive", NANDFlashState, bdrv),
  371. DEFINE_PROP_END_OF_LIST()
  372. }
  373. };
  374. static void nand_create_device(void)
  375. {
  376. sysbus_register_withprop(&nand_info);
  377. }
  378. /*
  379. * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
  380. * outputs are R/B and eight I/O pins.
  381. *
  382. * CE, WP and R/B are active low.
  383. */
  384. void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
  385. uint8_t ce, uint8_t wp, uint8_t gnd)
  386. {
  387. NANDFlashState *s = (NANDFlashState *) dev;
  388. s->cle = cle;
  389. s->ale = ale;
  390. s->ce = ce;
  391. s->wp = wp;
  392. s->gnd = gnd;
  393. if (wp)
  394. s->status |= NAND_IOSTATUS_UNPROTCT;
  395. else
  396. s->status &= ~NAND_IOSTATUS_UNPROTCT;
  397. }
  398. void nand_getpins(DeviceState *dev, int *rb)
  399. {
  400. *rb = 1;
  401. }
  402. void nand_setio(DeviceState *dev, uint32_t value)
  403. {
  404. int i;
  405. NANDFlashState *s = (NANDFlashState *) dev;
  406. if (!s->ce && s->cle) {
  407. if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
  408. if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
  409. return;
  410. if (value == NAND_CMD_RANDOMREAD1) {
  411. s->addr &= ~((1 << s->addr_shift) - 1);
  412. s->addrlen = 0;
  413. return;
  414. }
  415. }
  416. if (value == NAND_CMD_READ0)
  417. s->offset = 0;
  418. else if (value == NAND_CMD_READ1) {
  419. s->offset = 0x100;
  420. value = NAND_CMD_READ0;
  421. }
  422. else if (value == NAND_CMD_READ2) {
  423. s->offset = 1 << s->page_shift;
  424. value = NAND_CMD_READ0;
  425. }
  426. s->cmd = value;
  427. if (s->cmd == NAND_CMD_READSTATUS ||
  428. s->cmd == NAND_CMD_PAGEPROGRAM2 ||
  429. s->cmd == NAND_CMD_BLOCKERASE1 ||
  430. s->cmd == NAND_CMD_BLOCKERASE2 ||
  431. s->cmd == NAND_CMD_NOSERIALREAD2 ||
  432. s->cmd == NAND_CMD_RANDOMREAD2 ||
  433. s->cmd == NAND_CMD_RESET)
  434. nand_command(s);
  435. if (s->cmd != NAND_CMD_RANDOMREAD2) {
  436. s->addrlen = 0;
  437. }
  438. }
  439. if (s->ale) {
  440. unsigned int shift = s->addrlen * 8;
  441. unsigned int mask = ~(0xff << shift);
  442. unsigned int v = value << shift;
  443. s->addr = (s->addr & mask) | v;
  444. s->addrlen ++;
  445. switch (s->addrlen) {
  446. case 1:
  447. if (s->cmd == NAND_CMD_READID) {
  448. nand_command(s);
  449. }
  450. break;
  451. case 2: /* fix cache address as a byte address */
  452. s->addr <<= (s->buswidth - 1);
  453. break;
  454. case 3:
  455. if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
  456. (s->cmd == NAND_CMD_READ0 ||
  457. s->cmd == NAND_CMD_PAGEPROGRAM1)) {
  458. nand_command(s);
  459. }
  460. break;
  461. case 4:
  462. if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
  463. nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
  464. (s->cmd == NAND_CMD_READ0 ||
  465. s->cmd == NAND_CMD_PAGEPROGRAM1)) {
  466. nand_command(s);
  467. }
  468. break;
  469. case 5:
  470. if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
  471. nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
  472. (s->cmd == NAND_CMD_READ0 ||
  473. s->cmd == NAND_CMD_PAGEPROGRAM1)) {
  474. nand_command(s);
  475. }
  476. break;
  477. default:
  478. break;
  479. }
  480. }
  481. if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
  482. if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
  483. for (i = s->buswidth; i--; value >>= 8) {
  484. s->io[s->iolen ++] = (uint8_t) (value & 0xff);
  485. }
  486. }
  487. } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
  488. if ((s->addr & ((1 << s->addr_shift) - 1)) <
  489. (1 << s->page_shift) + (1 << s->oob_shift)) {
  490. for (i = s->buswidth; i--; s->addr++, value >>= 8) {
  491. s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
  492. (uint8_t) (value & 0xff);
  493. }
  494. }
  495. }
  496. }
  497. uint32_t nand_getio(DeviceState *dev)
  498. {
  499. int offset;
  500. uint32_t x = 0;
  501. NANDFlashState *s = (NANDFlashState *) dev;
  502. /* Allow sequential reading */
  503. if (!s->iolen && s->cmd == NAND_CMD_READ0) {
  504. offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
  505. s->offset = 0;
  506. s->blk_load(s, s->addr, offset);
  507. if (s->gnd)
  508. s->iolen = (1 << s->page_shift) - offset;
  509. else
  510. s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
  511. }
  512. if (s->ce || s->iolen <= 0)
  513. return 0;
  514. for (offset = s->buswidth; offset--;) {
  515. x |= s->ioaddr[offset] << (offset << 3);
  516. }
  517. /* after receiving READ STATUS command all subsequent reads will
  518. * return the status register value until another command is issued
  519. */
  520. if (s->cmd != NAND_CMD_READSTATUS) {
  521. s->addr += s->buswidth;
  522. s->ioaddr += s->buswidth;
  523. s->iolen -= s->buswidth;
  524. }
  525. return x;
  526. }
  527. uint32_t nand_getbuswidth(DeviceState *dev)
  528. {
  529. NANDFlashState *s = (NANDFlashState *) dev;
  530. return s->buswidth << 3;
  531. }
  532. DeviceState *nand_init(BlockDriverState *bdrv, int manf_id, int chip_id)
  533. {
  534. DeviceState *dev;
  535. if (nand_flash_ids[chip_id].size == 0) {
  536. hw_error("%s: Unsupported NAND chip ID.\n", __FUNCTION__);
  537. }
  538. dev = qdev_create(NULL, "nand");
  539. qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
  540. qdev_prop_set_uint8(dev, "chip_id", chip_id);
  541. if (bdrv) {
  542. qdev_prop_set_drive_nofail(dev, "drive", bdrv);
  543. }
  544. qdev_init_nofail(dev);
  545. return dev;
  546. }
  547. device_init(nand_create_device)
  548. #else
  549. /* Program a single page */
  550. static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
  551. {
  552. uint64_t off, page, sector, soff;
  553. uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
  554. if (PAGE(s->addr) >= s->pages)
  555. return;
  556. if (!s->bdrv) {
  557. mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
  558. s->offset, s->io, s->iolen);
  559. } else if (s->mem_oob) {
  560. sector = SECTOR(s->addr);
  561. off = (s->addr & PAGE_MASK) + s->offset;
  562. soff = SECTOR_OFFSET(s->addr);
  563. if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1) {
  564. printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
  565. return;
  566. }
  567. mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
  568. if (off + s->iolen > PAGE_SIZE) {
  569. page = PAGE(s->addr);
  570. mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
  571. MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
  572. }
  573. if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1)
  574. printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
  575. } else {
  576. off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
  577. sector = off >> 9;
  578. soff = off & 0x1ff;
  579. if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1) {
  580. printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
  581. return;
  582. }
  583. mem_and(iobuf + soff, s->io, s->iolen);
  584. if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1)
  585. printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
  586. }
  587. s->offset = 0;
  588. }
  589. /* Erase a single block */
  590. static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
  591. {
  592. uint64_t i, page, addr;
  593. uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
  594. addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
  595. if (PAGE(addr) >= s->pages)
  596. return;
  597. if (!s->bdrv) {
  598. memset(s->storage + PAGE_START(addr),
  599. 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
  600. } else if (s->mem_oob) {
  601. memset(s->storage + (PAGE(addr) << OOB_SHIFT),
  602. 0xff, OOB_SIZE << s->erase_shift);
  603. i = SECTOR(addr);
  604. page = SECTOR(addr + (ADDR_SHIFT + s->erase_shift));
  605. for (; i < page; i ++)
  606. if (bdrv_write(s->bdrv, i, iobuf, 1) == -1)
  607. printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
  608. } else {
  609. addr = PAGE_START(addr);
  610. page = addr >> 9;
  611. if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
  612. printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
  613. memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
  614. if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
  615. printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
  616. memset(iobuf, 0xff, 0x200);
  617. i = (addr & ~0x1ff) + 0x200;
  618. for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
  619. i < addr; i += 0x200)
  620. if (bdrv_write(s->bdrv, i >> 9, iobuf, 1) == -1)
  621. printf("%s: write error in sector %" PRIu64 "\n",
  622. __func__, i >> 9);
  623. page = i >> 9;
  624. if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
  625. printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
  626. memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
  627. if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
  628. printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
  629. }
  630. }
  631. static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
  632. uint64_t addr, int offset)
  633. {
  634. if (PAGE(addr) >= s->pages)
  635. return;
  636. if (s->bdrv) {
  637. if (s->mem_oob) {
  638. if (bdrv_read(s->bdrv, SECTOR(addr), s->io, PAGE_SECTORS) == -1)
  639. printf("%s: read error in sector %" PRIu64 "\n",
  640. __func__, SECTOR(addr));
  641. memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
  642. s->storage + (PAGE(s->addr) << OOB_SHIFT),
  643. OOB_SIZE);
  644. s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
  645. } else {
  646. if (bdrv_read(s->bdrv, PAGE_START(addr) >> 9,
  647. s->io, (PAGE_SECTORS + 2)) == -1)
  648. printf("%s: read error in sector %" PRIu64 "\n",
  649. __func__, PAGE_START(addr) >> 9);
  650. s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
  651. }
  652. } else {
  653. memcpy(s->io, s->storage + PAGE_START(s->addr) +
  654. offset, PAGE_SIZE + OOB_SIZE - offset);
  655. s->ioaddr = s->io;
  656. }
  657. }
  658. static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
  659. {
  660. s->oob_shift = PAGE_SHIFT - 5;
  661. s->pages = s->size >> PAGE_SHIFT;
  662. s->addr_shift = ADDR_SHIFT;
  663. s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
  664. s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
  665. s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
  666. }
  667. # undef PAGE_SIZE
  668. # undef PAGE_SHIFT
  669. # undef PAGE_SECTORS
  670. # undef ADDR_SHIFT
  671. #endif /* NAND_IO */