mips_r4k.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302
  1. /*
  2. * QEMU/MIPS pseudo-board
  3. *
  4. * emulates a simple machine with ISA-like bus.
  5. * ISA IO space mapped to the 0x14000000 (PHYS) and
  6. * ISA memory at the 0x10000000 (PHYS, 16Mb in size).
  7. * All peripherial devices are attached to this "bus" with
  8. * the standard PC ISA addresses.
  9. */
  10. #include "hw.h"
  11. #include "mips.h"
  12. #include "mips_cpudevs.h"
  13. #include "pc.h"
  14. #include "isa.h"
  15. #include "net.h"
  16. #include "sysemu.h"
  17. #include "boards.h"
  18. #include "flash.h"
  19. #include "qemu-log.h"
  20. #include "mips-bios.h"
  21. #include "ide.h"
  22. #include "loader.h"
  23. #include "elf.h"
  24. #include "mc146818rtc.h"
  25. #include "blockdev.h"
  26. #include "exec-memory.h"
  27. #define MAX_IDE_BUS 2
  28. static const int ide_iobase[2] = { 0x1f0, 0x170 };
  29. static const int ide_iobase2[2] = { 0x3f6, 0x376 };
  30. static const int ide_irq[2] = { 14, 15 };
  31. static ISADevice *pit; /* PIT i8254 */
  32. /* i8254 PIT is attached to the IRQ0 at PIC i8259 */
  33. static struct _loaderparams {
  34. int ram_size;
  35. const char *kernel_filename;
  36. const char *kernel_cmdline;
  37. const char *initrd_filename;
  38. } loaderparams;
  39. static void mips_qemu_write (void *opaque, target_phys_addr_t addr,
  40. uint64_t val, unsigned size)
  41. {
  42. if ((addr & 0xffff) == 0 && val == 42)
  43. qemu_system_reset_request ();
  44. else if ((addr & 0xffff) == 4 && val == 42)
  45. qemu_system_shutdown_request ();
  46. }
  47. static uint64_t mips_qemu_read (void *opaque, target_phys_addr_t addr,
  48. unsigned size)
  49. {
  50. return 0;
  51. }
  52. static const MemoryRegionOps mips_qemu_ops = {
  53. .read = mips_qemu_read,
  54. .write = mips_qemu_write,
  55. .endianness = DEVICE_NATIVE_ENDIAN,
  56. };
  57. typedef struct ResetData {
  58. CPUState *env;
  59. uint64_t vector;
  60. } ResetData;
  61. static int64_t load_kernel(void)
  62. {
  63. int64_t entry, kernel_high;
  64. long kernel_size, initrd_size, params_size;
  65. ram_addr_t initrd_offset;
  66. uint32_t *params_buf;
  67. int big_endian;
  68. #ifdef TARGET_WORDS_BIGENDIAN
  69. big_endian = 1;
  70. #else
  71. big_endian = 0;
  72. #endif
  73. kernel_size = load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys,
  74. NULL, (uint64_t *)&entry, NULL,
  75. (uint64_t *)&kernel_high, big_endian,
  76. ELF_MACHINE, 1);
  77. if (kernel_size >= 0) {
  78. if ((entry & ~0x7fffffffULL) == 0x80000000)
  79. entry = (int32_t)entry;
  80. } else {
  81. fprintf(stderr, "qemu: could not load kernel '%s'\n",
  82. loaderparams.kernel_filename);
  83. exit(1);
  84. }
  85. /* load initrd */
  86. initrd_size = 0;
  87. initrd_offset = 0;
  88. if (loaderparams.initrd_filename) {
  89. initrd_size = get_image_size (loaderparams.initrd_filename);
  90. if (initrd_size > 0) {
  91. initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
  92. if (initrd_offset + initrd_size > ram_size) {
  93. fprintf(stderr,
  94. "qemu: memory too small for initial ram disk '%s'\n",
  95. loaderparams.initrd_filename);
  96. exit(1);
  97. }
  98. initrd_size = load_image_targphys(loaderparams.initrd_filename,
  99. initrd_offset,
  100. ram_size - initrd_offset);
  101. }
  102. if (initrd_size == (target_ulong) -1) {
  103. fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
  104. loaderparams.initrd_filename);
  105. exit(1);
  106. }
  107. }
  108. /* Store command line. */
  109. params_size = 264;
  110. params_buf = g_malloc(params_size);
  111. params_buf[0] = tswap32(ram_size);
  112. params_buf[1] = tswap32(0x12345678);
  113. if (initrd_size > 0) {
  114. snprintf((char *)params_buf + 8, 256, "rd_start=0x%" PRIx64 " rd_size=%li %s",
  115. cpu_mips_phys_to_kseg0(NULL, initrd_offset),
  116. initrd_size, loaderparams.kernel_cmdline);
  117. } else {
  118. snprintf((char *)params_buf + 8, 256, "%s", loaderparams.kernel_cmdline);
  119. }
  120. rom_add_blob_fixed("params", params_buf, params_size,
  121. (16 << 20) - 264);
  122. return entry;
  123. }
  124. static void main_cpu_reset(void *opaque)
  125. {
  126. ResetData *s = (ResetData *)opaque;
  127. CPUState *env = s->env;
  128. cpu_reset(env);
  129. env->active_tc.PC = s->vector;
  130. }
  131. static const int sector_len = 32 * 1024;
  132. static
  133. void mips_r4k_init (ram_addr_t ram_size,
  134. const char *boot_device,
  135. const char *kernel_filename, const char *kernel_cmdline,
  136. const char *initrd_filename, const char *cpu_model)
  137. {
  138. char *filename;
  139. MemoryRegion *address_space_mem = get_system_memory();
  140. MemoryRegion *ram = g_new(MemoryRegion, 1);
  141. MemoryRegion *bios;
  142. MemoryRegion *iomem = g_new(MemoryRegion, 1);
  143. int bios_size;
  144. CPUState *env;
  145. ResetData *reset_info;
  146. int i;
  147. qemu_irq *i8259;
  148. DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
  149. DriveInfo *dinfo;
  150. int be;
  151. /* init CPUs */
  152. if (cpu_model == NULL) {
  153. #ifdef TARGET_MIPS64
  154. cpu_model = "R4000";
  155. #else
  156. cpu_model = "24Kf";
  157. #endif
  158. }
  159. env = cpu_init(cpu_model);
  160. if (!env) {
  161. fprintf(stderr, "Unable to find CPU definition\n");
  162. exit(1);
  163. }
  164. reset_info = g_malloc0(sizeof(ResetData));
  165. reset_info->env = env;
  166. reset_info->vector = env->active_tc.PC;
  167. qemu_register_reset(main_cpu_reset, reset_info);
  168. /* allocate RAM */
  169. if (ram_size > (256 << 20)) {
  170. fprintf(stderr,
  171. "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
  172. ((unsigned int)ram_size / (1 << 20)));
  173. exit(1);
  174. }
  175. memory_region_init_ram(ram, NULL, "mips_r4k.ram", ram_size);
  176. memory_region_add_subregion(address_space_mem, 0, ram);
  177. memory_region_init_io(iomem, &mips_qemu_ops, NULL, "mips-qemu", 0x10000);
  178. memory_region_add_subregion(address_space_mem, 0x1fbf0000, iomem);
  179. /* Try to load a BIOS image. If this fails, we continue regardless,
  180. but initialize the hardware ourselves. When a kernel gets
  181. preloaded we also initialize the hardware, since the BIOS wasn't
  182. run. */
  183. if (bios_name == NULL)
  184. bios_name = BIOS_FILENAME;
  185. filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
  186. if (filename) {
  187. bios_size = get_image_size(filename);
  188. } else {
  189. bios_size = -1;
  190. }
  191. #ifdef TARGET_WORDS_BIGENDIAN
  192. be = 1;
  193. #else
  194. be = 0;
  195. #endif
  196. if ((bios_size > 0) && (bios_size <= BIOS_SIZE)) {
  197. bios = g_new(MemoryRegion, 1);
  198. memory_region_init_ram(bios, NULL, "mips_r4k.bios", BIOS_SIZE);
  199. memory_region_set_readonly(bios, true);
  200. memory_region_add_subregion(get_system_memory(), 0x1fc00000, bios);
  201. load_image_targphys(filename, 0x1fc00000, BIOS_SIZE);
  202. } else if ((dinfo = drive_get(IF_PFLASH, 0, 0)) != NULL) {
  203. uint32_t mips_rom = 0x00400000;
  204. if (!pflash_cfi01_register(0x1fc00000, NULL, "mips_r4k.bios", mips_rom,
  205. dinfo->bdrv, sector_len,
  206. mips_rom / sector_len,
  207. 4, 0, 0, 0, 0, be)) {
  208. fprintf(stderr, "qemu: Error registering flash memory.\n");
  209. }
  210. }
  211. else {
  212. /* not fatal */
  213. fprintf(stderr, "qemu: Warning, could not load MIPS bios '%s'\n",
  214. bios_name);
  215. }
  216. if (filename) {
  217. g_free(filename);
  218. }
  219. if (kernel_filename) {
  220. loaderparams.ram_size = ram_size;
  221. loaderparams.kernel_filename = kernel_filename;
  222. loaderparams.kernel_cmdline = kernel_cmdline;
  223. loaderparams.initrd_filename = initrd_filename;
  224. reset_info->vector = load_kernel();
  225. }
  226. /* Init CPU internal devices */
  227. cpu_mips_irq_init_cpu(env);
  228. cpu_mips_clock_init(env);
  229. /* The PIC is attached to the MIPS CPU INT0 pin */
  230. isa_bus_new(NULL, get_system_io());
  231. i8259 = i8259_init(env->irq[2]);
  232. isa_bus_irqs(i8259);
  233. rtc_init(2000, NULL);
  234. /* Register 64 KB of ISA IO space at 0x14000000 */
  235. isa_mmio_init(0x14000000, 0x00010000);
  236. isa_mem_base = 0x10000000;
  237. pit = pit_init(0x40, 0);
  238. for(i = 0; i < MAX_SERIAL_PORTS; i++) {
  239. if (serial_hds[i]) {
  240. serial_isa_init(i, serial_hds[i]);
  241. }
  242. }
  243. isa_vga_init();
  244. if (nd_table[0].vlan)
  245. isa_ne2000_init(0x300, 9, &nd_table[0]);
  246. ide_drive_get(hd, MAX_IDE_BUS);
  247. for(i = 0; i < MAX_IDE_BUS; i++)
  248. isa_ide_init(ide_iobase[i], ide_iobase2[i], ide_irq[i],
  249. hd[MAX_IDE_DEVS * i],
  250. hd[MAX_IDE_DEVS * i + 1]);
  251. isa_create_simple("i8042");
  252. }
  253. static QEMUMachine mips_machine = {
  254. .name = "mips",
  255. .desc = "mips r4k platform",
  256. .init = mips_r4k_init,
  257. };
  258. static void mips_machine_init(void)
  259. {
  260. qemu_register_machine(&mips_machine);
  261. }
  262. machine_init(mips_machine_init);