intel-hda.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289
  1. /*
  2. * Copyright (C) 2010 Red Hat, Inc.
  3. *
  4. * written by Gerd Hoffmann <kraxel@redhat.com>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 or
  9. * (at your option) version 3 of the License.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "hw.h"
  20. #include "pci.h"
  21. #include "msi.h"
  22. #include "qemu-timer.h"
  23. #include "audiodev.h"
  24. #include "intel-hda.h"
  25. #include "intel-hda-defs.h"
  26. #include "dma.h"
  27. /* --------------------------------------------------------------------- */
  28. /* hda bus */
  29. static struct BusInfo hda_codec_bus_info = {
  30. .name = "HDA",
  31. .size = sizeof(HDACodecBus),
  32. .props = (Property[]) {
  33. DEFINE_PROP_UINT32("cad", HDACodecDevice, cad, -1),
  34. DEFINE_PROP_END_OF_LIST()
  35. }
  36. };
  37. void hda_codec_bus_init(DeviceState *dev, HDACodecBus *bus,
  38. hda_codec_response_func response,
  39. hda_codec_xfer_func xfer)
  40. {
  41. qbus_create_inplace(&bus->qbus, &hda_codec_bus_info, dev, NULL);
  42. bus->response = response;
  43. bus->xfer = xfer;
  44. }
  45. static int hda_codec_dev_init(DeviceState *qdev, DeviceInfo *base)
  46. {
  47. HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, qdev->parent_bus);
  48. HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev);
  49. HDACodecDeviceInfo *info = DO_UPCAST(HDACodecDeviceInfo, qdev, base);
  50. dev->info = info;
  51. if (dev->cad == -1) {
  52. dev->cad = bus->next_cad;
  53. }
  54. if (dev->cad >= 15) {
  55. return -1;
  56. }
  57. bus->next_cad = dev->cad + 1;
  58. return info->init(dev);
  59. }
  60. static int hda_codec_dev_exit(DeviceState *qdev)
  61. {
  62. HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev);
  63. if (dev->info->exit) {
  64. dev->info->exit(dev);
  65. }
  66. return 0;
  67. }
  68. void hda_codec_register(HDACodecDeviceInfo *info)
  69. {
  70. info->qdev.init = hda_codec_dev_init;
  71. info->qdev.exit = hda_codec_dev_exit;
  72. info->qdev.bus_info = &hda_codec_bus_info;
  73. qdev_register(&info->qdev);
  74. }
  75. HDACodecDevice *hda_codec_find(HDACodecBus *bus, uint32_t cad)
  76. {
  77. DeviceState *qdev;
  78. HDACodecDevice *cdev;
  79. QTAILQ_FOREACH(qdev, &bus->qbus.children, sibling) {
  80. cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
  81. if (cdev->cad == cad) {
  82. return cdev;
  83. }
  84. }
  85. return NULL;
  86. }
  87. void hda_codec_response(HDACodecDevice *dev, bool solicited, uint32_t response)
  88. {
  89. HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
  90. bus->response(dev, solicited, response);
  91. }
  92. bool hda_codec_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
  93. uint8_t *buf, uint32_t len)
  94. {
  95. HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
  96. return bus->xfer(dev, stnr, output, buf, len);
  97. }
  98. /* --------------------------------------------------------------------- */
  99. /* intel hda emulation */
  100. typedef struct IntelHDAStream IntelHDAStream;
  101. typedef struct IntelHDAState IntelHDAState;
  102. typedef struct IntelHDAReg IntelHDAReg;
  103. typedef struct bpl {
  104. uint64_t addr;
  105. uint32_t len;
  106. uint32_t flags;
  107. } bpl;
  108. struct IntelHDAStream {
  109. /* registers */
  110. uint32_t ctl;
  111. uint32_t lpib;
  112. uint32_t cbl;
  113. uint32_t lvi;
  114. uint32_t fmt;
  115. uint32_t bdlp_lbase;
  116. uint32_t bdlp_ubase;
  117. /* state */
  118. bpl *bpl;
  119. uint32_t bentries;
  120. uint32_t bsize, be, bp;
  121. };
  122. struct IntelHDAState {
  123. PCIDevice pci;
  124. const char *name;
  125. HDACodecBus codecs;
  126. /* registers */
  127. uint32_t g_ctl;
  128. uint32_t wake_en;
  129. uint32_t state_sts;
  130. uint32_t int_ctl;
  131. uint32_t int_sts;
  132. uint32_t wall_clk;
  133. uint32_t corb_lbase;
  134. uint32_t corb_ubase;
  135. uint32_t corb_rp;
  136. uint32_t corb_wp;
  137. uint32_t corb_ctl;
  138. uint32_t corb_sts;
  139. uint32_t corb_size;
  140. uint32_t rirb_lbase;
  141. uint32_t rirb_ubase;
  142. uint32_t rirb_wp;
  143. uint32_t rirb_cnt;
  144. uint32_t rirb_ctl;
  145. uint32_t rirb_sts;
  146. uint32_t rirb_size;
  147. uint32_t dp_lbase;
  148. uint32_t dp_ubase;
  149. uint32_t icw;
  150. uint32_t irr;
  151. uint32_t ics;
  152. /* streams */
  153. IntelHDAStream st[8];
  154. /* state */
  155. MemoryRegion mmio;
  156. uint32_t rirb_count;
  157. int64_t wall_base_ns;
  158. /* debug logging */
  159. const IntelHDAReg *last_reg;
  160. uint32_t last_val;
  161. uint32_t last_write;
  162. uint32_t last_sec;
  163. uint32_t repeat_count;
  164. /* properties */
  165. uint32_t debug;
  166. uint32_t msi;
  167. };
  168. struct IntelHDAReg {
  169. const char *name; /* register name */
  170. uint32_t size; /* size in bytes */
  171. uint32_t reset; /* reset value */
  172. uint32_t wmask; /* write mask */
  173. uint32_t wclear; /* write 1 to clear bits */
  174. uint32_t offset; /* location in IntelHDAState */
  175. uint32_t shift; /* byte access entries for dwords */
  176. uint32_t stream;
  177. void (*whandler)(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old);
  178. void (*rhandler)(IntelHDAState *d, const IntelHDAReg *reg);
  179. };
  180. static void intel_hda_reset(DeviceState *dev);
  181. /* --------------------------------------------------------------------- */
  182. static target_phys_addr_t intel_hda_addr(uint32_t lbase, uint32_t ubase)
  183. {
  184. target_phys_addr_t addr;
  185. #if TARGET_PHYS_ADDR_BITS == 32
  186. addr = lbase;
  187. #else
  188. addr = ubase;
  189. addr <<= 32;
  190. addr |= lbase;
  191. #endif
  192. return addr;
  193. }
  194. static void intel_hda_update_int_sts(IntelHDAState *d)
  195. {
  196. uint32_t sts = 0;
  197. uint32_t i;
  198. /* update controller status */
  199. if (d->rirb_sts & ICH6_RBSTS_IRQ) {
  200. sts |= (1 << 30);
  201. }
  202. if (d->rirb_sts & ICH6_RBSTS_OVERRUN) {
  203. sts |= (1 << 30);
  204. }
  205. if (d->state_sts & d->wake_en) {
  206. sts |= (1 << 30);
  207. }
  208. /* update stream status */
  209. for (i = 0; i < 8; i++) {
  210. /* buffer completion interrupt */
  211. if (d->st[i].ctl & (1 << 26)) {
  212. sts |= (1 << i);
  213. }
  214. }
  215. /* update global status */
  216. if (sts & d->int_ctl) {
  217. sts |= (1 << 31);
  218. }
  219. d->int_sts = sts;
  220. }
  221. static void intel_hda_update_irq(IntelHDAState *d)
  222. {
  223. int msi = d->msi && msi_enabled(&d->pci);
  224. int level;
  225. intel_hda_update_int_sts(d);
  226. if (d->int_sts & (1 << 31) && d->int_ctl & (1 << 31)) {
  227. level = 1;
  228. } else {
  229. level = 0;
  230. }
  231. dprint(d, 2, "%s: level %d [%s]\n", __FUNCTION__,
  232. level, msi ? "msi" : "intx");
  233. if (msi) {
  234. if (level) {
  235. msi_notify(&d->pci, 0);
  236. }
  237. } else {
  238. qemu_set_irq(d->pci.irq[0], level);
  239. }
  240. }
  241. static int intel_hda_send_command(IntelHDAState *d, uint32_t verb)
  242. {
  243. uint32_t cad, nid, data;
  244. HDACodecDevice *codec;
  245. cad = (verb >> 28) & 0x0f;
  246. if (verb & (1 << 27)) {
  247. /* indirect node addressing, not specified in HDA 1.0 */
  248. dprint(d, 1, "%s: indirect node addressing (guest bug?)\n", __FUNCTION__);
  249. return -1;
  250. }
  251. nid = (verb >> 20) & 0x7f;
  252. data = verb & 0xfffff;
  253. codec = hda_codec_find(&d->codecs, cad);
  254. if (codec == NULL) {
  255. dprint(d, 1, "%s: addressed non-existing codec\n", __FUNCTION__);
  256. return -1;
  257. }
  258. codec->info->command(codec, nid, data);
  259. return 0;
  260. }
  261. static void intel_hda_corb_run(IntelHDAState *d)
  262. {
  263. target_phys_addr_t addr;
  264. uint32_t rp, verb;
  265. if (d->ics & ICH6_IRS_BUSY) {
  266. dprint(d, 2, "%s: [icw] verb 0x%08x\n", __FUNCTION__, d->icw);
  267. intel_hda_send_command(d, d->icw);
  268. return;
  269. }
  270. for (;;) {
  271. if (!(d->corb_ctl & ICH6_CORBCTL_RUN)) {
  272. dprint(d, 2, "%s: !run\n", __FUNCTION__);
  273. return;
  274. }
  275. if ((d->corb_rp & 0xff) == d->corb_wp) {
  276. dprint(d, 2, "%s: corb ring empty\n", __FUNCTION__);
  277. return;
  278. }
  279. if (d->rirb_count == d->rirb_cnt) {
  280. dprint(d, 2, "%s: rirb count reached\n", __FUNCTION__);
  281. return;
  282. }
  283. rp = (d->corb_rp + 1) & 0xff;
  284. addr = intel_hda_addr(d->corb_lbase, d->corb_ubase);
  285. verb = ldl_le_pci_dma(&d->pci, addr + 4*rp);
  286. d->corb_rp = rp;
  287. dprint(d, 2, "%s: [rp 0x%x] verb 0x%08x\n", __FUNCTION__, rp, verb);
  288. intel_hda_send_command(d, verb);
  289. }
  290. }
  291. static void intel_hda_response(HDACodecDevice *dev, bool solicited, uint32_t response)
  292. {
  293. HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
  294. IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
  295. target_phys_addr_t addr;
  296. uint32_t wp, ex;
  297. if (d->ics & ICH6_IRS_BUSY) {
  298. dprint(d, 2, "%s: [irr] response 0x%x, cad 0x%x\n",
  299. __FUNCTION__, response, dev->cad);
  300. d->irr = response;
  301. d->ics &= ~(ICH6_IRS_BUSY | 0xf0);
  302. d->ics |= (ICH6_IRS_VALID | (dev->cad << 4));
  303. return;
  304. }
  305. if (!(d->rirb_ctl & ICH6_RBCTL_DMA_EN)) {
  306. dprint(d, 1, "%s: rirb dma disabled, drop codec response\n", __FUNCTION__);
  307. return;
  308. }
  309. ex = (solicited ? 0 : (1 << 4)) | dev->cad;
  310. wp = (d->rirb_wp + 1) & 0xff;
  311. addr = intel_hda_addr(d->rirb_lbase, d->rirb_ubase);
  312. stl_le_pci_dma(&d->pci, addr + 8*wp, response);
  313. stl_le_pci_dma(&d->pci, addr + 8*wp + 4, ex);
  314. d->rirb_wp = wp;
  315. dprint(d, 2, "%s: [wp 0x%x] response 0x%x, extra 0x%x\n",
  316. __FUNCTION__, wp, response, ex);
  317. d->rirb_count++;
  318. if (d->rirb_count == d->rirb_cnt) {
  319. dprint(d, 2, "%s: rirb count reached (%d)\n", __FUNCTION__, d->rirb_count);
  320. if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
  321. d->rirb_sts |= ICH6_RBSTS_IRQ;
  322. intel_hda_update_irq(d);
  323. }
  324. } else if ((d->corb_rp & 0xff) == d->corb_wp) {
  325. dprint(d, 2, "%s: corb ring empty (%d/%d)\n", __FUNCTION__,
  326. d->rirb_count, d->rirb_cnt);
  327. if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
  328. d->rirb_sts |= ICH6_RBSTS_IRQ;
  329. intel_hda_update_irq(d);
  330. }
  331. }
  332. }
  333. static bool intel_hda_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
  334. uint8_t *buf, uint32_t len)
  335. {
  336. HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
  337. IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
  338. target_phys_addr_t addr;
  339. uint32_t s, copy, left;
  340. IntelHDAStream *st;
  341. bool irq = false;
  342. st = output ? d->st + 4 : d->st;
  343. for (s = 0; s < 4; s++) {
  344. if (stnr == ((st[s].ctl >> 20) & 0x0f)) {
  345. st = st + s;
  346. break;
  347. }
  348. }
  349. if (s == 4) {
  350. return false;
  351. }
  352. if (st->bpl == NULL) {
  353. return false;
  354. }
  355. if (st->ctl & (1 << 26)) {
  356. /*
  357. * Wait with the next DMA xfer until the guest
  358. * has acked the buffer completion interrupt
  359. */
  360. return false;
  361. }
  362. left = len;
  363. while (left > 0) {
  364. copy = left;
  365. if (copy > st->bsize - st->lpib)
  366. copy = st->bsize - st->lpib;
  367. if (copy > st->bpl[st->be].len - st->bp)
  368. copy = st->bpl[st->be].len - st->bp;
  369. dprint(d, 3, "dma: entry %d, pos %d/%d, copy %d\n",
  370. st->be, st->bp, st->bpl[st->be].len, copy);
  371. pci_dma_rw(&d->pci, st->bpl[st->be].addr + st->bp, buf, copy, !output);
  372. st->lpib += copy;
  373. st->bp += copy;
  374. buf += copy;
  375. left -= copy;
  376. if (st->bpl[st->be].len == st->bp) {
  377. /* bpl entry filled */
  378. if (st->bpl[st->be].flags & 0x01) {
  379. irq = true;
  380. }
  381. st->bp = 0;
  382. st->be++;
  383. if (st->be == st->bentries) {
  384. /* bpl wrap around */
  385. st->be = 0;
  386. st->lpib = 0;
  387. }
  388. }
  389. }
  390. if (d->dp_lbase & 0x01) {
  391. addr = intel_hda_addr(d->dp_lbase & ~0x01, d->dp_ubase);
  392. stl_le_pci_dma(&d->pci, addr + 8*s, st->lpib);
  393. }
  394. dprint(d, 3, "dma: --\n");
  395. if (irq) {
  396. st->ctl |= (1 << 26); /* buffer completion interrupt */
  397. intel_hda_update_irq(d);
  398. }
  399. return true;
  400. }
  401. static void intel_hda_parse_bdl(IntelHDAState *d, IntelHDAStream *st)
  402. {
  403. target_phys_addr_t addr;
  404. uint8_t buf[16];
  405. uint32_t i;
  406. addr = intel_hda_addr(st->bdlp_lbase, st->bdlp_ubase);
  407. st->bentries = st->lvi +1;
  408. g_free(st->bpl);
  409. st->bpl = g_malloc(sizeof(bpl) * st->bentries);
  410. for (i = 0; i < st->bentries; i++, addr += 16) {
  411. pci_dma_read(&d->pci, addr, buf, 16);
  412. st->bpl[i].addr = le64_to_cpu(*(uint64_t *)buf);
  413. st->bpl[i].len = le32_to_cpu(*(uint32_t *)(buf + 8));
  414. st->bpl[i].flags = le32_to_cpu(*(uint32_t *)(buf + 12));
  415. dprint(d, 1, "bdl/%d: 0x%" PRIx64 " +0x%x, 0x%x\n",
  416. i, st->bpl[i].addr, st->bpl[i].len, st->bpl[i].flags);
  417. }
  418. st->bsize = st->cbl;
  419. st->lpib = 0;
  420. st->be = 0;
  421. st->bp = 0;
  422. }
  423. static void intel_hda_notify_codecs(IntelHDAState *d, uint32_t stream, bool running, bool output)
  424. {
  425. DeviceState *qdev;
  426. HDACodecDevice *cdev;
  427. QTAILQ_FOREACH(qdev, &d->codecs.qbus.children, sibling) {
  428. cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
  429. if (cdev->info->stream) {
  430. cdev->info->stream(cdev, stream, running, output);
  431. }
  432. }
  433. }
  434. /* --------------------------------------------------------------------- */
  435. static void intel_hda_set_g_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  436. {
  437. if ((d->g_ctl & ICH6_GCTL_RESET) == 0) {
  438. intel_hda_reset(&d->pci.qdev);
  439. }
  440. }
  441. static void intel_hda_set_wake_en(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  442. {
  443. intel_hda_update_irq(d);
  444. }
  445. static void intel_hda_set_state_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  446. {
  447. intel_hda_update_irq(d);
  448. }
  449. static void intel_hda_set_int_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  450. {
  451. intel_hda_update_irq(d);
  452. }
  453. static void intel_hda_get_wall_clk(IntelHDAState *d, const IntelHDAReg *reg)
  454. {
  455. int64_t ns;
  456. ns = qemu_get_clock_ns(vm_clock) - d->wall_base_ns;
  457. d->wall_clk = (uint32_t)(ns * 24 / 1000); /* 24 MHz */
  458. }
  459. static void intel_hda_set_corb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  460. {
  461. intel_hda_corb_run(d);
  462. }
  463. static void intel_hda_set_corb_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  464. {
  465. intel_hda_corb_run(d);
  466. }
  467. static void intel_hda_set_rirb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  468. {
  469. if (d->rirb_wp & ICH6_RIRBWP_RST) {
  470. d->rirb_wp = 0;
  471. }
  472. }
  473. static void intel_hda_set_rirb_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  474. {
  475. intel_hda_update_irq(d);
  476. if ((old & ICH6_RBSTS_IRQ) && !(d->rirb_sts & ICH6_RBSTS_IRQ)) {
  477. /* cleared ICH6_RBSTS_IRQ */
  478. d->rirb_count = 0;
  479. intel_hda_corb_run(d);
  480. }
  481. }
  482. static void intel_hda_set_ics(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  483. {
  484. if (d->ics & ICH6_IRS_BUSY) {
  485. intel_hda_corb_run(d);
  486. }
  487. }
  488. static void intel_hda_set_st_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  489. {
  490. bool output = reg->stream >= 4;
  491. IntelHDAStream *st = d->st + reg->stream;
  492. if (st->ctl & 0x01) {
  493. /* reset */
  494. dprint(d, 1, "st #%d: reset\n", reg->stream);
  495. st->ctl = 0;
  496. }
  497. if ((st->ctl & 0x02) != (old & 0x02)) {
  498. uint32_t stnr = (st->ctl >> 20) & 0x0f;
  499. /* run bit flipped */
  500. if (st->ctl & 0x02) {
  501. /* start */
  502. dprint(d, 1, "st #%d: start %d (ring buf %d bytes)\n",
  503. reg->stream, stnr, st->cbl);
  504. intel_hda_parse_bdl(d, st);
  505. intel_hda_notify_codecs(d, stnr, true, output);
  506. } else {
  507. /* stop */
  508. dprint(d, 1, "st #%d: stop %d\n", reg->stream, stnr);
  509. intel_hda_notify_codecs(d, stnr, false, output);
  510. }
  511. }
  512. intel_hda_update_irq(d);
  513. }
  514. /* --------------------------------------------------------------------- */
  515. #define ST_REG(_n, _o) (0x80 + (_n) * 0x20 + (_o))
  516. static const struct IntelHDAReg regtab[] = {
  517. /* global */
  518. [ ICH6_REG_GCAP ] = {
  519. .name = "GCAP",
  520. .size = 2,
  521. .reset = 0x4401,
  522. },
  523. [ ICH6_REG_VMIN ] = {
  524. .name = "VMIN",
  525. .size = 1,
  526. },
  527. [ ICH6_REG_VMAJ ] = {
  528. .name = "VMAJ",
  529. .size = 1,
  530. .reset = 1,
  531. },
  532. [ ICH6_REG_OUTPAY ] = {
  533. .name = "OUTPAY",
  534. .size = 2,
  535. .reset = 0x3c,
  536. },
  537. [ ICH6_REG_INPAY ] = {
  538. .name = "INPAY",
  539. .size = 2,
  540. .reset = 0x1d,
  541. },
  542. [ ICH6_REG_GCTL ] = {
  543. .name = "GCTL",
  544. .size = 4,
  545. .wmask = 0x0103,
  546. .offset = offsetof(IntelHDAState, g_ctl),
  547. .whandler = intel_hda_set_g_ctl,
  548. },
  549. [ ICH6_REG_WAKEEN ] = {
  550. .name = "WAKEEN",
  551. .size = 2,
  552. .wmask = 0x7fff,
  553. .offset = offsetof(IntelHDAState, wake_en),
  554. .whandler = intel_hda_set_wake_en,
  555. },
  556. [ ICH6_REG_STATESTS ] = {
  557. .name = "STATESTS",
  558. .size = 2,
  559. .wmask = 0x7fff,
  560. .wclear = 0x7fff,
  561. .offset = offsetof(IntelHDAState, state_sts),
  562. .whandler = intel_hda_set_state_sts,
  563. },
  564. /* interrupts */
  565. [ ICH6_REG_INTCTL ] = {
  566. .name = "INTCTL",
  567. .size = 4,
  568. .wmask = 0xc00000ff,
  569. .offset = offsetof(IntelHDAState, int_ctl),
  570. .whandler = intel_hda_set_int_ctl,
  571. },
  572. [ ICH6_REG_INTSTS ] = {
  573. .name = "INTSTS",
  574. .size = 4,
  575. .wmask = 0xc00000ff,
  576. .wclear = 0xc00000ff,
  577. .offset = offsetof(IntelHDAState, int_sts),
  578. },
  579. /* misc */
  580. [ ICH6_REG_WALLCLK ] = {
  581. .name = "WALLCLK",
  582. .size = 4,
  583. .offset = offsetof(IntelHDAState, wall_clk),
  584. .rhandler = intel_hda_get_wall_clk,
  585. },
  586. [ ICH6_REG_WALLCLK + 0x2000 ] = {
  587. .name = "WALLCLK(alias)",
  588. .size = 4,
  589. .offset = offsetof(IntelHDAState, wall_clk),
  590. .rhandler = intel_hda_get_wall_clk,
  591. },
  592. /* dma engine */
  593. [ ICH6_REG_CORBLBASE ] = {
  594. .name = "CORBLBASE",
  595. .size = 4,
  596. .wmask = 0xffffff80,
  597. .offset = offsetof(IntelHDAState, corb_lbase),
  598. },
  599. [ ICH6_REG_CORBUBASE ] = {
  600. .name = "CORBUBASE",
  601. .size = 4,
  602. .wmask = 0xffffffff,
  603. .offset = offsetof(IntelHDAState, corb_ubase),
  604. },
  605. [ ICH6_REG_CORBWP ] = {
  606. .name = "CORBWP",
  607. .size = 2,
  608. .wmask = 0xff,
  609. .offset = offsetof(IntelHDAState, corb_wp),
  610. .whandler = intel_hda_set_corb_wp,
  611. },
  612. [ ICH6_REG_CORBRP ] = {
  613. .name = "CORBRP",
  614. .size = 2,
  615. .wmask = 0x80ff,
  616. .offset = offsetof(IntelHDAState, corb_rp),
  617. },
  618. [ ICH6_REG_CORBCTL ] = {
  619. .name = "CORBCTL",
  620. .size = 1,
  621. .wmask = 0x03,
  622. .offset = offsetof(IntelHDAState, corb_ctl),
  623. .whandler = intel_hda_set_corb_ctl,
  624. },
  625. [ ICH6_REG_CORBSTS ] = {
  626. .name = "CORBSTS",
  627. .size = 1,
  628. .wmask = 0x01,
  629. .wclear = 0x01,
  630. .offset = offsetof(IntelHDAState, corb_sts),
  631. },
  632. [ ICH6_REG_CORBSIZE ] = {
  633. .name = "CORBSIZE",
  634. .size = 1,
  635. .reset = 0x42,
  636. .offset = offsetof(IntelHDAState, corb_size),
  637. },
  638. [ ICH6_REG_RIRBLBASE ] = {
  639. .name = "RIRBLBASE",
  640. .size = 4,
  641. .wmask = 0xffffff80,
  642. .offset = offsetof(IntelHDAState, rirb_lbase),
  643. },
  644. [ ICH6_REG_RIRBUBASE ] = {
  645. .name = "RIRBUBASE",
  646. .size = 4,
  647. .wmask = 0xffffffff,
  648. .offset = offsetof(IntelHDAState, rirb_ubase),
  649. },
  650. [ ICH6_REG_RIRBWP ] = {
  651. .name = "RIRBWP",
  652. .size = 2,
  653. .wmask = 0x8000,
  654. .offset = offsetof(IntelHDAState, rirb_wp),
  655. .whandler = intel_hda_set_rirb_wp,
  656. },
  657. [ ICH6_REG_RINTCNT ] = {
  658. .name = "RINTCNT",
  659. .size = 2,
  660. .wmask = 0xff,
  661. .offset = offsetof(IntelHDAState, rirb_cnt),
  662. },
  663. [ ICH6_REG_RIRBCTL ] = {
  664. .name = "RIRBCTL",
  665. .size = 1,
  666. .wmask = 0x07,
  667. .offset = offsetof(IntelHDAState, rirb_ctl),
  668. },
  669. [ ICH6_REG_RIRBSTS ] = {
  670. .name = "RIRBSTS",
  671. .size = 1,
  672. .wmask = 0x05,
  673. .wclear = 0x05,
  674. .offset = offsetof(IntelHDAState, rirb_sts),
  675. .whandler = intel_hda_set_rirb_sts,
  676. },
  677. [ ICH6_REG_RIRBSIZE ] = {
  678. .name = "RIRBSIZE",
  679. .size = 1,
  680. .reset = 0x42,
  681. .offset = offsetof(IntelHDAState, rirb_size),
  682. },
  683. [ ICH6_REG_DPLBASE ] = {
  684. .name = "DPLBASE",
  685. .size = 4,
  686. .wmask = 0xffffff81,
  687. .offset = offsetof(IntelHDAState, dp_lbase),
  688. },
  689. [ ICH6_REG_DPUBASE ] = {
  690. .name = "DPUBASE",
  691. .size = 4,
  692. .wmask = 0xffffffff,
  693. .offset = offsetof(IntelHDAState, dp_ubase),
  694. },
  695. [ ICH6_REG_IC ] = {
  696. .name = "ICW",
  697. .size = 4,
  698. .wmask = 0xffffffff,
  699. .offset = offsetof(IntelHDAState, icw),
  700. },
  701. [ ICH6_REG_IR ] = {
  702. .name = "IRR",
  703. .size = 4,
  704. .offset = offsetof(IntelHDAState, irr),
  705. },
  706. [ ICH6_REG_IRS ] = {
  707. .name = "ICS",
  708. .size = 2,
  709. .wmask = 0x0003,
  710. .wclear = 0x0002,
  711. .offset = offsetof(IntelHDAState, ics),
  712. .whandler = intel_hda_set_ics,
  713. },
  714. #define HDA_STREAM(_t, _i) \
  715. [ ST_REG(_i, ICH6_REG_SD_CTL) ] = { \
  716. .stream = _i, \
  717. .name = _t stringify(_i) " CTL", \
  718. .size = 4, \
  719. .wmask = 0x1cff001f, \
  720. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  721. .whandler = intel_hda_set_st_ctl, \
  722. }, \
  723. [ ST_REG(_i, ICH6_REG_SD_CTL) + 2] = { \
  724. .stream = _i, \
  725. .name = _t stringify(_i) " CTL(stnr)", \
  726. .size = 1, \
  727. .shift = 16, \
  728. .wmask = 0x00ff0000, \
  729. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  730. .whandler = intel_hda_set_st_ctl, \
  731. }, \
  732. [ ST_REG(_i, ICH6_REG_SD_STS)] = { \
  733. .stream = _i, \
  734. .name = _t stringify(_i) " CTL(sts)", \
  735. .size = 1, \
  736. .shift = 24, \
  737. .wmask = 0x1c000000, \
  738. .wclear = 0x1c000000, \
  739. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  740. .whandler = intel_hda_set_st_ctl, \
  741. }, \
  742. [ ST_REG(_i, ICH6_REG_SD_LPIB) ] = { \
  743. .stream = _i, \
  744. .name = _t stringify(_i) " LPIB", \
  745. .size = 4, \
  746. .offset = offsetof(IntelHDAState, st[_i].lpib), \
  747. }, \
  748. [ ST_REG(_i, ICH6_REG_SD_LPIB) + 0x2000 ] = { \
  749. .stream = _i, \
  750. .name = _t stringify(_i) " LPIB(alias)", \
  751. .size = 4, \
  752. .offset = offsetof(IntelHDAState, st[_i].lpib), \
  753. }, \
  754. [ ST_REG(_i, ICH6_REG_SD_CBL) ] = { \
  755. .stream = _i, \
  756. .name = _t stringify(_i) " CBL", \
  757. .size = 4, \
  758. .wmask = 0xffffffff, \
  759. .offset = offsetof(IntelHDAState, st[_i].cbl), \
  760. }, \
  761. [ ST_REG(_i, ICH6_REG_SD_LVI) ] = { \
  762. .stream = _i, \
  763. .name = _t stringify(_i) " LVI", \
  764. .size = 2, \
  765. .wmask = 0x00ff, \
  766. .offset = offsetof(IntelHDAState, st[_i].lvi), \
  767. }, \
  768. [ ST_REG(_i, ICH6_REG_SD_FIFOSIZE) ] = { \
  769. .stream = _i, \
  770. .name = _t stringify(_i) " FIFOS", \
  771. .size = 2, \
  772. .reset = HDA_BUFFER_SIZE, \
  773. }, \
  774. [ ST_REG(_i, ICH6_REG_SD_FORMAT) ] = { \
  775. .stream = _i, \
  776. .name = _t stringify(_i) " FMT", \
  777. .size = 2, \
  778. .wmask = 0x7f7f, \
  779. .offset = offsetof(IntelHDAState, st[_i].fmt), \
  780. }, \
  781. [ ST_REG(_i, ICH6_REG_SD_BDLPL) ] = { \
  782. .stream = _i, \
  783. .name = _t stringify(_i) " BDLPL", \
  784. .size = 4, \
  785. .wmask = 0xffffff80, \
  786. .offset = offsetof(IntelHDAState, st[_i].bdlp_lbase), \
  787. }, \
  788. [ ST_REG(_i, ICH6_REG_SD_BDLPU) ] = { \
  789. .stream = _i, \
  790. .name = _t stringify(_i) " BDLPU", \
  791. .size = 4, \
  792. .wmask = 0xffffffff, \
  793. .offset = offsetof(IntelHDAState, st[_i].bdlp_ubase), \
  794. }, \
  795. HDA_STREAM("IN", 0)
  796. HDA_STREAM("IN", 1)
  797. HDA_STREAM("IN", 2)
  798. HDA_STREAM("IN", 3)
  799. HDA_STREAM("OUT", 4)
  800. HDA_STREAM("OUT", 5)
  801. HDA_STREAM("OUT", 6)
  802. HDA_STREAM("OUT", 7)
  803. };
  804. static const IntelHDAReg *intel_hda_reg_find(IntelHDAState *d, target_phys_addr_t addr)
  805. {
  806. const IntelHDAReg *reg;
  807. if (addr >= sizeof(regtab)/sizeof(regtab[0])) {
  808. goto noreg;
  809. }
  810. reg = regtab+addr;
  811. if (reg->name == NULL) {
  812. goto noreg;
  813. }
  814. return reg;
  815. noreg:
  816. dprint(d, 1, "unknown register, addr 0x%x\n", (int) addr);
  817. return NULL;
  818. }
  819. static uint32_t *intel_hda_reg_addr(IntelHDAState *d, const IntelHDAReg *reg)
  820. {
  821. uint8_t *addr = (void*)d;
  822. addr += reg->offset;
  823. return (uint32_t*)addr;
  824. }
  825. static void intel_hda_reg_write(IntelHDAState *d, const IntelHDAReg *reg, uint32_t val,
  826. uint32_t wmask)
  827. {
  828. uint32_t *addr;
  829. uint32_t old;
  830. if (!reg) {
  831. return;
  832. }
  833. if (d->debug) {
  834. time_t now = time(NULL);
  835. if (d->last_write && d->last_reg == reg && d->last_val == val) {
  836. d->repeat_count++;
  837. if (d->last_sec != now) {
  838. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  839. d->last_sec = now;
  840. d->repeat_count = 0;
  841. }
  842. } else {
  843. if (d->repeat_count) {
  844. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  845. }
  846. dprint(d, 2, "write %-16s: 0x%x (%x)\n", reg->name, val, wmask);
  847. d->last_write = 1;
  848. d->last_reg = reg;
  849. d->last_val = val;
  850. d->last_sec = now;
  851. d->repeat_count = 0;
  852. }
  853. }
  854. assert(reg->offset != 0);
  855. addr = intel_hda_reg_addr(d, reg);
  856. old = *addr;
  857. if (reg->shift) {
  858. val <<= reg->shift;
  859. wmask <<= reg->shift;
  860. }
  861. wmask &= reg->wmask;
  862. *addr &= ~wmask;
  863. *addr |= wmask & val;
  864. *addr &= ~(val & reg->wclear);
  865. if (reg->whandler) {
  866. reg->whandler(d, reg, old);
  867. }
  868. }
  869. static uint32_t intel_hda_reg_read(IntelHDAState *d, const IntelHDAReg *reg,
  870. uint32_t rmask)
  871. {
  872. uint32_t *addr, ret;
  873. if (!reg) {
  874. return 0;
  875. }
  876. if (reg->rhandler) {
  877. reg->rhandler(d, reg);
  878. }
  879. if (reg->offset == 0) {
  880. /* constant read-only register */
  881. ret = reg->reset;
  882. } else {
  883. addr = intel_hda_reg_addr(d, reg);
  884. ret = *addr;
  885. if (reg->shift) {
  886. ret >>= reg->shift;
  887. }
  888. ret &= rmask;
  889. }
  890. if (d->debug) {
  891. time_t now = time(NULL);
  892. if (!d->last_write && d->last_reg == reg && d->last_val == ret) {
  893. d->repeat_count++;
  894. if (d->last_sec != now) {
  895. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  896. d->last_sec = now;
  897. d->repeat_count = 0;
  898. }
  899. } else {
  900. if (d->repeat_count) {
  901. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  902. }
  903. dprint(d, 2, "read %-16s: 0x%x (%x)\n", reg->name, ret, rmask);
  904. d->last_write = 0;
  905. d->last_reg = reg;
  906. d->last_val = ret;
  907. d->last_sec = now;
  908. d->repeat_count = 0;
  909. }
  910. }
  911. return ret;
  912. }
  913. static void intel_hda_regs_reset(IntelHDAState *d)
  914. {
  915. uint32_t *addr;
  916. int i;
  917. for (i = 0; i < sizeof(regtab)/sizeof(regtab[0]); i++) {
  918. if (regtab[i].name == NULL) {
  919. continue;
  920. }
  921. if (regtab[i].offset == 0) {
  922. continue;
  923. }
  924. addr = intel_hda_reg_addr(d, regtab + i);
  925. *addr = regtab[i].reset;
  926. }
  927. }
  928. /* --------------------------------------------------------------------- */
  929. static void intel_hda_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
  930. {
  931. IntelHDAState *d = opaque;
  932. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  933. intel_hda_reg_write(d, reg, val, 0xff);
  934. }
  935. static void intel_hda_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
  936. {
  937. IntelHDAState *d = opaque;
  938. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  939. intel_hda_reg_write(d, reg, val, 0xffff);
  940. }
  941. static void intel_hda_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
  942. {
  943. IntelHDAState *d = opaque;
  944. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  945. intel_hda_reg_write(d, reg, val, 0xffffffff);
  946. }
  947. static uint32_t intel_hda_mmio_readb(void *opaque, target_phys_addr_t addr)
  948. {
  949. IntelHDAState *d = opaque;
  950. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  951. return intel_hda_reg_read(d, reg, 0xff);
  952. }
  953. static uint32_t intel_hda_mmio_readw(void *opaque, target_phys_addr_t addr)
  954. {
  955. IntelHDAState *d = opaque;
  956. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  957. return intel_hda_reg_read(d, reg, 0xffff);
  958. }
  959. static uint32_t intel_hda_mmio_readl(void *opaque, target_phys_addr_t addr)
  960. {
  961. IntelHDAState *d = opaque;
  962. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  963. return intel_hda_reg_read(d, reg, 0xffffffff);
  964. }
  965. static const MemoryRegionOps intel_hda_mmio_ops = {
  966. .old_mmio = {
  967. .read = {
  968. intel_hda_mmio_readb,
  969. intel_hda_mmio_readw,
  970. intel_hda_mmio_readl,
  971. },
  972. .write = {
  973. intel_hda_mmio_writeb,
  974. intel_hda_mmio_writew,
  975. intel_hda_mmio_writel,
  976. },
  977. },
  978. .endianness = DEVICE_NATIVE_ENDIAN,
  979. };
  980. /* --------------------------------------------------------------------- */
  981. static void intel_hda_reset(DeviceState *dev)
  982. {
  983. IntelHDAState *d = DO_UPCAST(IntelHDAState, pci.qdev, dev);
  984. DeviceState *qdev;
  985. HDACodecDevice *cdev;
  986. intel_hda_regs_reset(d);
  987. d->wall_base_ns = qemu_get_clock_ns(vm_clock);
  988. /* reset codecs */
  989. QTAILQ_FOREACH(qdev, &d->codecs.qbus.children, sibling) {
  990. cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
  991. if (qdev->info->reset) {
  992. qdev->info->reset(qdev);
  993. }
  994. d->state_sts |= (1 << cdev->cad);
  995. }
  996. intel_hda_update_irq(d);
  997. }
  998. static int intel_hda_init(PCIDevice *pci)
  999. {
  1000. IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
  1001. uint8_t *conf = d->pci.config;
  1002. d->name = d->pci.qdev.info->name;
  1003. pci_config_set_interrupt_pin(conf, 1);
  1004. /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */
  1005. conf[0x40] = 0x01;
  1006. memory_region_init_io(&d->mmio, &intel_hda_mmio_ops, d,
  1007. "intel-hda", 0x4000);
  1008. pci_register_bar(&d->pci, 0, 0, &d->mmio);
  1009. if (d->msi) {
  1010. msi_init(&d->pci, 0x50, 1, true, false);
  1011. }
  1012. hda_codec_bus_init(&d->pci.qdev, &d->codecs,
  1013. intel_hda_response, intel_hda_xfer);
  1014. return 0;
  1015. }
  1016. static int intel_hda_exit(PCIDevice *pci)
  1017. {
  1018. IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
  1019. msi_uninit(&d->pci);
  1020. memory_region_destroy(&d->mmio);
  1021. return 0;
  1022. }
  1023. static void intel_hda_write_config(PCIDevice *pci, uint32_t addr,
  1024. uint32_t val, int len)
  1025. {
  1026. IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
  1027. pci_default_write_config(pci, addr, val, len);
  1028. if (d->msi) {
  1029. msi_write_config(pci, addr, val, len);
  1030. }
  1031. }
  1032. static int intel_hda_post_load(void *opaque, int version)
  1033. {
  1034. IntelHDAState* d = opaque;
  1035. int i;
  1036. dprint(d, 1, "%s\n", __FUNCTION__);
  1037. for (i = 0; i < ARRAY_SIZE(d->st); i++) {
  1038. if (d->st[i].ctl & 0x02) {
  1039. intel_hda_parse_bdl(d, &d->st[i]);
  1040. }
  1041. }
  1042. intel_hda_update_irq(d);
  1043. return 0;
  1044. }
  1045. static const VMStateDescription vmstate_intel_hda_stream = {
  1046. .name = "intel-hda-stream",
  1047. .version_id = 1,
  1048. .fields = (VMStateField []) {
  1049. VMSTATE_UINT32(ctl, IntelHDAStream),
  1050. VMSTATE_UINT32(lpib, IntelHDAStream),
  1051. VMSTATE_UINT32(cbl, IntelHDAStream),
  1052. VMSTATE_UINT32(lvi, IntelHDAStream),
  1053. VMSTATE_UINT32(fmt, IntelHDAStream),
  1054. VMSTATE_UINT32(bdlp_lbase, IntelHDAStream),
  1055. VMSTATE_UINT32(bdlp_ubase, IntelHDAStream),
  1056. VMSTATE_END_OF_LIST()
  1057. }
  1058. };
  1059. static const VMStateDescription vmstate_intel_hda = {
  1060. .name = "intel-hda",
  1061. .version_id = 1,
  1062. .post_load = intel_hda_post_load,
  1063. .fields = (VMStateField []) {
  1064. VMSTATE_PCI_DEVICE(pci, IntelHDAState),
  1065. /* registers */
  1066. VMSTATE_UINT32(g_ctl, IntelHDAState),
  1067. VMSTATE_UINT32(wake_en, IntelHDAState),
  1068. VMSTATE_UINT32(state_sts, IntelHDAState),
  1069. VMSTATE_UINT32(int_ctl, IntelHDAState),
  1070. VMSTATE_UINT32(int_sts, IntelHDAState),
  1071. VMSTATE_UINT32(wall_clk, IntelHDAState),
  1072. VMSTATE_UINT32(corb_lbase, IntelHDAState),
  1073. VMSTATE_UINT32(corb_ubase, IntelHDAState),
  1074. VMSTATE_UINT32(corb_rp, IntelHDAState),
  1075. VMSTATE_UINT32(corb_wp, IntelHDAState),
  1076. VMSTATE_UINT32(corb_ctl, IntelHDAState),
  1077. VMSTATE_UINT32(corb_sts, IntelHDAState),
  1078. VMSTATE_UINT32(corb_size, IntelHDAState),
  1079. VMSTATE_UINT32(rirb_lbase, IntelHDAState),
  1080. VMSTATE_UINT32(rirb_ubase, IntelHDAState),
  1081. VMSTATE_UINT32(rirb_wp, IntelHDAState),
  1082. VMSTATE_UINT32(rirb_cnt, IntelHDAState),
  1083. VMSTATE_UINT32(rirb_ctl, IntelHDAState),
  1084. VMSTATE_UINT32(rirb_sts, IntelHDAState),
  1085. VMSTATE_UINT32(rirb_size, IntelHDAState),
  1086. VMSTATE_UINT32(dp_lbase, IntelHDAState),
  1087. VMSTATE_UINT32(dp_ubase, IntelHDAState),
  1088. VMSTATE_UINT32(icw, IntelHDAState),
  1089. VMSTATE_UINT32(irr, IntelHDAState),
  1090. VMSTATE_UINT32(ics, IntelHDAState),
  1091. VMSTATE_STRUCT_ARRAY(st, IntelHDAState, 8, 0,
  1092. vmstate_intel_hda_stream,
  1093. IntelHDAStream),
  1094. /* additional state info */
  1095. VMSTATE_UINT32(rirb_count, IntelHDAState),
  1096. VMSTATE_INT64(wall_base_ns, IntelHDAState),
  1097. VMSTATE_END_OF_LIST()
  1098. }
  1099. };
  1100. static PCIDeviceInfo intel_hda_info = {
  1101. .qdev.name = "intel-hda",
  1102. .qdev.desc = "Intel HD Audio Controller",
  1103. .qdev.size = sizeof(IntelHDAState),
  1104. .qdev.vmsd = &vmstate_intel_hda,
  1105. .qdev.reset = intel_hda_reset,
  1106. .init = intel_hda_init,
  1107. .exit = intel_hda_exit,
  1108. .config_write = intel_hda_write_config,
  1109. .vendor_id = PCI_VENDOR_ID_INTEL,
  1110. .device_id = 0x2668,
  1111. .revision = 1,
  1112. .class_id = PCI_CLASS_MULTIMEDIA_HD_AUDIO,
  1113. .qdev.props = (Property[]) {
  1114. DEFINE_PROP_UINT32("debug", IntelHDAState, debug, 0),
  1115. DEFINE_PROP_UINT32("msi", IntelHDAState, msi, 1),
  1116. DEFINE_PROP_END_OF_LIST(),
  1117. }
  1118. };
  1119. static void intel_hda_register(void)
  1120. {
  1121. pci_qdev_register(&intel_hda_info);
  1122. }
  1123. device_init(intel_hda_register);
  1124. /*
  1125. * create intel hda controller with codec attached to it,
  1126. * so '-soundhw hda' works.
  1127. */
  1128. int intel_hda_and_codec_init(PCIBus *bus)
  1129. {
  1130. PCIDevice *controller;
  1131. BusState *hdabus;
  1132. DeviceState *codec;
  1133. controller = pci_create_simple(bus, -1, "intel-hda");
  1134. hdabus = QLIST_FIRST(&controller->qdev.child_bus);
  1135. codec = qdev_create(hdabus, "hda-duplex");
  1136. qdev_init_nofail(codec);
  1137. return 0;
  1138. }