xen-all.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955
  1. /*
  2. * Copyright (C) 2010 Citrix Ltd.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. *
  7. */
  8. #include <sys/mman.h>
  9. #include "hw/pci.h"
  10. #include "hw/pc.h"
  11. #include "hw/xen_common.h"
  12. #include "hw/xen_backend.h"
  13. #include "range.h"
  14. #include "xen-mapcache.h"
  15. #include "trace.h"
  16. #include <xen/hvm/ioreq.h>
  17. #include <xen/hvm/params.h>
  18. //#define DEBUG_XEN
  19. #ifdef DEBUG_XEN
  20. #define DPRINTF(fmt, ...) \
  21. do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
  22. #else
  23. #define DPRINTF(fmt, ...) \
  24. do { } while (0)
  25. #endif
  26. /* Compatibility with older version */
  27. #if __XEN_LATEST_INTERFACE_VERSION__ < 0x0003020a
  28. static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
  29. {
  30. return shared_page->vcpu_iodata[i].vp_eport;
  31. }
  32. static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
  33. {
  34. return &shared_page->vcpu_iodata[vcpu].vp_ioreq;
  35. }
  36. # define FMT_ioreq_size PRIx64
  37. #else
  38. static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
  39. {
  40. return shared_page->vcpu_ioreq[i].vp_eport;
  41. }
  42. static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
  43. {
  44. return &shared_page->vcpu_ioreq[vcpu];
  45. }
  46. # define FMT_ioreq_size "u"
  47. #endif
  48. #define BUFFER_IO_MAX_DELAY 100
  49. typedef struct XenPhysmap {
  50. target_phys_addr_t start_addr;
  51. ram_addr_t size;
  52. target_phys_addr_t phys_offset;
  53. QLIST_ENTRY(XenPhysmap) list;
  54. } XenPhysmap;
  55. typedef struct XenIOState {
  56. shared_iopage_t *shared_page;
  57. buffered_iopage_t *buffered_io_page;
  58. QEMUTimer *buffered_io_timer;
  59. /* the evtchn port for polling the notification, */
  60. evtchn_port_t *ioreq_local_port;
  61. /* the evtchn fd for polling */
  62. XenEvtchn xce_handle;
  63. /* which vcpu we are serving */
  64. int send_vcpu;
  65. struct xs_handle *xenstore;
  66. CPUPhysMemoryClient client;
  67. QLIST_HEAD(, XenPhysmap) physmap;
  68. const XenPhysmap *log_for_dirtybit;
  69. Notifier exit;
  70. } XenIOState;
  71. /* Xen specific function for piix pci */
  72. int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
  73. {
  74. return irq_num + ((pci_dev->devfn >> 3) << 2);
  75. }
  76. void xen_piix3_set_irq(void *opaque, int irq_num, int level)
  77. {
  78. xc_hvm_set_pci_intx_level(xen_xc, xen_domid, 0, 0, irq_num >> 2,
  79. irq_num & 3, level);
  80. }
  81. void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
  82. {
  83. int i;
  84. /* Scan for updates to PCI link routes (0x60-0x63). */
  85. for (i = 0; i < len; i++) {
  86. uint8_t v = (val >> (8 * i)) & 0xff;
  87. if (v & 0x80) {
  88. v = 0;
  89. }
  90. v &= 0xf;
  91. if (((address + i) >= 0x60) && ((address + i) <= 0x63)) {
  92. xc_hvm_set_pci_link_route(xen_xc, xen_domid, address + i - 0x60, v);
  93. }
  94. }
  95. }
  96. void xen_cmos_set_s3_resume(void *opaque, int irq, int level)
  97. {
  98. pc_cmos_set_s3_resume(opaque, irq, level);
  99. if (level) {
  100. xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
  101. }
  102. }
  103. /* Xen Interrupt Controller */
  104. static void xen_set_irq(void *opaque, int irq, int level)
  105. {
  106. xc_hvm_set_isa_irq_level(xen_xc, xen_domid, irq, level);
  107. }
  108. qemu_irq *xen_interrupt_controller_init(void)
  109. {
  110. return qemu_allocate_irqs(xen_set_irq, NULL, 16);
  111. }
  112. /* Memory Ops */
  113. static void xen_ram_init(ram_addr_t ram_size)
  114. {
  115. RAMBlock *new_block;
  116. ram_addr_t below_4g_mem_size, above_4g_mem_size = 0;
  117. new_block = qemu_mallocz(sizeof (*new_block));
  118. pstrcpy(new_block->idstr, sizeof (new_block->idstr), "xen.ram");
  119. new_block->host = NULL;
  120. new_block->offset = 0;
  121. new_block->length = ram_size;
  122. QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
  123. ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
  124. new_block->length >> TARGET_PAGE_BITS);
  125. memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
  126. 0xff, new_block->length >> TARGET_PAGE_BITS);
  127. if (ram_size >= 0xe0000000 ) {
  128. above_4g_mem_size = ram_size - 0xe0000000;
  129. below_4g_mem_size = 0xe0000000;
  130. } else {
  131. below_4g_mem_size = ram_size;
  132. }
  133. cpu_register_physical_memory(0, below_4g_mem_size, new_block->offset);
  134. #if TARGET_PHYS_ADDR_BITS > 32
  135. if (above_4g_mem_size > 0) {
  136. cpu_register_physical_memory(0x100000000ULL, above_4g_mem_size,
  137. new_block->offset + below_4g_mem_size);
  138. }
  139. #endif
  140. }
  141. void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size)
  142. {
  143. unsigned long nr_pfn;
  144. xen_pfn_t *pfn_list;
  145. int i;
  146. trace_xen_ram_alloc(ram_addr, size);
  147. nr_pfn = size >> TARGET_PAGE_BITS;
  148. pfn_list = qemu_malloc(sizeof (*pfn_list) * nr_pfn);
  149. for (i = 0; i < nr_pfn; i++) {
  150. pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
  151. }
  152. if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
  153. hw_error("xen: failed to populate ram at %lx", ram_addr);
  154. }
  155. qemu_free(pfn_list);
  156. }
  157. static XenPhysmap *get_physmapping(XenIOState *state,
  158. target_phys_addr_t start_addr, ram_addr_t size)
  159. {
  160. XenPhysmap *physmap = NULL;
  161. start_addr &= TARGET_PAGE_MASK;
  162. QLIST_FOREACH(physmap, &state->physmap, list) {
  163. if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
  164. return physmap;
  165. }
  166. }
  167. return NULL;
  168. }
  169. #if CONFIG_XEN_CTRL_INTERFACE_VERSION >= 340
  170. static int xen_add_to_physmap(XenIOState *state,
  171. target_phys_addr_t start_addr,
  172. ram_addr_t size,
  173. target_phys_addr_t phys_offset)
  174. {
  175. unsigned long i = 0;
  176. int rc = 0;
  177. XenPhysmap *physmap = NULL;
  178. target_phys_addr_t pfn, start_gpfn;
  179. RAMBlock *block;
  180. if (get_physmapping(state, start_addr, size)) {
  181. return 0;
  182. }
  183. if (size <= 0) {
  184. return -1;
  185. }
  186. /* Xen can only handle a single dirty log region for now and we want
  187. * the linear framebuffer to be that region.
  188. * Avoid tracking any regions that is not videoram and avoid tracking
  189. * the legacy vga region. */
  190. QLIST_FOREACH(block, &ram_list.blocks, next) {
  191. if (!strcmp(block->idstr, "vga.vram") && block->offset == phys_offset
  192. && start_addr > 0xbffff) {
  193. goto go_physmap;
  194. }
  195. }
  196. return -1;
  197. go_physmap:
  198. DPRINTF("mapping vram to %llx - %llx, from %llx\n",
  199. start_addr, start_addr + size, phys_offset);
  200. pfn = phys_offset >> TARGET_PAGE_BITS;
  201. start_gpfn = start_addr >> TARGET_PAGE_BITS;
  202. for (i = 0; i < size >> TARGET_PAGE_BITS; i++) {
  203. unsigned long idx = pfn + i;
  204. xen_pfn_t gpfn = start_gpfn + i;
  205. rc = xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
  206. if (rc) {
  207. DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
  208. PRI_xen_pfn" failed: %d\n", idx, gpfn, rc);
  209. return -rc;
  210. }
  211. }
  212. physmap = qemu_malloc(sizeof (XenPhysmap));
  213. physmap->start_addr = start_addr;
  214. physmap->size = size;
  215. physmap->phys_offset = phys_offset;
  216. QLIST_INSERT_HEAD(&state->physmap, physmap, list);
  217. xc_domain_pin_memory_cacheattr(xen_xc, xen_domid,
  218. start_addr >> TARGET_PAGE_BITS,
  219. (start_addr + size) >> TARGET_PAGE_BITS,
  220. XEN_DOMCTL_MEM_CACHEATTR_WB);
  221. return 0;
  222. }
  223. static int xen_remove_from_physmap(XenIOState *state,
  224. target_phys_addr_t start_addr,
  225. ram_addr_t size)
  226. {
  227. unsigned long i = 0;
  228. int rc = 0;
  229. XenPhysmap *physmap = NULL;
  230. target_phys_addr_t phys_offset = 0;
  231. physmap = get_physmapping(state, start_addr, size);
  232. if (physmap == NULL) {
  233. return -1;
  234. }
  235. phys_offset = physmap->phys_offset;
  236. size = physmap->size;
  237. DPRINTF("unmapping vram to %llx - %llx, from %llx\n",
  238. phys_offset, phys_offset + size, start_addr);
  239. size >>= TARGET_PAGE_BITS;
  240. start_addr >>= TARGET_PAGE_BITS;
  241. phys_offset >>= TARGET_PAGE_BITS;
  242. for (i = 0; i < size; i++) {
  243. unsigned long idx = start_addr + i;
  244. xen_pfn_t gpfn = phys_offset + i;
  245. rc = xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
  246. if (rc) {
  247. fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
  248. PRI_xen_pfn" failed: %d\n", idx, gpfn, rc);
  249. return -rc;
  250. }
  251. }
  252. QLIST_REMOVE(physmap, list);
  253. if (state->log_for_dirtybit == physmap) {
  254. state->log_for_dirtybit = NULL;
  255. }
  256. free(physmap);
  257. return 0;
  258. }
  259. #else
  260. static int xen_add_to_physmap(XenIOState *state,
  261. target_phys_addr_t start_addr,
  262. ram_addr_t size,
  263. target_phys_addr_t phys_offset)
  264. {
  265. return -ENOSYS;
  266. }
  267. static int xen_remove_from_physmap(XenIOState *state,
  268. target_phys_addr_t start_addr,
  269. ram_addr_t size)
  270. {
  271. return -ENOSYS;
  272. }
  273. #endif
  274. static void xen_client_set_memory(struct CPUPhysMemoryClient *client,
  275. target_phys_addr_t start_addr,
  276. ram_addr_t size,
  277. ram_addr_t phys_offset,
  278. bool log_dirty)
  279. {
  280. XenIOState *state = container_of(client, XenIOState, client);
  281. ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
  282. hvmmem_type_t mem_type;
  283. if (!(start_addr != phys_offset
  284. && ( (log_dirty && flags < IO_MEM_UNASSIGNED)
  285. || (!log_dirty && flags == IO_MEM_UNASSIGNED)))) {
  286. return;
  287. }
  288. trace_xen_client_set_memory(start_addr, size, phys_offset, log_dirty);
  289. start_addr &= TARGET_PAGE_MASK;
  290. size = TARGET_PAGE_ALIGN(size);
  291. phys_offset &= TARGET_PAGE_MASK;
  292. switch (flags) {
  293. case IO_MEM_RAM:
  294. xen_add_to_physmap(state, start_addr, size, phys_offset);
  295. break;
  296. case IO_MEM_ROM:
  297. mem_type = HVMMEM_ram_ro;
  298. if (xc_hvm_set_mem_type(xen_xc, xen_domid, mem_type,
  299. start_addr >> TARGET_PAGE_BITS,
  300. size >> TARGET_PAGE_BITS)) {
  301. DPRINTF("xc_hvm_set_mem_type error, addr: "TARGET_FMT_plx"\n",
  302. start_addr);
  303. }
  304. break;
  305. case IO_MEM_UNASSIGNED:
  306. if (xen_remove_from_physmap(state, start_addr, size) < 0) {
  307. DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
  308. }
  309. break;
  310. }
  311. }
  312. static int xen_sync_dirty_bitmap(XenIOState *state,
  313. target_phys_addr_t start_addr,
  314. ram_addr_t size)
  315. {
  316. target_phys_addr_t npages = size >> TARGET_PAGE_BITS;
  317. target_phys_addr_t vram_offset = 0;
  318. const int width = sizeof(unsigned long) * 8;
  319. unsigned long bitmap[(npages + width - 1) / width];
  320. int rc, i, j;
  321. const XenPhysmap *physmap = NULL;
  322. physmap = get_physmapping(state, start_addr, size);
  323. if (physmap == NULL) {
  324. /* not handled */
  325. return -1;
  326. }
  327. if (state->log_for_dirtybit == NULL) {
  328. state->log_for_dirtybit = physmap;
  329. } else if (state->log_for_dirtybit != physmap) {
  330. return -1;
  331. }
  332. vram_offset = physmap->phys_offset;
  333. rc = xc_hvm_track_dirty_vram(xen_xc, xen_domid,
  334. start_addr >> TARGET_PAGE_BITS, npages,
  335. bitmap);
  336. if (rc) {
  337. return rc;
  338. }
  339. for (i = 0; i < ARRAY_SIZE(bitmap); i++) {
  340. unsigned long map = bitmap[i];
  341. while (map != 0) {
  342. j = ffsl(map) - 1;
  343. map &= ~(1ul << j);
  344. cpu_physical_memory_set_dirty(vram_offset + (i * width + j) * TARGET_PAGE_SIZE);
  345. };
  346. }
  347. return 0;
  348. }
  349. static int xen_log_start(CPUPhysMemoryClient *client, target_phys_addr_t phys_addr, ram_addr_t size)
  350. {
  351. XenIOState *state = container_of(client, XenIOState, client);
  352. return xen_sync_dirty_bitmap(state, phys_addr, size);
  353. }
  354. static int xen_log_stop(CPUPhysMemoryClient *client, target_phys_addr_t phys_addr, ram_addr_t size)
  355. {
  356. XenIOState *state = container_of(client, XenIOState, client);
  357. state->log_for_dirtybit = NULL;
  358. /* Disable dirty bit tracking */
  359. return xc_hvm_track_dirty_vram(xen_xc, xen_domid, 0, 0, NULL);
  360. }
  361. static int xen_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
  362. target_phys_addr_t start_addr,
  363. target_phys_addr_t end_addr)
  364. {
  365. XenIOState *state = container_of(client, XenIOState, client);
  366. return xen_sync_dirty_bitmap(state, start_addr, end_addr - start_addr);
  367. }
  368. static int xen_client_migration_log(struct CPUPhysMemoryClient *client,
  369. int enable)
  370. {
  371. return 0;
  372. }
  373. static CPUPhysMemoryClient xen_cpu_phys_memory_client = {
  374. .set_memory = xen_client_set_memory,
  375. .sync_dirty_bitmap = xen_client_sync_dirty_bitmap,
  376. .migration_log = xen_client_migration_log,
  377. .log_start = xen_log_start,
  378. .log_stop = xen_log_stop,
  379. };
  380. /* VCPU Operations, MMIO, IO ring ... */
  381. static void xen_reset_vcpu(void *opaque)
  382. {
  383. CPUState *env = opaque;
  384. env->halted = 1;
  385. }
  386. void xen_vcpu_init(void)
  387. {
  388. CPUState *first_cpu;
  389. if ((first_cpu = qemu_get_cpu(0))) {
  390. qemu_register_reset(xen_reset_vcpu, first_cpu);
  391. xen_reset_vcpu(first_cpu);
  392. }
  393. }
  394. /* get the ioreq packets from share mem */
  395. static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
  396. {
  397. ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
  398. if (req->state != STATE_IOREQ_READY) {
  399. DPRINTF("I/O request not ready: "
  400. "%x, ptr: %x, port: %"PRIx64", "
  401. "data: %"PRIx64", count: %" FMT_ioreq_size ", size: %" FMT_ioreq_size "\n",
  402. req->state, req->data_is_ptr, req->addr,
  403. req->data, req->count, req->size);
  404. return NULL;
  405. }
  406. xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
  407. req->state = STATE_IOREQ_INPROCESS;
  408. return req;
  409. }
  410. /* use poll to get the port notification */
  411. /* ioreq_vec--out,the */
  412. /* retval--the number of ioreq packet */
  413. static ioreq_t *cpu_get_ioreq(XenIOState *state)
  414. {
  415. int i;
  416. evtchn_port_t port;
  417. port = xc_evtchn_pending(state->xce_handle);
  418. if (port != -1) {
  419. for (i = 0; i < smp_cpus; i++) {
  420. if (state->ioreq_local_port[i] == port) {
  421. break;
  422. }
  423. }
  424. if (i == smp_cpus) {
  425. hw_error("Fatal error while trying to get io event!\n");
  426. }
  427. /* unmask the wanted port again */
  428. xc_evtchn_unmask(state->xce_handle, port);
  429. /* get the io packet from shared memory */
  430. state->send_vcpu = i;
  431. return cpu_get_ioreq_from_shared_memory(state, i);
  432. }
  433. /* read error or read nothing */
  434. return NULL;
  435. }
  436. static uint32_t do_inp(pio_addr_t addr, unsigned long size)
  437. {
  438. switch (size) {
  439. case 1:
  440. return cpu_inb(addr);
  441. case 2:
  442. return cpu_inw(addr);
  443. case 4:
  444. return cpu_inl(addr);
  445. default:
  446. hw_error("inp: bad size: %04"FMT_pioaddr" %lx", addr, size);
  447. }
  448. }
  449. static void do_outp(pio_addr_t addr,
  450. unsigned long size, uint32_t val)
  451. {
  452. switch (size) {
  453. case 1:
  454. return cpu_outb(addr, val);
  455. case 2:
  456. return cpu_outw(addr, val);
  457. case 4:
  458. return cpu_outl(addr, val);
  459. default:
  460. hw_error("outp: bad size: %04"FMT_pioaddr" %lx", addr, size);
  461. }
  462. }
  463. static void cpu_ioreq_pio(ioreq_t *req)
  464. {
  465. int i, sign;
  466. sign = req->df ? -1 : 1;
  467. if (req->dir == IOREQ_READ) {
  468. if (!req->data_is_ptr) {
  469. req->data = do_inp(req->addr, req->size);
  470. } else {
  471. uint32_t tmp;
  472. for (i = 0; i < req->count; i++) {
  473. tmp = do_inp(req->addr, req->size);
  474. cpu_physical_memory_write(req->data + (sign * i * req->size),
  475. (uint8_t *) &tmp, req->size);
  476. }
  477. }
  478. } else if (req->dir == IOREQ_WRITE) {
  479. if (!req->data_is_ptr) {
  480. do_outp(req->addr, req->size, req->data);
  481. } else {
  482. for (i = 0; i < req->count; i++) {
  483. uint32_t tmp = 0;
  484. cpu_physical_memory_read(req->data + (sign * i * req->size),
  485. (uint8_t*) &tmp, req->size);
  486. do_outp(req->addr, req->size, tmp);
  487. }
  488. }
  489. }
  490. }
  491. static void cpu_ioreq_move(ioreq_t *req)
  492. {
  493. int i, sign;
  494. sign = req->df ? -1 : 1;
  495. if (!req->data_is_ptr) {
  496. if (req->dir == IOREQ_READ) {
  497. for (i = 0; i < req->count; i++) {
  498. cpu_physical_memory_read(req->addr + (sign * i * req->size),
  499. (uint8_t *) &req->data, req->size);
  500. }
  501. } else if (req->dir == IOREQ_WRITE) {
  502. for (i = 0; i < req->count; i++) {
  503. cpu_physical_memory_write(req->addr + (sign * i * req->size),
  504. (uint8_t *) &req->data, req->size);
  505. }
  506. }
  507. } else {
  508. target_ulong tmp;
  509. if (req->dir == IOREQ_READ) {
  510. for (i = 0; i < req->count; i++) {
  511. cpu_physical_memory_read(req->addr + (sign * i * req->size),
  512. (uint8_t*) &tmp, req->size);
  513. cpu_physical_memory_write(req->data + (sign * i * req->size),
  514. (uint8_t*) &tmp, req->size);
  515. }
  516. } else if (req->dir == IOREQ_WRITE) {
  517. for (i = 0; i < req->count; i++) {
  518. cpu_physical_memory_read(req->data + (sign * i * req->size),
  519. (uint8_t*) &tmp, req->size);
  520. cpu_physical_memory_write(req->addr + (sign * i * req->size),
  521. (uint8_t*) &tmp, req->size);
  522. }
  523. }
  524. }
  525. }
  526. static void handle_ioreq(ioreq_t *req)
  527. {
  528. if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
  529. (req->size < sizeof (target_ulong))) {
  530. req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
  531. }
  532. switch (req->type) {
  533. case IOREQ_TYPE_PIO:
  534. cpu_ioreq_pio(req);
  535. break;
  536. case IOREQ_TYPE_COPY:
  537. cpu_ioreq_move(req);
  538. break;
  539. case IOREQ_TYPE_TIMEOFFSET:
  540. break;
  541. case IOREQ_TYPE_INVALIDATE:
  542. xen_invalidate_map_cache();
  543. break;
  544. default:
  545. hw_error("Invalid ioreq type 0x%x\n", req->type);
  546. }
  547. }
  548. static void handle_buffered_iopage(XenIOState *state)
  549. {
  550. buf_ioreq_t *buf_req = NULL;
  551. ioreq_t req;
  552. int qw;
  553. if (!state->buffered_io_page) {
  554. return;
  555. }
  556. while (state->buffered_io_page->read_pointer != state->buffered_io_page->write_pointer) {
  557. buf_req = &state->buffered_io_page->buf_ioreq[
  558. state->buffered_io_page->read_pointer % IOREQ_BUFFER_SLOT_NUM];
  559. req.size = 1UL << buf_req->size;
  560. req.count = 1;
  561. req.addr = buf_req->addr;
  562. req.data = buf_req->data;
  563. req.state = STATE_IOREQ_READY;
  564. req.dir = buf_req->dir;
  565. req.df = 1;
  566. req.type = buf_req->type;
  567. req.data_is_ptr = 0;
  568. qw = (req.size == 8);
  569. if (qw) {
  570. buf_req = &state->buffered_io_page->buf_ioreq[
  571. (state->buffered_io_page->read_pointer + 1) % IOREQ_BUFFER_SLOT_NUM];
  572. req.data |= ((uint64_t)buf_req->data) << 32;
  573. }
  574. handle_ioreq(&req);
  575. xen_mb();
  576. state->buffered_io_page->read_pointer += qw ? 2 : 1;
  577. }
  578. }
  579. static void handle_buffered_io(void *opaque)
  580. {
  581. XenIOState *state = opaque;
  582. handle_buffered_iopage(state);
  583. qemu_mod_timer(state->buffered_io_timer,
  584. BUFFER_IO_MAX_DELAY + qemu_get_clock_ms(rt_clock));
  585. }
  586. static void cpu_handle_ioreq(void *opaque)
  587. {
  588. XenIOState *state = opaque;
  589. ioreq_t *req = cpu_get_ioreq(state);
  590. handle_buffered_iopage(state);
  591. if (req) {
  592. handle_ioreq(req);
  593. if (req->state != STATE_IOREQ_INPROCESS) {
  594. fprintf(stderr, "Badness in I/O request ... not in service?!: "
  595. "%x, ptr: %x, port: %"PRIx64", "
  596. "data: %"PRIx64", count: %" FMT_ioreq_size ", size: %" FMT_ioreq_size "\n",
  597. req->state, req->data_is_ptr, req->addr,
  598. req->data, req->count, req->size);
  599. destroy_hvm_domain();
  600. return;
  601. }
  602. xen_wmb(); /* Update ioreq contents /then/ update state. */
  603. /*
  604. * We do this before we send the response so that the tools
  605. * have the opportunity to pick up on the reset before the
  606. * guest resumes and does a hlt with interrupts disabled which
  607. * causes Xen to powerdown the domain.
  608. */
  609. if (vm_running) {
  610. if (qemu_shutdown_requested_get()) {
  611. destroy_hvm_domain();
  612. }
  613. if (qemu_reset_requested_get()) {
  614. qemu_system_reset(VMRESET_REPORT);
  615. }
  616. }
  617. req->state = STATE_IORESP_READY;
  618. xc_evtchn_notify(state->xce_handle, state->ioreq_local_port[state->send_vcpu]);
  619. }
  620. }
  621. static int store_dev_info(int domid, CharDriverState *cs, const char *string)
  622. {
  623. struct xs_handle *xs = NULL;
  624. char *path = NULL;
  625. char *newpath = NULL;
  626. char *pts = NULL;
  627. int ret = -1;
  628. /* Only continue if we're talking to a pty. */
  629. if (strncmp(cs->filename, "pty:", 4)) {
  630. return 0;
  631. }
  632. pts = cs->filename + 4;
  633. /* We now have everything we need to set the xenstore entry. */
  634. xs = xs_open(0);
  635. if (xs == NULL) {
  636. fprintf(stderr, "Could not contact XenStore\n");
  637. goto out;
  638. }
  639. path = xs_get_domain_path(xs, domid);
  640. if (path == NULL) {
  641. fprintf(stderr, "xs_get_domain_path() error\n");
  642. goto out;
  643. }
  644. newpath = realloc(path, (strlen(path) + strlen(string) +
  645. strlen("/tty") + 1));
  646. if (newpath == NULL) {
  647. fprintf(stderr, "realloc error\n");
  648. goto out;
  649. }
  650. path = newpath;
  651. strcat(path, string);
  652. strcat(path, "/tty");
  653. if (!xs_write(xs, XBT_NULL, path, pts, strlen(pts))) {
  654. fprintf(stderr, "xs_write for '%s' fail", string);
  655. goto out;
  656. }
  657. ret = 0;
  658. out:
  659. free(path);
  660. xs_close(xs);
  661. return ret;
  662. }
  663. void xenstore_store_pv_console_info(int i, CharDriverState *chr)
  664. {
  665. if (i == 0) {
  666. store_dev_info(xen_domid, chr, "/console");
  667. } else {
  668. char buf[32];
  669. snprintf(buf, sizeof(buf), "/device/console/%d", i);
  670. store_dev_info(xen_domid, chr, buf);
  671. }
  672. }
  673. static void xenstore_record_dm_state(XenIOState *s, const char *state)
  674. {
  675. char path[50];
  676. snprintf(path, sizeof (path), "/local/domain/0/device-model/%u/state", xen_domid);
  677. if (!xs_write(s->xenstore, XBT_NULL, path, state, strlen(state))) {
  678. fprintf(stderr, "error recording dm state\n");
  679. exit(1);
  680. }
  681. }
  682. static void xen_main_loop_prepare(XenIOState *state)
  683. {
  684. int evtchn_fd = -1;
  685. if (state->xce_handle != XC_HANDLER_INITIAL_VALUE) {
  686. evtchn_fd = xc_evtchn_fd(state->xce_handle);
  687. }
  688. state->buffered_io_timer = qemu_new_timer_ms(rt_clock, handle_buffered_io,
  689. state);
  690. qemu_mod_timer(state->buffered_io_timer, qemu_get_clock_ms(rt_clock));
  691. if (evtchn_fd != -1) {
  692. qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
  693. }
  694. /* record state running */
  695. xenstore_record_dm_state(state, "running");
  696. }
  697. /* Initialise Xen */
  698. static void xen_vm_change_state_handler(void *opaque, int running, int reason)
  699. {
  700. XenIOState *state = opaque;
  701. if (running) {
  702. xen_main_loop_prepare(state);
  703. }
  704. }
  705. static void xen_exit_notifier(Notifier *n, void *data)
  706. {
  707. XenIOState *state = container_of(n, XenIOState, exit);
  708. xc_evtchn_close(state->xce_handle);
  709. xs_daemon_close(state->xenstore);
  710. }
  711. int xen_init(void)
  712. {
  713. xen_xc = xen_xc_interface_open(0, 0, 0);
  714. if (xen_xc == XC_HANDLER_INITIAL_VALUE) {
  715. xen_be_printf(NULL, 0, "can't open xen interface\n");
  716. return -1;
  717. }
  718. return 0;
  719. }
  720. int xen_hvm_init(void)
  721. {
  722. int i, rc;
  723. unsigned long ioreq_pfn;
  724. XenIOState *state;
  725. state = qemu_mallocz(sizeof (XenIOState));
  726. state->xce_handle = xen_xc_evtchn_open(NULL, 0);
  727. if (state->xce_handle == XC_HANDLER_INITIAL_VALUE) {
  728. perror("xen: event channel open");
  729. return -errno;
  730. }
  731. state->xenstore = xs_daemon_open();
  732. if (state->xenstore == NULL) {
  733. perror("xen: xenstore open");
  734. return -errno;
  735. }
  736. state->exit.notify = xen_exit_notifier;
  737. qemu_add_exit_notifier(&state->exit);
  738. xc_get_hvm_param(xen_xc, xen_domid, HVM_PARAM_IOREQ_PFN, &ioreq_pfn);
  739. DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
  740. state->shared_page = xc_map_foreign_range(xen_xc, xen_domid, XC_PAGE_SIZE,
  741. PROT_READ|PROT_WRITE, ioreq_pfn);
  742. if (state->shared_page == NULL) {
  743. hw_error("map shared IO page returned error %d handle=" XC_INTERFACE_FMT,
  744. errno, xen_xc);
  745. }
  746. xc_get_hvm_param(xen_xc, xen_domid, HVM_PARAM_BUFIOREQ_PFN, &ioreq_pfn);
  747. DPRINTF("buffered io page at pfn %lx\n", ioreq_pfn);
  748. state->buffered_io_page = xc_map_foreign_range(xen_xc, xen_domid, XC_PAGE_SIZE,
  749. PROT_READ|PROT_WRITE, ioreq_pfn);
  750. if (state->buffered_io_page == NULL) {
  751. hw_error("map buffered IO page returned error %d", errno);
  752. }
  753. state->ioreq_local_port = qemu_mallocz(smp_cpus * sizeof (evtchn_port_t));
  754. /* FIXME: how about if we overflow the page here? */
  755. for (i = 0; i < smp_cpus; i++) {
  756. rc = xc_evtchn_bind_interdomain(state->xce_handle, xen_domid,
  757. xen_vcpu_eport(state->shared_page, i));
  758. if (rc == -1) {
  759. fprintf(stderr, "bind interdomain ioctl error %d\n", errno);
  760. return -1;
  761. }
  762. state->ioreq_local_port[i] = rc;
  763. }
  764. /* Init RAM management */
  765. xen_map_cache_init();
  766. xen_ram_init(ram_size);
  767. qemu_add_vm_change_state_handler(xen_vm_change_state_handler, state);
  768. state->client = xen_cpu_phys_memory_client;
  769. QLIST_INIT(&state->physmap);
  770. cpu_register_phys_memory_client(&state->client);
  771. state->log_for_dirtybit = NULL;
  772. /* Initialize backend core & drivers */
  773. if (xen_be_init() != 0) {
  774. fprintf(stderr, "%s: xen backend core setup failed\n", __FUNCTION__);
  775. exit(1);
  776. }
  777. xen_be_register("console", &xen_console_ops);
  778. xen_be_register("vkbd", &xen_kbdmouse_ops);
  779. xen_be_register("qdisk", &xen_blkdev_ops);
  780. return 0;
  781. }
  782. void destroy_hvm_domain(void)
  783. {
  784. XenXC xc_handle;
  785. int sts;
  786. xc_handle = xen_xc_interface_open(0, 0, 0);
  787. if (xc_handle == XC_HANDLER_INITIAL_VALUE) {
  788. fprintf(stderr, "Cannot acquire xenctrl handle\n");
  789. } else {
  790. sts = xc_domain_shutdown(xc_handle, xen_domid, SHUTDOWN_poweroff);
  791. if (sts != 0) {
  792. fprintf(stderr, "? xc_domain_shutdown failed to issue poweroff, "
  793. "sts %d, %s\n", sts, strerror(errno));
  794. } else {
  795. fprintf(stderr, "Issued domain %d poweroff\n", xen_domid);
  796. }
  797. xc_interface_close(xc_handle);
  798. }
  799. }