strongarm.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598
  1. /*
  2. * StrongARM SA-1100/SA-1110 emulation
  3. *
  4. * Copyright (C) 2011 Dmitry Eremin-Solenikov
  5. *
  6. * Largely based on StrongARM emulation:
  7. * Copyright (c) 2006 Openedhand Ltd.
  8. * Written by Andrzej Zaborowski <balrog@zabor.org>
  9. *
  10. * UART code based on QEMU 16550A UART emulation
  11. * Copyright (c) 2003-2004 Fabrice Bellard
  12. * Copyright (c) 2008 Citrix Systems, Inc.
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License version 2 as
  16. * published by the Free Software Foundation.
  17. *
  18. * This program is distributed in the hope that it will be useful,
  19. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  21. * GNU General Public License for more details.
  22. *
  23. * You should have received a copy of the GNU General Public License along
  24. * with this program; if not, see <http://www.gnu.org/licenses/>.
  25. */
  26. #include "sysbus.h"
  27. #include "strongarm.h"
  28. #include "qemu-error.h"
  29. #include "arm-misc.h"
  30. #include "sysemu.h"
  31. #include "ssi.h"
  32. //#define DEBUG
  33. /*
  34. TODO
  35. - Implement cp15, c14 ?
  36. - Implement cp15, c15 !!! (idle used in L)
  37. - Implement idle mode handling/DIM
  38. - Implement sleep mode/Wake sources
  39. - Implement reset control
  40. - Implement memory control regs
  41. - PCMCIA handling
  42. - Maybe support MBGNT/MBREQ
  43. - DMA channels
  44. - GPCLK
  45. - IrDA
  46. - MCP
  47. - Enhance UART with modem signals
  48. */
  49. #ifdef DEBUG
  50. # define DPRINTF(format, ...) printf(format , ## __VA_ARGS__)
  51. #else
  52. # define DPRINTF(format, ...) do { } while (0)
  53. #endif
  54. static struct {
  55. target_phys_addr_t io_base;
  56. int irq;
  57. } sa_serial[] = {
  58. { 0x80010000, SA_PIC_UART1 },
  59. { 0x80030000, SA_PIC_UART2 },
  60. { 0x80050000, SA_PIC_UART3 },
  61. { 0, 0 }
  62. };
  63. /* Interrupt Controller */
  64. typedef struct {
  65. SysBusDevice busdev;
  66. qemu_irq irq;
  67. qemu_irq fiq;
  68. uint32_t pending;
  69. uint32_t enabled;
  70. uint32_t is_fiq;
  71. uint32_t int_idle;
  72. } StrongARMPICState;
  73. #define ICIP 0x00
  74. #define ICMR 0x04
  75. #define ICLR 0x08
  76. #define ICFP 0x10
  77. #define ICPR 0x20
  78. #define ICCR 0x0c
  79. #define SA_PIC_SRCS 32
  80. static void strongarm_pic_update(void *opaque)
  81. {
  82. StrongARMPICState *s = opaque;
  83. /* FIXME: reflect DIM */
  84. qemu_set_irq(s->fiq, s->pending & s->enabled & s->is_fiq);
  85. qemu_set_irq(s->irq, s->pending & s->enabled & ~s->is_fiq);
  86. }
  87. static void strongarm_pic_set_irq(void *opaque, int irq, int level)
  88. {
  89. StrongARMPICState *s = opaque;
  90. if (level) {
  91. s->pending |= 1 << irq;
  92. } else {
  93. s->pending &= ~(1 << irq);
  94. }
  95. strongarm_pic_update(s);
  96. }
  97. static uint32_t strongarm_pic_mem_read(void *opaque, target_phys_addr_t offset)
  98. {
  99. StrongARMPICState *s = opaque;
  100. switch (offset) {
  101. case ICIP:
  102. return s->pending & ~s->is_fiq & s->enabled;
  103. case ICMR:
  104. return s->enabled;
  105. case ICLR:
  106. return s->is_fiq;
  107. case ICCR:
  108. return s->int_idle == 0;
  109. case ICFP:
  110. return s->pending & s->is_fiq & s->enabled;
  111. case ICPR:
  112. return s->pending;
  113. default:
  114. printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
  115. __func__, offset);
  116. return 0;
  117. }
  118. }
  119. static void strongarm_pic_mem_write(void *opaque, target_phys_addr_t offset,
  120. uint32_t value)
  121. {
  122. StrongARMPICState *s = opaque;
  123. switch (offset) {
  124. case ICMR:
  125. s->enabled = value;
  126. break;
  127. case ICLR:
  128. s->is_fiq = value;
  129. break;
  130. case ICCR:
  131. s->int_idle = (value & 1) ? 0 : ~0;
  132. break;
  133. default:
  134. printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
  135. __func__, offset);
  136. break;
  137. }
  138. strongarm_pic_update(s);
  139. }
  140. static CPUReadMemoryFunc * const strongarm_pic_readfn[] = {
  141. strongarm_pic_mem_read,
  142. strongarm_pic_mem_read,
  143. strongarm_pic_mem_read,
  144. };
  145. static CPUWriteMemoryFunc * const strongarm_pic_writefn[] = {
  146. strongarm_pic_mem_write,
  147. strongarm_pic_mem_write,
  148. strongarm_pic_mem_write,
  149. };
  150. static int strongarm_pic_initfn(SysBusDevice *dev)
  151. {
  152. StrongARMPICState *s = FROM_SYSBUS(StrongARMPICState, dev);
  153. int iomemtype;
  154. qdev_init_gpio_in(&dev->qdev, strongarm_pic_set_irq, SA_PIC_SRCS);
  155. iomemtype = cpu_register_io_memory(strongarm_pic_readfn,
  156. strongarm_pic_writefn, s, DEVICE_NATIVE_ENDIAN);
  157. sysbus_init_mmio(dev, 0x1000, iomemtype);
  158. sysbus_init_irq(dev, &s->irq);
  159. sysbus_init_irq(dev, &s->fiq);
  160. return 0;
  161. }
  162. static int strongarm_pic_post_load(void *opaque, int version_id)
  163. {
  164. strongarm_pic_update(opaque);
  165. return 0;
  166. }
  167. static VMStateDescription vmstate_strongarm_pic_regs = {
  168. .name = "strongarm_pic",
  169. .version_id = 0,
  170. .minimum_version_id = 0,
  171. .minimum_version_id_old = 0,
  172. .post_load = strongarm_pic_post_load,
  173. .fields = (VMStateField[]) {
  174. VMSTATE_UINT32(pending, StrongARMPICState),
  175. VMSTATE_UINT32(enabled, StrongARMPICState),
  176. VMSTATE_UINT32(is_fiq, StrongARMPICState),
  177. VMSTATE_UINT32(int_idle, StrongARMPICState),
  178. VMSTATE_END_OF_LIST(),
  179. },
  180. };
  181. static SysBusDeviceInfo strongarm_pic_info = {
  182. .init = strongarm_pic_initfn,
  183. .qdev.name = "strongarm_pic",
  184. .qdev.desc = "StrongARM PIC",
  185. .qdev.size = sizeof(StrongARMPICState),
  186. .qdev.vmsd = &vmstate_strongarm_pic_regs,
  187. };
  188. /* Real-Time Clock */
  189. #define RTAR 0x00 /* RTC Alarm register */
  190. #define RCNR 0x04 /* RTC Counter register */
  191. #define RTTR 0x08 /* RTC Timer Trim register */
  192. #define RTSR 0x10 /* RTC Status register */
  193. #define RTSR_AL (1 << 0) /* RTC Alarm detected */
  194. #define RTSR_HZ (1 << 1) /* RTC 1Hz detected */
  195. #define RTSR_ALE (1 << 2) /* RTC Alarm enable */
  196. #define RTSR_HZE (1 << 3) /* RTC 1Hz enable */
  197. /* 16 LSB of RTTR are clockdiv for internal trim logic,
  198. * trim delete isn't emulated, so
  199. * f = 32 768 / (RTTR_trim + 1) */
  200. typedef struct {
  201. SysBusDevice busdev;
  202. uint32_t rttr;
  203. uint32_t rtsr;
  204. uint32_t rtar;
  205. uint32_t last_rcnr;
  206. int64_t last_hz;
  207. QEMUTimer *rtc_alarm;
  208. QEMUTimer *rtc_hz;
  209. qemu_irq rtc_irq;
  210. qemu_irq rtc_hz_irq;
  211. } StrongARMRTCState;
  212. static inline void strongarm_rtc_int_update(StrongARMRTCState *s)
  213. {
  214. qemu_set_irq(s->rtc_irq, s->rtsr & RTSR_AL);
  215. qemu_set_irq(s->rtc_hz_irq, s->rtsr & RTSR_HZ);
  216. }
  217. static void strongarm_rtc_hzupdate(StrongARMRTCState *s)
  218. {
  219. int64_t rt = qemu_get_clock_ms(rt_clock);
  220. s->last_rcnr += ((rt - s->last_hz) << 15) /
  221. (1000 * ((s->rttr & 0xffff) + 1));
  222. s->last_hz = rt;
  223. }
  224. static inline void strongarm_rtc_timer_update(StrongARMRTCState *s)
  225. {
  226. if ((s->rtsr & RTSR_HZE) && !(s->rtsr & RTSR_HZ)) {
  227. qemu_mod_timer(s->rtc_hz, s->last_hz + 1000);
  228. } else {
  229. qemu_del_timer(s->rtc_hz);
  230. }
  231. if ((s->rtsr & RTSR_ALE) && !(s->rtsr & RTSR_AL)) {
  232. qemu_mod_timer(s->rtc_alarm, s->last_hz +
  233. (((s->rtar - s->last_rcnr) * 1000 *
  234. ((s->rttr & 0xffff) + 1)) >> 15));
  235. } else {
  236. qemu_del_timer(s->rtc_alarm);
  237. }
  238. }
  239. static inline void strongarm_rtc_alarm_tick(void *opaque)
  240. {
  241. StrongARMRTCState *s = opaque;
  242. s->rtsr |= RTSR_AL;
  243. strongarm_rtc_timer_update(s);
  244. strongarm_rtc_int_update(s);
  245. }
  246. static inline void strongarm_rtc_hz_tick(void *opaque)
  247. {
  248. StrongARMRTCState *s = opaque;
  249. s->rtsr |= RTSR_HZ;
  250. strongarm_rtc_timer_update(s);
  251. strongarm_rtc_int_update(s);
  252. }
  253. static uint32_t strongarm_rtc_read(void *opaque, target_phys_addr_t addr)
  254. {
  255. StrongARMRTCState *s = opaque;
  256. switch (addr) {
  257. case RTTR:
  258. return s->rttr;
  259. case RTSR:
  260. return s->rtsr;
  261. case RTAR:
  262. return s->rtar;
  263. case RCNR:
  264. return s->last_rcnr +
  265. ((qemu_get_clock_ms(rt_clock) - s->last_hz) << 15) /
  266. (1000 * ((s->rttr & 0xffff) + 1));
  267. default:
  268. printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
  269. return 0;
  270. }
  271. }
  272. static void strongarm_rtc_write(void *opaque, target_phys_addr_t addr,
  273. uint32_t value)
  274. {
  275. StrongARMRTCState *s = opaque;
  276. uint32_t old_rtsr;
  277. switch (addr) {
  278. case RTTR:
  279. strongarm_rtc_hzupdate(s);
  280. s->rttr = value;
  281. strongarm_rtc_timer_update(s);
  282. break;
  283. case RTSR:
  284. old_rtsr = s->rtsr;
  285. s->rtsr = (value & (RTSR_ALE | RTSR_HZE)) |
  286. (s->rtsr & ~(value & (RTSR_AL | RTSR_HZ)));
  287. if (s->rtsr != old_rtsr) {
  288. strongarm_rtc_timer_update(s);
  289. }
  290. strongarm_rtc_int_update(s);
  291. break;
  292. case RTAR:
  293. s->rtar = value;
  294. strongarm_rtc_timer_update(s);
  295. break;
  296. case RCNR:
  297. strongarm_rtc_hzupdate(s);
  298. s->last_rcnr = value;
  299. strongarm_rtc_timer_update(s);
  300. break;
  301. default:
  302. printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
  303. }
  304. }
  305. static CPUReadMemoryFunc * const strongarm_rtc_readfn[] = {
  306. strongarm_rtc_read,
  307. strongarm_rtc_read,
  308. strongarm_rtc_read,
  309. };
  310. static CPUWriteMemoryFunc * const strongarm_rtc_writefn[] = {
  311. strongarm_rtc_write,
  312. strongarm_rtc_write,
  313. strongarm_rtc_write,
  314. };
  315. static int strongarm_rtc_init(SysBusDevice *dev)
  316. {
  317. StrongARMRTCState *s = FROM_SYSBUS(StrongARMRTCState, dev);
  318. struct tm tm;
  319. int iomemtype;
  320. s->rttr = 0x0;
  321. s->rtsr = 0;
  322. qemu_get_timedate(&tm, 0);
  323. s->last_rcnr = (uint32_t) mktimegm(&tm);
  324. s->last_hz = qemu_get_clock_ms(rt_clock);
  325. s->rtc_alarm = qemu_new_timer_ms(rt_clock, strongarm_rtc_alarm_tick, s);
  326. s->rtc_hz = qemu_new_timer_ms(rt_clock, strongarm_rtc_hz_tick, s);
  327. sysbus_init_irq(dev, &s->rtc_irq);
  328. sysbus_init_irq(dev, &s->rtc_hz_irq);
  329. iomemtype = cpu_register_io_memory(strongarm_rtc_readfn,
  330. strongarm_rtc_writefn, s, DEVICE_NATIVE_ENDIAN);
  331. sysbus_init_mmio(dev, 0x10000, iomemtype);
  332. return 0;
  333. }
  334. static void strongarm_rtc_pre_save(void *opaque)
  335. {
  336. StrongARMRTCState *s = opaque;
  337. strongarm_rtc_hzupdate(s);
  338. }
  339. static int strongarm_rtc_post_load(void *opaque, int version_id)
  340. {
  341. StrongARMRTCState *s = opaque;
  342. strongarm_rtc_timer_update(s);
  343. strongarm_rtc_int_update(s);
  344. return 0;
  345. }
  346. static const VMStateDescription vmstate_strongarm_rtc_regs = {
  347. .name = "strongarm-rtc",
  348. .version_id = 0,
  349. .minimum_version_id = 0,
  350. .minimum_version_id_old = 0,
  351. .pre_save = strongarm_rtc_pre_save,
  352. .post_load = strongarm_rtc_post_load,
  353. .fields = (VMStateField[]) {
  354. VMSTATE_UINT32(rttr, StrongARMRTCState),
  355. VMSTATE_UINT32(rtsr, StrongARMRTCState),
  356. VMSTATE_UINT32(rtar, StrongARMRTCState),
  357. VMSTATE_UINT32(last_rcnr, StrongARMRTCState),
  358. VMSTATE_INT64(last_hz, StrongARMRTCState),
  359. VMSTATE_END_OF_LIST(),
  360. },
  361. };
  362. static SysBusDeviceInfo strongarm_rtc_sysbus_info = {
  363. .init = strongarm_rtc_init,
  364. .qdev.name = "strongarm-rtc",
  365. .qdev.desc = "StrongARM RTC Controller",
  366. .qdev.size = sizeof(StrongARMRTCState),
  367. .qdev.vmsd = &vmstate_strongarm_rtc_regs,
  368. };
  369. /* GPIO */
  370. #define GPLR 0x00
  371. #define GPDR 0x04
  372. #define GPSR 0x08
  373. #define GPCR 0x0c
  374. #define GRER 0x10
  375. #define GFER 0x14
  376. #define GEDR 0x18
  377. #define GAFR 0x1c
  378. typedef struct StrongARMGPIOInfo StrongARMGPIOInfo;
  379. struct StrongARMGPIOInfo {
  380. SysBusDevice busdev;
  381. qemu_irq handler[28];
  382. qemu_irq irqs[11];
  383. qemu_irq irqX;
  384. uint32_t ilevel;
  385. uint32_t olevel;
  386. uint32_t dir;
  387. uint32_t rising;
  388. uint32_t falling;
  389. uint32_t status;
  390. uint32_t gpsr;
  391. uint32_t gafr;
  392. uint32_t prev_level;
  393. };
  394. static void strongarm_gpio_irq_update(StrongARMGPIOInfo *s)
  395. {
  396. int i;
  397. for (i = 0; i < 11; i++) {
  398. qemu_set_irq(s->irqs[i], s->status & (1 << i));
  399. }
  400. qemu_set_irq(s->irqX, (s->status & ~0x7ff));
  401. }
  402. static void strongarm_gpio_set(void *opaque, int line, int level)
  403. {
  404. StrongARMGPIOInfo *s = opaque;
  405. uint32_t mask;
  406. mask = 1 << line;
  407. if (level) {
  408. s->status |= s->rising & mask &
  409. ~s->ilevel & ~s->dir;
  410. s->ilevel |= mask;
  411. } else {
  412. s->status |= s->falling & mask &
  413. s->ilevel & ~s->dir;
  414. s->ilevel &= ~mask;
  415. }
  416. if (s->status & mask) {
  417. strongarm_gpio_irq_update(s);
  418. }
  419. }
  420. static void strongarm_gpio_handler_update(StrongARMGPIOInfo *s)
  421. {
  422. uint32_t level, diff;
  423. int bit;
  424. level = s->olevel & s->dir;
  425. for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
  426. bit = ffs(diff) - 1;
  427. qemu_set_irq(s->handler[bit], (level >> bit) & 1);
  428. }
  429. s->prev_level = level;
  430. }
  431. static uint32_t strongarm_gpio_read(void *opaque, target_phys_addr_t offset)
  432. {
  433. StrongARMGPIOInfo *s = opaque;
  434. switch (offset) {
  435. case GPDR: /* GPIO Pin-Direction registers */
  436. return s->dir;
  437. case GPSR: /* GPIO Pin-Output Set registers */
  438. DPRINTF("%s: Read from a write-only register 0x" TARGET_FMT_plx "\n",
  439. __func__, offset);
  440. return s->gpsr; /* Return last written value. */
  441. case GPCR: /* GPIO Pin-Output Clear registers */
  442. DPRINTF("%s: Read from a write-only register 0x" TARGET_FMT_plx "\n",
  443. __func__, offset);
  444. return 31337; /* Specified as unpredictable in the docs. */
  445. case GRER: /* GPIO Rising-Edge Detect Enable registers */
  446. return s->rising;
  447. case GFER: /* GPIO Falling-Edge Detect Enable registers */
  448. return s->falling;
  449. case GAFR: /* GPIO Alternate Function registers */
  450. return s->gafr;
  451. case GPLR: /* GPIO Pin-Level registers */
  452. return (s->olevel & s->dir) |
  453. (s->ilevel & ~s->dir);
  454. case GEDR: /* GPIO Edge Detect Status registers */
  455. return s->status;
  456. default:
  457. printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
  458. }
  459. return 0;
  460. }
  461. static void strongarm_gpio_write(void *opaque,
  462. target_phys_addr_t offset, uint32_t value)
  463. {
  464. StrongARMGPIOInfo *s = opaque;
  465. switch (offset) {
  466. case GPDR: /* GPIO Pin-Direction registers */
  467. s->dir = value;
  468. strongarm_gpio_handler_update(s);
  469. break;
  470. case GPSR: /* GPIO Pin-Output Set registers */
  471. s->olevel |= value;
  472. strongarm_gpio_handler_update(s);
  473. s->gpsr = value;
  474. break;
  475. case GPCR: /* GPIO Pin-Output Clear registers */
  476. s->olevel &= ~value;
  477. strongarm_gpio_handler_update(s);
  478. break;
  479. case GRER: /* GPIO Rising-Edge Detect Enable registers */
  480. s->rising = value;
  481. break;
  482. case GFER: /* GPIO Falling-Edge Detect Enable registers */
  483. s->falling = value;
  484. break;
  485. case GAFR: /* GPIO Alternate Function registers */
  486. s->gafr = value;
  487. break;
  488. case GEDR: /* GPIO Edge Detect Status registers */
  489. s->status &= ~value;
  490. strongarm_gpio_irq_update(s);
  491. break;
  492. default:
  493. printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
  494. }
  495. }
  496. static CPUReadMemoryFunc * const strongarm_gpio_readfn[] = {
  497. strongarm_gpio_read,
  498. strongarm_gpio_read,
  499. strongarm_gpio_read
  500. };
  501. static CPUWriteMemoryFunc * const strongarm_gpio_writefn[] = {
  502. strongarm_gpio_write,
  503. strongarm_gpio_write,
  504. strongarm_gpio_write
  505. };
  506. static DeviceState *strongarm_gpio_init(target_phys_addr_t base,
  507. DeviceState *pic)
  508. {
  509. DeviceState *dev;
  510. int i;
  511. dev = qdev_create(NULL, "strongarm-gpio");
  512. qdev_init_nofail(dev);
  513. sysbus_mmio_map(sysbus_from_qdev(dev), 0, base);
  514. for (i = 0; i < 12; i++)
  515. sysbus_connect_irq(sysbus_from_qdev(dev), i,
  516. qdev_get_gpio_in(pic, SA_PIC_GPIO0_EDGE + i));
  517. return dev;
  518. }
  519. static int strongarm_gpio_initfn(SysBusDevice *dev)
  520. {
  521. int iomemtype;
  522. StrongARMGPIOInfo *s;
  523. int i;
  524. s = FROM_SYSBUS(StrongARMGPIOInfo, dev);
  525. qdev_init_gpio_in(&dev->qdev, strongarm_gpio_set, 28);
  526. qdev_init_gpio_out(&dev->qdev, s->handler, 28);
  527. iomemtype = cpu_register_io_memory(strongarm_gpio_readfn,
  528. strongarm_gpio_writefn, s, DEVICE_NATIVE_ENDIAN);
  529. sysbus_init_mmio(dev, 0x1000, iomemtype);
  530. for (i = 0; i < 11; i++) {
  531. sysbus_init_irq(dev, &s->irqs[i]);
  532. }
  533. sysbus_init_irq(dev, &s->irqX);
  534. return 0;
  535. }
  536. static const VMStateDescription vmstate_strongarm_gpio_regs = {
  537. .name = "strongarm-gpio",
  538. .version_id = 0,
  539. .minimum_version_id = 0,
  540. .minimum_version_id_old = 0,
  541. .fields = (VMStateField[]) {
  542. VMSTATE_UINT32(ilevel, StrongARMGPIOInfo),
  543. VMSTATE_UINT32(olevel, StrongARMGPIOInfo),
  544. VMSTATE_UINT32(dir, StrongARMGPIOInfo),
  545. VMSTATE_UINT32(rising, StrongARMGPIOInfo),
  546. VMSTATE_UINT32(falling, StrongARMGPIOInfo),
  547. VMSTATE_UINT32(status, StrongARMGPIOInfo),
  548. VMSTATE_UINT32(gafr, StrongARMGPIOInfo),
  549. VMSTATE_END_OF_LIST(),
  550. },
  551. };
  552. static SysBusDeviceInfo strongarm_gpio_info = {
  553. .init = strongarm_gpio_initfn,
  554. .qdev.name = "strongarm-gpio",
  555. .qdev.desc = "StrongARM GPIO controller",
  556. .qdev.size = sizeof(StrongARMGPIOInfo),
  557. };
  558. /* Peripheral Pin Controller */
  559. #define PPDR 0x00
  560. #define PPSR 0x04
  561. #define PPAR 0x08
  562. #define PSDR 0x0c
  563. #define PPFR 0x10
  564. typedef struct StrongARMPPCInfo StrongARMPPCInfo;
  565. struct StrongARMPPCInfo {
  566. SysBusDevice busdev;
  567. qemu_irq handler[28];
  568. uint32_t ilevel;
  569. uint32_t olevel;
  570. uint32_t dir;
  571. uint32_t ppar;
  572. uint32_t psdr;
  573. uint32_t ppfr;
  574. uint32_t prev_level;
  575. };
  576. static void strongarm_ppc_set(void *opaque, int line, int level)
  577. {
  578. StrongARMPPCInfo *s = opaque;
  579. if (level) {
  580. s->ilevel |= 1 << line;
  581. } else {
  582. s->ilevel &= ~(1 << line);
  583. }
  584. }
  585. static void strongarm_ppc_handler_update(StrongARMPPCInfo *s)
  586. {
  587. uint32_t level, diff;
  588. int bit;
  589. level = s->olevel & s->dir;
  590. for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
  591. bit = ffs(diff) - 1;
  592. qemu_set_irq(s->handler[bit], (level >> bit) & 1);
  593. }
  594. s->prev_level = level;
  595. }
  596. static uint32_t strongarm_ppc_read(void *opaque, target_phys_addr_t offset)
  597. {
  598. StrongARMPPCInfo *s = opaque;
  599. switch (offset) {
  600. case PPDR: /* PPC Pin Direction registers */
  601. return s->dir | ~0x3fffff;
  602. case PPSR: /* PPC Pin State registers */
  603. return (s->olevel & s->dir) |
  604. (s->ilevel & ~s->dir) |
  605. ~0x3fffff;
  606. case PPAR:
  607. return s->ppar | ~0x41000;
  608. case PSDR:
  609. return s->psdr;
  610. case PPFR:
  611. return s->ppfr | ~0x7f001;
  612. default:
  613. printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
  614. }
  615. return 0;
  616. }
  617. static void strongarm_ppc_write(void *opaque,
  618. target_phys_addr_t offset, uint32_t value)
  619. {
  620. StrongARMPPCInfo *s = opaque;
  621. switch (offset) {
  622. case PPDR: /* PPC Pin Direction registers */
  623. s->dir = value & 0x3fffff;
  624. strongarm_ppc_handler_update(s);
  625. break;
  626. case PPSR: /* PPC Pin State registers */
  627. s->olevel = value & s->dir & 0x3fffff;
  628. strongarm_ppc_handler_update(s);
  629. break;
  630. case PPAR:
  631. s->ppar = value & 0x41000;
  632. break;
  633. case PSDR:
  634. s->psdr = value & 0x3fffff;
  635. break;
  636. case PPFR:
  637. s->ppfr = value & 0x7f001;
  638. break;
  639. default:
  640. printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
  641. }
  642. }
  643. static CPUReadMemoryFunc * const strongarm_ppc_readfn[] = {
  644. strongarm_ppc_read,
  645. strongarm_ppc_read,
  646. strongarm_ppc_read
  647. };
  648. static CPUWriteMemoryFunc * const strongarm_ppc_writefn[] = {
  649. strongarm_ppc_write,
  650. strongarm_ppc_write,
  651. strongarm_ppc_write
  652. };
  653. static int strongarm_ppc_init(SysBusDevice *dev)
  654. {
  655. int iomemtype;
  656. StrongARMPPCInfo *s;
  657. s = FROM_SYSBUS(StrongARMPPCInfo, dev);
  658. qdev_init_gpio_in(&dev->qdev, strongarm_ppc_set, 22);
  659. qdev_init_gpio_out(&dev->qdev, s->handler, 22);
  660. iomemtype = cpu_register_io_memory(strongarm_ppc_readfn,
  661. strongarm_ppc_writefn, s, DEVICE_NATIVE_ENDIAN);
  662. sysbus_init_mmio(dev, 0x1000, iomemtype);
  663. return 0;
  664. }
  665. static const VMStateDescription vmstate_strongarm_ppc_regs = {
  666. .name = "strongarm-ppc",
  667. .version_id = 0,
  668. .minimum_version_id = 0,
  669. .minimum_version_id_old = 0,
  670. .fields = (VMStateField[]) {
  671. VMSTATE_UINT32(ilevel, StrongARMPPCInfo),
  672. VMSTATE_UINT32(olevel, StrongARMPPCInfo),
  673. VMSTATE_UINT32(dir, StrongARMPPCInfo),
  674. VMSTATE_UINT32(ppar, StrongARMPPCInfo),
  675. VMSTATE_UINT32(psdr, StrongARMPPCInfo),
  676. VMSTATE_UINT32(ppfr, StrongARMPPCInfo),
  677. VMSTATE_END_OF_LIST(),
  678. },
  679. };
  680. static SysBusDeviceInfo strongarm_ppc_info = {
  681. .init = strongarm_ppc_init,
  682. .qdev.name = "strongarm-ppc",
  683. .qdev.desc = "StrongARM PPC controller",
  684. .qdev.size = sizeof(StrongARMPPCInfo),
  685. };
  686. /* UART Ports */
  687. #define UTCR0 0x00
  688. #define UTCR1 0x04
  689. #define UTCR2 0x08
  690. #define UTCR3 0x0c
  691. #define UTDR 0x14
  692. #define UTSR0 0x1c
  693. #define UTSR1 0x20
  694. #define UTCR0_PE (1 << 0) /* Parity enable */
  695. #define UTCR0_OES (1 << 1) /* Even parity */
  696. #define UTCR0_SBS (1 << 2) /* 2 stop bits */
  697. #define UTCR0_DSS (1 << 3) /* 8-bit data */
  698. #define UTCR3_RXE (1 << 0) /* Rx enable */
  699. #define UTCR3_TXE (1 << 1) /* Tx enable */
  700. #define UTCR3_BRK (1 << 2) /* Force Break */
  701. #define UTCR3_RIE (1 << 3) /* Rx int enable */
  702. #define UTCR3_TIE (1 << 4) /* Tx int enable */
  703. #define UTCR3_LBM (1 << 5) /* Loopback */
  704. #define UTSR0_TFS (1 << 0) /* Tx FIFO nearly empty */
  705. #define UTSR0_RFS (1 << 1) /* Rx FIFO nearly full */
  706. #define UTSR0_RID (1 << 2) /* Receiver Idle */
  707. #define UTSR0_RBB (1 << 3) /* Receiver begin break */
  708. #define UTSR0_REB (1 << 4) /* Receiver end break */
  709. #define UTSR0_EIF (1 << 5) /* Error in FIFO */
  710. #define UTSR1_RNE (1 << 1) /* Receive FIFO not empty */
  711. #define UTSR1_TNF (1 << 2) /* Transmit FIFO not full */
  712. #define UTSR1_PRE (1 << 3) /* Parity error */
  713. #define UTSR1_FRE (1 << 4) /* Frame error */
  714. #define UTSR1_ROR (1 << 5) /* Receive Over Run */
  715. #define RX_FIFO_PRE (1 << 8)
  716. #define RX_FIFO_FRE (1 << 9)
  717. #define RX_FIFO_ROR (1 << 10)
  718. typedef struct {
  719. SysBusDevice busdev;
  720. CharDriverState *chr;
  721. qemu_irq irq;
  722. uint8_t utcr0;
  723. uint16_t brd;
  724. uint8_t utcr3;
  725. uint8_t utsr0;
  726. uint8_t utsr1;
  727. uint8_t tx_fifo[8];
  728. uint8_t tx_start;
  729. uint8_t tx_len;
  730. uint16_t rx_fifo[12]; /* value + error flags in high bits */
  731. uint8_t rx_start;
  732. uint8_t rx_len;
  733. uint64_t char_transmit_time; /* time to transmit a char in ticks*/
  734. bool wait_break_end;
  735. QEMUTimer *rx_timeout_timer;
  736. QEMUTimer *tx_timer;
  737. } StrongARMUARTState;
  738. static void strongarm_uart_update_status(StrongARMUARTState *s)
  739. {
  740. uint16_t utsr1 = 0;
  741. if (s->tx_len != 8) {
  742. utsr1 |= UTSR1_TNF;
  743. }
  744. if (s->rx_len != 0) {
  745. uint16_t ent = s->rx_fifo[s->rx_start];
  746. utsr1 |= UTSR1_RNE;
  747. if (ent & RX_FIFO_PRE) {
  748. s->utsr1 |= UTSR1_PRE;
  749. }
  750. if (ent & RX_FIFO_FRE) {
  751. s->utsr1 |= UTSR1_FRE;
  752. }
  753. if (ent & RX_FIFO_ROR) {
  754. s->utsr1 |= UTSR1_ROR;
  755. }
  756. }
  757. s->utsr1 = utsr1;
  758. }
  759. static void strongarm_uart_update_int_status(StrongARMUARTState *s)
  760. {
  761. uint16_t utsr0 = s->utsr0 &
  762. (UTSR0_REB | UTSR0_RBB | UTSR0_RID);
  763. int i;
  764. if ((s->utcr3 & UTCR3_TXE) &&
  765. (s->utcr3 & UTCR3_TIE) &&
  766. s->tx_len <= 4) {
  767. utsr0 |= UTSR0_TFS;
  768. }
  769. if ((s->utcr3 & UTCR3_RXE) &&
  770. (s->utcr3 & UTCR3_RIE) &&
  771. s->rx_len > 4) {
  772. utsr0 |= UTSR0_RFS;
  773. }
  774. for (i = 0; i < s->rx_len && i < 4; i++)
  775. if (s->rx_fifo[(s->rx_start + i) % 12] & ~0xff) {
  776. utsr0 |= UTSR0_EIF;
  777. break;
  778. }
  779. s->utsr0 = utsr0;
  780. qemu_set_irq(s->irq, utsr0);
  781. }
  782. static void strongarm_uart_update_parameters(StrongARMUARTState *s)
  783. {
  784. int speed, parity, data_bits, stop_bits, frame_size;
  785. QEMUSerialSetParams ssp;
  786. /* Start bit. */
  787. frame_size = 1;
  788. if (s->utcr0 & UTCR0_PE) {
  789. /* Parity bit. */
  790. frame_size++;
  791. if (s->utcr0 & UTCR0_OES) {
  792. parity = 'E';
  793. } else {
  794. parity = 'O';
  795. }
  796. } else {
  797. parity = 'N';
  798. }
  799. if (s->utcr0 & UTCR0_SBS) {
  800. stop_bits = 2;
  801. } else {
  802. stop_bits = 1;
  803. }
  804. data_bits = (s->utcr0 & UTCR0_DSS) ? 8 : 7;
  805. frame_size += data_bits + stop_bits;
  806. speed = 3686400 / 16 / (s->brd + 1);
  807. ssp.speed = speed;
  808. ssp.parity = parity;
  809. ssp.data_bits = data_bits;
  810. ssp.stop_bits = stop_bits;
  811. s->char_transmit_time = (get_ticks_per_sec() / speed) * frame_size;
  812. if (s->chr) {
  813. qemu_chr_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
  814. }
  815. DPRINTF(stderr, "%s speed=%d parity=%c data=%d stop=%d\n", s->chr->label,
  816. speed, parity, data_bits, stop_bits);
  817. }
  818. static void strongarm_uart_rx_to(void *opaque)
  819. {
  820. StrongARMUARTState *s = opaque;
  821. if (s->rx_len) {
  822. s->utsr0 |= UTSR0_RID;
  823. strongarm_uart_update_int_status(s);
  824. }
  825. }
  826. static void strongarm_uart_rx_push(StrongARMUARTState *s, uint16_t c)
  827. {
  828. if ((s->utcr3 & UTCR3_RXE) == 0) {
  829. /* rx disabled */
  830. return;
  831. }
  832. if (s->wait_break_end) {
  833. s->utsr0 |= UTSR0_REB;
  834. s->wait_break_end = false;
  835. }
  836. if (s->rx_len < 12) {
  837. s->rx_fifo[(s->rx_start + s->rx_len) % 12] = c;
  838. s->rx_len++;
  839. } else
  840. s->rx_fifo[(s->rx_start + 11) % 12] |= RX_FIFO_ROR;
  841. }
  842. static int strongarm_uart_can_receive(void *opaque)
  843. {
  844. StrongARMUARTState *s = opaque;
  845. if (s->rx_len == 12) {
  846. return 0;
  847. }
  848. /* It's best not to get more than 2/3 of RX FIFO, so advertise that much */
  849. if (s->rx_len < 8) {
  850. return 8 - s->rx_len;
  851. }
  852. return 1;
  853. }
  854. static void strongarm_uart_receive(void *opaque, const uint8_t *buf, int size)
  855. {
  856. StrongARMUARTState *s = opaque;
  857. int i;
  858. for (i = 0; i < size; i++) {
  859. strongarm_uart_rx_push(s, buf[i]);
  860. }
  861. /* call the timeout receive callback in 3 char transmit time */
  862. qemu_mod_timer(s->rx_timeout_timer,
  863. qemu_get_clock_ns(vm_clock) + s->char_transmit_time * 3);
  864. strongarm_uart_update_status(s);
  865. strongarm_uart_update_int_status(s);
  866. }
  867. static void strongarm_uart_event(void *opaque, int event)
  868. {
  869. StrongARMUARTState *s = opaque;
  870. if (event == CHR_EVENT_BREAK) {
  871. s->utsr0 |= UTSR0_RBB;
  872. strongarm_uart_rx_push(s, RX_FIFO_FRE);
  873. s->wait_break_end = true;
  874. strongarm_uart_update_status(s);
  875. strongarm_uart_update_int_status(s);
  876. }
  877. }
  878. static void strongarm_uart_tx(void *opaque)
  879. {
  880. StrongARMUARTState *s = opaque;
  881. uint64_t new_xmit_ts = qemu_get_clock_ns(vm_clock);
  882. if (s->utcr3 & UTCR3_LBM) /* loopback */ {
  883. strongarm_uart_receive(s, &s->tx_fifo[s->tx_start], 1);
  884. } else if (s->chr) {
  885. qemu_chr_write(s->chr, &s->tx_fifo[s->tx_start], 1);
  886. }
  887. s->tx_start = (s->tx_start + 1) % 8;
  888. s->tx_len--;
  889. if (s->tx_len) {
  890. qemu_mod_timer(s->tx_timer, new_xmit_ts + s->char_transmit_time);
  891. }
  892. strongarm_uart_update_status(s);
  893. strongarm_uart_update_int_status(s);
  894. }
  895. static uint32_t strongarm_uart_read(void *opaque, target_phys_addr_t addr)
  896. {
  897. StrongARMUARTState *s = opaque;
  898. uint16_t ret;
  899. switch (addr) {
  900. case UTCR0:
  901. return s->utcr0;
  902. case UTCR1:
  903. return s->brd >> 8;
  904. case UTCR2:
  905. return s->brd & 0xff;
  906. case UTCR3:
  907. return s->utcr3;
  908. case UTDR:
  909. if (s->rx_len != 0) {
  910. ret = s->rx_fifo[s->rx_start];
  911. s->rx_start = (s->rx_start + 1) % 12;
  912. s->rx_len--;
  913. strongarm_uart_update_status(s);
  914. strongarm_uart_update_int_status(s);
  915. return ret;
  916. }
  917. return 0;
  918. case UTSR0:
  919. return s->utsr0;
  920. case UTSR1:
  921. return s->utsr1;
  922. default:
  923. printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
  924. return 0;
  925. }
  926. }
  927. static void strongarm_uart_write(void *opaque, target_phys_addr_t addr,
  928. uint32_t value)
  929. {
  930. StrongARMUARTState *s = opaque;
  931. switch (addr) {
  932. case UTCR0:
  933. s->utcr0 = value & 0x7f;
  934. strongarm_uart_update_parameters(s);
  935. break;
  936. case UTCR1:
  937. s->brd = (s->brd & 0xff) | ((value & 0xf) << 8);
  938. strongarm_uart_update_parameters(s);
  939. break;
  940. case UTCR2:
  941. s->brd = (s->brd & 0xf00) | (value & 0xff);
  942. strongarm_uart_update_parameters(s);
  943. break;
  944. case UTCR3:
  945. s->utcr3 = value & 0x3f;
  946. if ((s->utcr3 & UTCR3_RXE) == 0) {
  947. s->rx_len = 0;
  948. }
  949. if ((s->utcr3 & UTCR3_TXE) == 0) {
  950. s->tx_len = 0;
  951. }
  952. strongarm_uart_update_status(s);
  953. strongarm_uart_update_int_status(s);
  954. break;
  955. case UTDR:
  956. if ((s->utcr3 & UTCR3_TXE) && s->tx_len != 8) {
  957. s->tx_fifo[(s->tx_start + s->tx_len) % 8] = value;
  958. s->tx_len++;
  959. strongarm_uart_update_status(s);
  960. strongarm_uart_update_int_status(s);
  961. if (s->tx_len == 1) {
  962. strongarm_uart_tx(s);
  963. }
  964. }
  965. break;
  966. case UTSR0:
  967. s->utsr0 = s->utsr0 & ~(value &
  968. (UTSR0_REB | UTSR0_RBB | UTSR0_RID));
  969. strongarm_uart_update_int_status(s);
  970. break;
  971. default:
  972. printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
  973. }
  974. }
  975. static CPUReadMemoryFunc * const strongarm_uart_readfn[] = {
  976. strongarm_uart_read,
  977. strongarm_uart_read,
  978. strongarm_uart_read,
  979. };
  980. static CPUWriteMemoryFunc * const strongarm_uart_writefn[] = {
  981. strongarm_uart_write,
  982. strongarm_uart_write,
  983. strongarm_uart_write,
  984. };
  985. static int strongarm_uart_init(SysBusDevice *dev)
  986. {
  987. StrongARMUARTState *s = FROM_SYSBUS(StrongARMUARTState, dev);
  988. int iomemtype;
  989. iomemtype = cpu_register_io_memory(strongarm_uart_readfn,
  990. strongarm_uart_writefn, s, DEVICE_NATIVE_ENDIAN);
  991. sysbus_init_mmio(dev, 0x10000, iomemtype);
  992. sysbus_init_irq(dev, &s->irq);
  993. s->rx_timeout_timer = qemu_new_timer_ns(vm_clock, strongarm_uart_rx_to, s);
  994. s->tx_timer = qemu_new_timer_ns(vm_clock, strongarm_uart_tx, s);
  995. if (s->chr) {
  996. qemu_chr_add_handlers(s->chr,
  997. strongarm_uart_can_receive,
  998. strongarm_uart_receive,
  999. strongarm_uart_event,
  1000. s);
  1001. }
  1002. return 0;
  1003. }
  1004. static void strongarm_uart_reset(DeviceState *dev)
  1005. {
  1006. StrongARMUARTState *s = DO_UPCAST(StrongARMUARTState, busdev.qdev, dev);
  1007. s->utcr0 = UTCR0_DSS; /* 8 data, no parity */
  1008. s->brd = 23; /* 9600 */
  1009. /* enable send & recv - this actually violates spec */
  1010. s->utcr3 = UTCR3_TXE | UTCR3_RXE;
  1011. s->rx_len = s->tx_len = 0;
  1012. strongarm_uart_update_parameters(s);
  1013. strongarm_uart_update_status(s);
  1014. strongarm_uart_update_int_status(s);
  1015. }
  1016. static int strongarm_uart_post_load(void *opaque, int version_id)
  1017. {
  1018. StrongARMUARTState *s = opaque;
  1019. strongarm_uart_update_parameters(s);
  1020. strongarm_uart_update_status(s);
  1021. strongarm_uart_update_int_status(s);
  1022. /* tx and restart timer */
  1023. if (s->tx_len) {
  1024. strongarm_uart_tx(s);
  1025. }
  1026. /* restart rx timeout timer */
  1027. if (s->rx_len) {
  1028. qemu_mod_timer(s->rx_timeout_timer,
  1029. qemu_get_clock_ns(vm_clock) + s->char_transmit_time * 3);
  1030. }
  1031. return 0;
  1032. }
  1033. static const VMStateDescription vmstate_strongarm_uart_regs = {
  1034. .name = "strongarm-uart",
  1035. .version_id = 0,
  1036. .minimum_version_id = 0,
  1037. .minimum_version_id_old = 0,
  1038. .post_load = strongarm_uart_post_load,
  1039. .fields = (VMStateField[]) {
  1040. VMSTATE_UINT8(utcr0, StrongARMUARTState),
  1041. VMSTATE_UINT16(brd, StrongARMUARTState),
  1042. VMSTATE_UINT8(utcr3, StrongARMUARTState),
  1043. VMSTATE_UINT8(utsr0, StrongARMUARTState),
  1044. VMSTATE_UINT8_ARRAY(tx_fifo, StrongARMUARTState, 8),
  1045. VMSTATE_UINT8(tx_start, StrongARMUARTState),
  1046. VMSTATE_UINT8(tx_len, StrongARMUARTState),
  1047. VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMUARTState, 12),
  1048. VMSTATE_UINT8(rx_start, StrongARMUARTState),
  1049. VMSTATE_UINT8(rx_len, StrongARMUARTState),
  1050. VMSTATE_BOOL(wait_break_end, StrongARMUARTState),
  1051. VMSTATE_END_OF_LIST(),
  1052. },
  1053. };
  1054. static SysBusDeviceInfo strongarm_uart_info = {
  1055. .init = strongarm_uart_init,
  1056. .qdev.name = "strongarm-uart",
  1057. .qdev.desc = "StrongARM UART controller",
  1058. .qdev.size = sizeof(StrongARMUARTState),
  1059. .qdev.reset = strongarm_uart_reset,
  1060. .qdev.vmsd = &vmstate_strongarm_uart_regs,
  1061. .qdev.props = (Property[]) {
  1062. DEFINE_PROP_CHR("chardev", StrongARMUARTState, chr),
  1063. DEFINE_PROP_END_OF_LIST(),
  1064. }
  1065. };
  1066. /* Synchronous Serial Ports */
  1067. typedef struct {
  1068. SysBusDevice busdev;
  1069. qemu_irq irq;
  1070. SSIBus *bus;
  1071. uint16_t sscr[2];
  1072. uint16_t sssr;
  1073. uint16_t rx_fifo[8];
  1074. uint8_t rx_level;
  1075. uint8_t rx_start;
  1076. } StrongARMSSPState;
  1077. #define SSCR0 0x60 /* SSP Control register 0 */
  1078. #define SSCR1 0x64 /* SSP Control register 1 */
  1079. #define SSDR 0x6c /* SSP Data register */
  1080. #define SSSR 0x74 /* SSP Status register */
  1081. /* Bitfields for above registers */
  1082. #define SSCR0_SPI(x) (((x) & 0x30) == 0x00)
  1083. #define SSCR0_SSP(x) (((x) & 0x30) == 0x10)
  1084. #define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20)
  1085. #define SSCR0_PSP(x) (((x) & 0x30) == 0x30)
  1086. #define SSCR0_SSE (1 << 7)
  1087. #define SSCR0_DSS(x) (((x) & 0xf) + 1)
  1088. #define SSCR1_RIE (1 << 0)
  1089. #define SSCR1_TIE (1 << 1)
  1090. #define SSCR1_LBM (1 << 2)
  1091. #define SSSR_TNF (1 << 2)
  1092. #define SSSR_RNE (1 << 3)
  1093. #define SSSR_TFS (1 << 5)
  1094. #define SSSR_RFS (1 << 6)
  1095. #define SSSR_ROR (1 << 7)
  1096. #define SSSR_RW 0x0080
  1097. static void strongarm_ssp_int_update(StrongARMSSPState *s)
  1098. {
  1099. int level = 0;
  1100. level |= (s->sssr & SSSR_ROR);
  1101. level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE);
  1102. level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE);
  1103. qemu_set_irq(s->irq, level);
  1104. }
  1105. static void strongarm_ssp_fifo_update(StrongARMSSPState *s)
  1106. {
  1107. s->sssr &= ~SSSR_TFS;
  1108. s->sssr &= ~SSSR_TNF;
  1109. if (s->sscr[0] & SSCR0_SSE) {
  1110. if (s->rx_level >= 4) {
  1111. s->sssr |= SSSR_RFS;
  1112. } else {
  1113. s->sssr &= ~SSSR_RFS;
  1114. }
  1115. if (s->rx_level) {
  1116. s->sssr |= SSSR_RNE;
  1117. } else {
  1118. s->sssr &= ~SSSR_RNE;
  1119. }
  1120. /* TX FIFO is never filled, so it is always in underrun
  1121. condition if SSP is enabled */
  1122. s->sssr |= SSSR_TFS;
  1123. s->sssr |= SSSR_TNF;
  1124. }
  1125. strongarm_ssp_int_update(s);
  1126. }
  1127. static uint32_t strongarm_ssp_read(void *opaque, target_phys_addr_t addr)
  1128. {
  1129. StrongARMSSPState *s = opaque;
  1130. uint32_t retval;
  1131. switch (addr) {
  1132. case SSCR0:
  1133. return s->sscr[0];
  1134. case SSCR1:
  1135. return s->sscr[1];
  1136. case SSSR:
  1137. return s->sssr;
  1138. case SSDR:
  1139. if (~s->sscr[0] & SSCR0_SSE) {
  1140. return 0xffffffff;
  1141. }
  1142. if (s->rx_level < 1) {
  1143. printf("%s: SSP Rx Underrun\n", __func__);
  1144. return 0xffffffff;
  1145. }
  1146. s->rx_level--;
  1147. retval = s->rx_fifo[s->rx_start++];
  1148. s->rx_start &= 0x7;
  1149. strongarm_ssp_fifo_update(s);
  1150. return retval;
  1151. default:
  1152. printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
  1153. break;
  1154. }
  1155. return 0;
  1156. }
  1157. static void strongarm_ssp_write(void *opaque, target_phys_addr_t addr,
  1158. uint32_t value)
  1159. {
  1160. StrongARMSSPState *s = opaque;
  1161. switch (addr) {
  1162. case SSCR0:
  1163. s->sscr[0] = value & 0xffbf;
  1164. if ((s->sscr[0] & SSCR0_SSE) && SSCR0_DSS(value) < 4) {
  1165. printf("%s: Wrong data size: %i bits\n", __func__,
  1166. SSCR0_DSS(value));
  1167. }
  1168. if (!(value & SSCR0_SSE)) {
  1169. s->sssr = 0;
  1170. s->rx_level = 0;
  1171. }
  1172. strongarm_ssp_fifo_update(s);
  1173. break;
  1174. case SSCR1:
  1175. s->sscr[1] = value & 0x2f;
  1176. if (value & SSCR1_LBM) {
  1177. printf("%s: Attempt to use SSP LBM mode\n", __func__);
  1178. }
  1179. strongarm_ssp_fifo_update(s);
  1180. break;
  1181. case SSSR:
  1182. s->sssr &= ~(value & SSSR_RW);
  1183. strongarm_ssp_int_update(s);
  1184. break;
  1185. case SSDR:
  1186. if (SSCR0_UWIRE(s->sscr[0])) {
  1187. value &= 0xff;
  1188. } else
  1189. /* Note how 32bits overflow does no harm here */
  1190. value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
  1191. /* Data goes from here to the Tx FIFO and is shifted out from
  1192. * there directly to the slave, no need to buffer it.
  1193. */
  1194. if (s->sscr[0] & SSCR0_SSE) {
  1195. uint32_t readval;
  1196. if (s->sscr[1] & SSCR1_LBM) {
  1197. readval = value;
  1198. } else {
  1199. readval = ssi_transfer(s->bus, value);
  1200. }
  1201. if (s->rx_level < 0x08) {
  1202. s->rx_fifo[(s->rx_start + s->rx_level++) & 0x7] = readval;
  1203. } else {
  1204. s->sssr |= SSSR_ROR;
  1205. }
  1206. }
  1207. strongarm_ssp_fifo_update(s);
  1208. break;
  1209. default:
  1210. printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
  1211. break;
  1212. }
  1213. }
  1214. static CPUReadMemoryFunc * const strongarm_ssp_readfn[] = {
  1215. strongarm_ssp_read,
  1216. strongarm_ssp_read,
  1217. strongarm_ssp_read,
  1218. };
  1219. static CPUWriteMemoryFunc * const strongarm_ssp_writefn[] = {
  1220. strongarm_ssp_write,
  1221. strongarm_ssp_write,
  1222. strongarm_ssp_write,
  1223. };
  1224. static int strongarm_ssp_post_load(void *opaque, int version_id)
  1225. {
  1226. StrongARMSSPState *s = opaque;
  1227. strongarm_ssp_fifo_update(s);
  1228. return 0;
  1229. }
  1230. static int strongarm_ssp_init(SysBusDevice *dev)
  1231. {
  1232. int iomemtype;
  1233. StrongARMSSPState *s = FROM_SYSBUS(StrongARMSSPState, dev);
  1234. sysbus_init_irq(dev, &s->irq);
  1235. iomemtype = cpu_register_io_memory(strongarm_ssp_readfn,
  1236. strongarm_ssp_writefn, s,
  1237. DEVICE_NATIVE_ENDIAN);
  1238. sysbus_init_mmio(dev, 0x1000, iomemtype);
  1239. s->bus = ssi_create_bus(&dev->qdev, "ssi");
  1240. return 0;
  1241. }
  1242. static void strongarm_ssp_reset(DeviceState *dev)
  1243. {
  1244. StrongARMSSPState *s = DO_UPCAST(StrongARMSSPState, busdev.qdev, dev);
  1245. s->sssr = 0x03; /* 3 bit data, SPI, disabled */
  1246. s->rx_start = 0;
  1247. s->rx_level = 0;
  1248. }
  1249. static const VMStateDescription vmstate_strongarm_ssp_regs = {
  1250. .name = "strongarm-ssp",
  1251. .version_id = 0,
  1252. .minimum_version_id = 0,
  1253. .minimum_version_id_old = 0,
  1254. .post_load = strongarm_ssp_post_load,
  1255. .fields = (VMStateField[]) {
  1256. VMSTATE_UINT16_ARRAY(sscr, StrongARMSSPState, 2),
  1257. VMSTATE_UINT16(sssr, StrongARMSSPState),
  1258. VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMSSPState, 8),
  1259. VMSTATE_UINT8(rx_start, StrongARMSSPState),
  1260. VMSTATE_UINT8(rx_level, StrongARMSSPState),
  1261. VMSTATE_END_OF_LIST(),
  1262. },
  1263. };
  1264. static SysBusDeviceInfo strongarm_ssp_info = {
  1265. .init = strongarm_ssp_init,
  1266. .qdev.name = "strongarm-ssp",
  1267. .qdev.desc = "StrongARM SSP controller",
  1268. .qdev.size = sizeof(StrongARMSSPState),
  1269. .qdev.reset = strongarm_ssp_reset,
  1270. .qdev.vmsd = &vmstate_strongarm_ssp_regs,
  1271. };
  1272. /* Main CPU functions */
  1273. StrongARMState *sa1110_init(unsigned int sdram_size, const char *rev)
  1274. {
  1275. StrongARMState *s;
  1276. qemu_irq *pic;
  1277. int i;
  1278. s = qemu_mallocz(sizeof(StrongARMState));
  1279. if (!rev) {
  1280. rev = "sa1110-b5";
  1281. }
  1282. if (strncmp(rev, "sa1110", 6)) {
  1283. error_report("Machine requires a SA1110 processor.");
  1284. exit(1);
  1285. }
  1286. s->env = cpu_init(rev);
  1287. if (!s->env) {
  1288. error_report("Unable to find CPU definition");
  1289. exit(1);
  1290. }
  1291. cpu_register_physical_memory(SA_SDCS0,
  1292. sdram_size, qemu_ram_alloc(NULL, "strongarm.sdram",
  1293. sdram_size) | IO_MEM_RAM);
  1294. pic = arm_pic_init_cpu(s->env);
  1295. s->pic = sysbus_create_varargs("strongarm_pic", 0x90050000,
  1296. pic[ARM_PIC_CPU_IRQ], pic[ARM_PIC_CPU_FIQ], NULL);
  1297. sysbus_create_varargs("pxa25x-timer", 0x90000000,
  1298. qdev_get_gpio_in(s->pic, SA_PIC_OSTC0),
  1299. qdev_get_gpio_in(s->pic, SA_PIC_OSTC1),
  1300. qdev_get_gpio_in(s->pic, SA_PIC_OSTC2),
  1301. qdev_get_gpio_in(s->pic, SA_PIC_OSTC3),
  1302. NULL);
  1303. sysbus_create_simple("strongarm-rtc", 0x90010000,
  1304. qdev_get_gpio_in(s->pic, SA_PIC_RTC_ALARM));
  1305. s->gpio = strongarm_gpio_init(0x90040000, s->pic);
  1306. s->ppc = sysbus_create_varargs("strongarm-ppc", 0x90060000, NULL);
  1307. for (i = 0; sa_serial[i].io_base; i++) {
  1308. DeviceState *dev = qdev_create(NULL, "strongarm-uart");
  1309. qdev_prop_set_chr(dev, "chardev", serial_hds[i]);
  1310. qdev_init_nofail(dev);
  1311. sysbus_mmio_map(sysbus_from_qdev(dev), 0,
  1312. sa_serial[i].io_base);
  1313. sysbus_connect_irq(sysbus_from_qdev(dev), 0,
  1314. qdev_get_gpio_in(s->pic, sa_serial[i].irq));
  1315. }
  1316. s->ssp = sysbus_create_varargs("strongarm-ssp", 0x80070000,
  1317. qdev_get_gpio_in(s->pic, SA_PIC_SSP), NULL);
  1318. s->ssp_bus = (SSIBus *)qdev_get_child_bus(s->ssp, "ssi");
  1319. return s;
  1320. }
  1321. static void strongarm_register_devices(void)
  1322. {
  1323. sysbus_register_withprop(&strongarm_pic_info);
  1324. sysbus_register_withprop(&strongarm_rtc_sysbus_info);
  1325. sysbus_register_withprop(&strongarm_gpio_info);
  1326. sysbus_register_withprop(&strongarm_ppc_info);
  1327. sysbus_register_withprop(&strongarm_uart_info);
  1328. sysbus_register_withprop(&strongarm_ssp_info);
  1329. }
  1330. device_init(strongarm_register_devices)