sparc32_dma.c 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305
  1. /*
  2. * QEMU Sparc32 DMA controller emulation
  3. *
  4. * Copyright (c) 2006 Fabrice Bellard
  5. *
  6. * Modifications:
  7. * 2010-Feb-14 Artyom Tarasenko : reworked irq generation
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a copy
  10. * of this software and associated documentation files (the "Software"), to deal
  11. * in the Software without restriction, including without limitation the rights
  12. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13. * copies of the Software, and to permit persons to whom the Software is
  14. * furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be included in
  17. * all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  22. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25. * THE SOFTWARE.
  26. */
  27. #include "hw.h"
  28. #include "sparc32_dma.h"
  29. #include "sun4m.h"
  30. #include "sysbus.h"
  31. #include "trace.h"
  32. /*
  33. * This is the DMA controller part of chip STP2000 (Master I/O), also
  34. * produced as NCR89C100. See
  35. * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
  36. * and
  37. * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
  38. */
  39. #define DMA_REGS 4
  40. #define DMA_SIZE (4 * sizeof(uint32_t))
  41. /* We need the mask, because one instance of the device is not page
  42. aligned (ledma, start address 0x0010) */
  43. #define DMA_MASK (DMA_SIZE - 1)
  44. /* OBP says 0x20 bytes for ledma, the extras are aliased to espdma */
  45. #define DMA_ETH_SIZE (8 * sizeof(uint32_t))
  46. #define DMA_MAX_REG_OFFSET (2 * DMA_SIZE - 1)
  47. #define DMA_VER 0xa0000000
  48. #define DMA_INTR 1
  49. #define DMA_INTREN 0x10
  50. #define DMA_WRITE_MEM 0x100
  51. #define DMA_EN 0x200
  52. #define DMA_LOADED 0x04000000
  53. #define DMA_DRAIN_FIFO 0x40
  54. #define DMA_RESET 0x80
  55. /* XXX SCSI and ethernet should have different read-only bit masks */
  56. #define DMA_CSR_RO_MASK 0xfe000007
  57. typedef struct DMAState DMAState;
  58. struct DMAState {
  59. SysBusDevice busdev;
  60. uint32_t dmaregs[DMA_REGS];
  61. qemu_irq irq;
  62. void *iommu;
  63. qemu_irq gpio[2];
  64. uint32_t is_ledma;
  65. };
  66. enum {
  67. GPIO_RESET = 0,
  68. GPIO_DMA,
  69. };
  70. /* Note: on sparc, the lance 16 bit bus is swapped */
  71. void ledma_memory_read(void *opaque, target_phys_addr_t addr,
  72. uint8_t *buf, int len, int do_bswap)
  73. {
  74. DMAState *s = opaque;
  75. int i;
  76. addr |= s->dmaregs[3];
  77. trace_ledma_memory_read(addr);
  78. if (do_bswap) {
  79. sparc_iommu_memory_read(s->iommu, addr, buf, len);
  80. } else {
  81. addr &= ~1;
  82. len &= ~1;
  83. sparc_iommu_memory_read(s->iommu, addr, buf, len);
  84. for(i = 0; i < len; i += 2) {
  85. bswap16s((uint16_t *)(buf + i));
  86. }
  87. }
  88. }
  89. void ledma_memory_write(void *opaque, target_phys_addr_t addr,
  90. uint8_t *buf, int len, int do_bswap)
  91. {
  92. DMAState *s = opaque;
  93. int l, i;
  94. uint16_t tmp_buf[32];
  95. addr |= s->dmaregs[3];
  96. trace_ledma_memory_write(addr);
  97. if (do_bswap) {
  98. sparc_iommu_memory_write(s->iommu, addr, buf, len);
  99. } else {
  100. addr &= ~1;
  101. len &= ~1;
  102. while (len > 0) {
  103. l = len;
  104. if (l > sizeof(tmp_buf))
  105. l = sizeof(tmp_buf);
  106. for(i = 0; i < l; i += 2) {
  107. tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i));
  108. }
  109. sparc_iommu_memory_write(s->iommu, addr, (uint8_t *)tmp_buf, l);
  110. len -= l;
  111. buf += l;
  112. addr += l;
  113. }
  114. }
  115. }
  116. static void dma_set_irq(void *opaque, int irq, int level)
  117. {
  118. DMAState *s = opaque;
  119. if (level) {
  120. s->dmaregs[0] |= DMA_INTR;
  121. if (s->dmaregs[0] & DMA_INTREN) {
  122. trace_sparc32_dma_set_irq_raise();
  123. qemu_irq_raise(s->irq);
  124. }
  125. } else {
  126. if (s->dmaregs[0] & DMA_INTR) {
  127. s->dmaregs[0] &= ~DMA_INTR;
  128. if (s->dmaregs[0] & DMA_INTREN) {
  129. trace_sparc32_dma_set_irq_lower();
  130. qemu_irq_lower(s->irq);
  131. }
  132. }
  133. }
  134. }
  135. void espdma_memory_read(void *opaque, uint8_t *buf, int len)
  136. {
  137. DMAState *s = opaque;
  138. trace_espdma_memory_read(s->dmaregs[1]);
  139. sparc_iommu_memory_read(s->iommu, s->dmaregs[1], buf, len);
  140. s->dmaregs[1] += len;
  141. }
  142. void espdma_memory_write(void *opaque, uint8_t *buf, int len)
  143. {
  144. DMAState *s = opaque;
  145. trace_espdma_memory_write(s->dmaregs[1]);
  146. sparc_iommu_memory_write(s->iommu, s->dmaregs[1], buf, len);
  147. s->dmaregs[1] += len;
  148. }
  149. static uint32_t dma_mem_readl(void *opaque, target_phys_addr_t addr)
  150. {
  151. DMAState *s = opaque;
  152. uint32_t saddr;
  153. if (s->is_ledma && (addr > DMA_MAX_REG_OFFSET)) {
  154. /* aliased to espdma, but we can't get there from here */
  155. /* buggy driver if using undocumented behavior, just return 0 */
  156. trace_sparc32_dma_mem_readl(addr, 0);
  157. return 0;
  158. }
  159. saddr = (addr & DMA_MASK) >> 2;
  160. trace_sparc32_dma_mem_readl(addr, s->dmaregs[saddr]);
  161. return s->dmaregs[saddr];
  162. }
  163. static void dma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
  164. {
  165. DMAState *s = opaque;
  166. uint32_t saddr;
  167. if (s->is_ledma && (addr > DMA_MAX_REG_OFFSET)) {
  168. /* aliased to espdma, but we can't get there from here */
  169. trace_sparc32_dma_mem_writel(addr, 0, val);
  170. return;
  171. }
  172. saddr = (addr & DMA_MASK) >> 2;
  173. trace_sparc32_dma_mem_writel(addr, s->dmaregs[saddr], val);
  174. switch (saddr) {
  175. case 0:
  176. if (val & DMA_INTREN) {
  177. if (s->dmaregs[0] & DMA_INTR) {
  178. trace_sparc32_dma_set_irq_raise();
  179. qemu_irq_raise(s->irq);
  180. }
  181. } else {
  182. if (s->dmaregs[0] & (DMA_INTR | DMA_INTREN)) {
  183. trace_sparc32_dma_set_irq_lower();
  184. qemu_irq_lower(s->irq);
  185. }
  186. }
  187. if (val & DMA_RESET) {
  188. qemu_irq_raise(s->gpio[GPIO_RESET]);
  189. qemu_irq_lower(s->gpio[GPIO_RESET]);
  190. } else if (val & DMA_DRAIN_FIFO) {
  191. val &= ~DMA_DRAIN_FIFO;
  192. } else if (val == 0)
  193. val = DMA_DRAIN_FIFO;
  194. if (val & DMA_EN && !(s->dmaregs[0] & DMA_EN)) {
  195. trace_sparc32_dma_enable_raise();
  196. qemu_irq_raise(s->gpio[GPIO_DMA]);
  197. } else if (!(val & DMA_EN) && !!(s->dmaregs[0] & DMA_EN)) {
  198. trace_sparc32_dma_enable_lower();
  199. qemu_irq_lower(s->gpio[GPIO_DMA]);
  200. }
  201. val &= ~DMA_CSR_RO_MASK;
  202. val |= DMA_VER;
  203. s->dmaregs[0] = (s->dmaregs[0] & DMA_CSR_RO_MASK) | val;
  204. break;
  205. case 1:
  206. s->dmaregs[0] |= DMA_LOADED;
  207. /* fall through */
  208. default:
  209. s->dmaregs[saddr] = val;
  210. break;
  211. }
  212. }
  213. static CPUReadMemoryFunc * const dma_mem_read[3] = {
  214. NULL,
  215. NULL,
  216. dma_mem_readl,
  217. };
  218. static CPUWriteMemoryFunc * const dma_mem_write[3] = {
  219. NULL,
  220. NULL,
  221. dma_mem_writel,
  222. };
  223. static void dma_reset(DeviceState *d)
  224. {
  225. DMAState *s = container_of(d, DMAState, busdev.qdev);
  226. memset(s->dmaregs, 0, DMA_SIZE);
  227. s->dmaregs[0] = DMA_VER;
  228. }
  229. static const VMStateDescription vmstate_dma = {
  230. .name ="sparc32_dma",
  231. .version_id = 2,
  232. .minimum_version_id = 2,
  233. .minimum_version_id_old = 2,
  234. .fields = (VMStateField []) {
  235. VMSTATE_UINT32_ARRAY(dmaregs, DMAState, DMA_REGS),
  236. VMSTATE_END_OF_LIST()
  237. }
  238. };
  239. static int sparc32_dma_init1(SysBusDevice *dev)
  240. {
  241. DMAState *s = FROM_SYSBUS(DMAState, dev);
  242. int dma_io_memory;
  243. int reg_size;
  244. sysbus_init_irq(dev, &s->irq);
  245. dma_io_memory = cpu_register_io_memory(dma_mem_read, dma_mem_write, s,
  246. DEVICE_NATIVE_ENDIAN);
  247. reg_size = s->is_ledma ? DMA_ETH_SIZE : DMA_SIZE;
  248. sysbus_init_mmio(dev, reg_size, dma_io_memory);
  249. qdev_init_gpio_in(&dev->qdev, dma_set_irq, 1);
  250. qdev_init_gpio_out(&dev->qdev, s->gpio, 2);
  251. return 0;
  252. }
  253. static SysBusDeviceInfo sparc32_dma_info = {
  254. .init = sparc32_dma_init1,
  255. .qdev.name = "sparc32_dma",
  256. .qdev.size = sizeof(DMAState),
  257. .qdev.vmsd = &vmstate_dma,
  258. .qdev.reset = dma_reset,
  259. .qdev.props = (Property[]) {
  260. DEFINE_PROP_PTR("iommu_opaque", DMAState, iommu),
  261. DEFINE_PROP_UINT32("is_ledma", DMAState, is_ledma, 0),
  262. DEFINE_PROP_END_OF_LIST(),
  263. }
  264. };
  265. static void sparc32_dma_register_devices(void)
  266. {
  267. sysbus_register_withprop(&sparc32_dma_info);
  268. }
  269. device_init(sparc32_dma_register_devices)