pl022.c 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300
  1. /*
  2. * Arm PrimeCell PL022 Synchronous Serial Port
  3. *
  4. * Copyright (c) 2007 CodeSourcery.
  5. * Written by Paul Brook
  6. *
  7. * This code is licensed under the GPL.
  8. */
  9. #include "sysbus.h"
  10. #include "ssi.h"
  11. #include "primecell.h"
  12. //#define DEBUG_PL022 1
  13. #ifdef DEBUG_PL022
  14. #define DPRINTF(fmt, ...) \
  15. do { printf("pl022: " fmt , ## __VA_ARGS__); } while (0)
  16. #define BADF(fmt, ...) \
  17. do { fprintf(stderr, "pl022: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
  18. #else
  19. #define DPRINTF(fmt, ...) do {} while(0)
  20. #define BADF(fmt, ...) \
  21. do { fprintf(stderr, "pl022: error: " fmt , ## __VA_ARGS__);} while (0)
  22. #endif
  23. #define PL022_CR1_LBM 0x01
  24. #define PL022_CR1_SSE 0x02
  25. #define PL022_CR1_MS 0x04
  26. #define PL022_CR1_SDO 0x08
  27. #define PL022_SR_TFE 0x01
  28. #define PL022_SR_TNF 0x02
  29. #define PL022_SR_RNE 0x04
  30. #define PL022_SR_RFF 0x08
  31. #define PL022_SR_BSY 0x10
  32. #define PL022_INT_ROR 0x01
  33. #define PL022_INT_RT 0x04
  34. #define PL022_INT_RX 0x04
  35. #define PL022_INT_TX 0x08
  36. typedef struct {
  37. SysBusDevice busdev;
  38. uint32_t cr0;
  39. uint32_t cr1;
  40. uint32_t bitmask;
  41. uint32_t sr;
  42. uint32_t cpsr;
  43. uint32_t is;
  44. uint32_t im;
  45. /* The FIFO head points to the next empty entry. */
  46. int tx_fifo_head;
  47. int rx_fifo_head;
  48. int tx_fifo_len;
  49. int rx_fifo_len;
  50. uint16_t tx_fifo[8];
  51. uint16_t rx_fifo[8];
  52. qemu_irq irq;
  53. SSIBus *ssi;
  54. } pl022_state;
  55. static const unsigned char pl022_id[8] =
  56. { 0x22, 0x10, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1 };
  57. static void pl022_update(pl022_state *s)
  58. {
  59. s->sr = 0;
  60. if (s->tx_fifo_len == 0)
  61. s->sr |= PL022_SR_TFE;
  62. if (s->tx_fifo_len != 8)
  63. s->sr |= PL022_SR_TNF;
  64. if (s->rx_fifo_len != 0)
  65. s->sr |= PL022_SR_RNE;
  66. if (s->rx_fifo_len == 8)
  67. s->sr |= PL022_SR_RFF;
  68. if (s->tx_fifo_len)
  69. s->sr |= PL022_SR_BSY;
  70. s->is = 0;
  71. if (s->rx_fifo_len >= 4)
  72. s->is |= PL022_INT_RX;
  73. if (s->tx_fifo_len <= 4)
  74. s->is |= PL022_INT_TX;
  75. qemu_set_irq(s->irq, (s->is & s->im) != 0);
  76. }
  77. static void pl022_xfer(pl022_state *s)
  78. {
  79. int i;
  80. int o;
  81. int val;
  82. if ((s->cr1 & PL022_CR1_SSE) == 0) {
  83. pl022_update(s);
  84. DPRINTF("Disabled\n");
  85. return;
  86. }
  87. DPRINTF("Maybe xfer %d/%d\n", s->tx_fifo_len, s->rx_fifo_len);
  88. i = (s->tx_fifo_head - s->tx_fifo_len) & 7;
  89. o = s->rx_fifo_head;
  90. /* ??? We do not emulate the line speed.
  91. This may break some applications. The are two problematic cases:
  92. (a) A driver feeds data into the TX FIFO until it is full,
  93. and only then drains the RX FIFO. On real hardware the CPU can
  94. feed data fast enough that the RX fifo never gets chance to overflow.
  95. (b) A driver transmits data, deliberately allowing the RX FIFO to
  96. overflow because it ignores the RX data anyway.
  97. We choose to support (a) by stalling the transmit engine if it would
  98. cause the RX FIFO to overflow. In practice much transmit-only code
  99. falls into (a) because it flushes the RX FIFO to determine when
  100. the transfer has completed. */
  101. while (s->tx_fifo_len && s->rx_fifo_len < 8) {
  102. DPRINTF("xfer\n");
  103. val = s->tx_fifo[i];
  104. if (s->cr1 & PL022_CR1_LBM) {
  105. /* Loopback mode. */
  106. } else {
  107. val = ssi_transfer(s->ssi, val);
  108. }
  109. s->rx_fifo[o] = val & s->bitmask;
  110. i = (i + 1) & 7;
  111. o = (o + 1) & 7;
  112. s->tx_fifo_len--;
  113. s->rx_fifo_len++;
  114. }
  115. s->rx_fifo_head = o;
  116. pl022_update(s);
  117. }
  118. static uint32_t pl022_read(void *opaque, target_phys_addr_t offset)
  119. {
  120. pl022_state *s = (pl022_state *)opaque;
  121. int val;
  122. if (offset >= 0xfe0 && offset < 0x1000) {
  123. return pl022_id[(offset - 0xfe0) >> 2];
  124. }
  125. switch (offset) {
  126. case 0x00: /* CR0 */
  127. return s->cr0;
  128. case 0x04: /* CR1 */
  129. return s->cr1;
  130. case 0x08: /* DR */
  131. if (s->rx_fifo_len) {
  132. val = s->rx_fifo[(s->rx_fifo_head - s->rx_fifo_len) & 7];
  133. DPRINTF("RX %02x\n", val);
  134. s->rx_fifo_len--;
  135. pl022_xfer(s);
  136. } else {
  137. val = 0;
  138. }
  139. return val;
  140. case 0x0c: /* SR */
  141. return s->sr;
  142. case 0x10: /* CPSR */
  143. return s->cpsr;
  144. case 0x14: /* IMSC */
  145. return s->im;
  146. case 0x18: /* RIS */
  147. return s->is;
  148. case 0x1c: /* MIS */
  149. return s->im & s->is;
  150. case 0x20: /* DMACR */
  151. /* Not implemented. */
  152. return 0;
  153. default:
  154. hw_error("pl022_read: Bad offset %x\n", (int)offset);
  155. return 0;
  156. }
  157. }
  158. static void pl022_write(void *opaque, target_phys_addr_t offset,
  159. uint32_t value)
  160. {
  161. pl022_state *s = (pl022_state *)opaque;
  162. switch (offset) {
  163. case 0x00: /* CR0 */
  164. s->cr0 = value;
  165. /* Clock rate and format are ignored. */
  166. s->bitmask = (1 << ((value & 15) + 1)) - 1;
  167. break;
  168. case 0x04: /* CR1 */
  169. s->cr1 = value;
  170. if ((s->cr1 & (PL022_CR1_MS | PL022_CR1_SSE))
  171. == (PL022_CR1_MS | PL022_CR1_SSE)) {
  172. BADF("SPI slave mode not implemented\n");
  173. }
  174. pl022_xfer(s);
  175. break;
  176. case 0x08: /* DR */
  177. if (s->tx_fifo_len < 8) {
  178. DPRINTF("TX %02x\n", value);
  179. s->tx_fifo[s->tx_fifo_head] = value & s->bitmask;
  180. s->tx_fifo_head = (s->tx_fifo_head + 1) & 7;
  181. s->tx_fifo_len++;
  182. pl022_xfer(s);
  183. }
  184. break;
  185. case 0x10: /* CPSR */
  186. /* Prescaler. Ignored. */
  187. s->cpsr = value & 0xff;
  188. break;
  189. case 0x14: /* IMSC */
  190. s->im = value;
  191. pl022_update(s);
  192. break;
  193. case 0x20: /* DMACR */
  194. if (value) {
  195. hw_error("pl022: DMA not implemented\n");
  196. }
  197. break;
  198. default:
  199. hw_error("pl022_write: Bad offset %x\n", (int)offset);
  200. }
  201. }
  202. static void pl022_reset(pl022_state *s)
  203. {
  204. s->rx_fifo_len = 0;
  205. s->tx_fifo_len = 0;
  206. s->im = 0;
  207. s->is = PL022_INT_TX;
  208. s->sr = PL022_SR_TFE | PL022_SR_TNF;
  209. }
  210. static CPUReadMemoryFunc * const pl022_readfn[] = {
  211. pl022_read,
  212. pl022_read,
  213. pl022_read
  214. };
  215. static CPUWriteMemoryFunc * const pl022_writefn[] = {
  216. pl022_write,
  217. pl022_write,
  218. pl022_write
  219. };
  220. static const VMStateDescription vmstate_pl022 = {
  221. .name = "pl022_ssp",
  222. .version_id = 1,
  223. .minimum_version_id = 1,
  224. .minimum_version_id_old = 1,
  225. .fields = (VMStateField[]) {
  226. VMSTATE_UINT32(cr0, pl022_state),
  227. VMSTATE_UINT32(cr1, pl022_state),
  228. VMSTATE_UINT32(bitmask, pl022_state),
  229. VMSTATE_UINT32(sr, pl022_state),
  230. VMSTATE_UINT32(cpsr, pl022_state),
  231. VMSTATE_UINT32(is, pl022_state),
  232. VMSTATE_UINT32(im, pl022_state),
  233. VMSTATE_INT32(tx_fifo_head, pl022_state),
  234. VMSTATE_INT32(rx_fifo_head, pl022_state),
  235. VMSTATE_INT32(tx_fifo_len, pl022_state),
  236. VMSTATE_INT32(rx_fifo_len, pl022_state),
  237. VMSTATE_UINT16(tx_fifo[0], pl022_state),
  238. VMSTATE_UINT16(rx_fifo[0], pl022_state),
  239. VMSTATE_UINT16(tx_fifo[1], pl022_state),
  240. VMSTATE_UINT16(rx_fifo[1], pl022_state),
  241. VMSTATE_UINT16(tx_fifo[2], pl022_state),
  242. VMSTATE_UINT16(rx_fifo[2], pl022_state),
  243. VMSTATE_UINT16(tx_fifo[3], pl022_state),
  244. VMSTATE_UINT16(rx_fifo[3], pl022_state),
  245. VMSTATE_UINT16(tx_fifo[4], pl022_state),
  246. VMSTATE_UINT16(rx_fifo[4], pl022_state),
  247. VMSTATE_UINT16(tx_fifo[5], pl022_state),
  248. VMSTATE_UINT16(rx_fifo[5], pl022_state),
  249. VMSTATE_UINT16(tx_fifo[6], pl022_state),
  250. VMSTATE_UINT16(rx_fifo[6], pl022_state),
  251. VMSTATE_UINT16(tx_fifo[7], pl022_state),
  252. VMSTATE_UINT16(rx_fifo[7], pl022_state),
  253. VMSTATE_END_OF_LIST()
  254. }
  255. };
  256. static int pl022_init(SysBusDevice *dev)
  257. {
  258. pl022_state *s = FROM_SYSBUS(pl022_state, dev);
  259. int iomemtype;
  260. iomemtype = cpu_register_io_memory(pl022_readfn,
  261. pl022_writefn, s,
  262. DEVICE_NATIVE_ENDIAN);
  263. sysbus_init_mmio(dev, 0x1000, iomemtype);
  264. sysbus_init_irq(dev, &s->irq);
  265. s->ssi = ssi_create_bus(&dev->qdev, "ssi");
  266. pl022_reset(s);
  267. vmstate_register(&dev->qdev, -1, &vmstate_pl022, s);
  268. return 0;
  269. }
  270. static void pl022_register_devices(void)
  271. {
  272. sysbus_register_dev("pl022", sizeof(pl022_state), pl022_init);
  273. }
  274. device_init(pl022_register_devices)