omap_dss.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068
  1. /*
  2. * OMAP2 Display Subsystem.
  3. *
  4. * Copyright (C) 2008 Nokia Corporation
  5. * Written by Andrzej Zaborowski <andrew@openedhand.com>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License as
  9. * published by the Free Software Foundation; either version 2 or
  10. * (at your option) version 3 of the License.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, see <http://www.gnu.org/licenses/>.
  19. */
  20. #include "hw.h"
  21. #include "console.h"
  22. #include "omap.h"
  23. struct omap_dss_s {
  24. qemu_irq irq;
  25. qemu_irq drq;
  26. DisplayState *state;
  27. int autoidle;
  28. int control;
  29. int enable;
  30. struct omap_dss_panel_s {
  31. int enable;
  32. int nx;
  33. int ny;
  34. int x;
  35. int y;
  36. } dig, lcd;
  37. struct {
  38. uint32_t idlemode;
  39. uint32_t irqst;
  40. uint32_t irqen;
  41. uint32_t control;
  42. uint32_t config;
  43. uint32_t capable;
  44. uint32_t timing[4];
  45. int line;
  46. uint32_t bg[2];
  47. uint32_t trans[2];
  48. struct omap_dss_plane_s {
  49. int enable;
  50. int bpp;
  51. int posx;
  52. int posy;
  53. int nx;
  54. int ny;
  55. target_phys_addr_t addr[3];
  56. uint32_t attr;
  57. uint32_t tresh;
  58. int rowinc;
  59. int colinc;
  60. int wininc;
  61. } l[3];
  62. int invalidate;
  63. uint16_t palette[256];
  64. } dispc;
  65. struct {
  66. int idlemode;
  67. uint32_t control;
  68. int enable;
  69. int pixels;
  70. int busy;
  71. int skiplines;
  72. uint16_t rxbuf;
  73. uint32_t config[2];
  74. uint32_t time[4];
  75. uint32_t data[6];
  76. uint16_t vsync;
  77. uint16_t hsync;
  78. struct rfbi_chip_s *chip[2];
  79. } rfbi;
  80. };
  81. static void omap_dispc_interrupt_update(struct omap_dss_s *s)
  82. {
  83. qemu_set_irq(s->irq, s->dispc.irqst & s->dispc.irqen);
  84. }
  85. static void omap_rfbi_reset(struct omap_dss_s *s)
  86. {
  87. s->rfbi.idlemode = 0;
  88. s->rfbi.control = 2;
  89. s->rfbi.enable = 0;
  90. s->rfbi.pixels = 0;
  91. s->rfbi.skiplines = 0;
  92. s->rfbi.busy = 0;
  93. s->rfbi.config[0] = 0x00310000;
  94. s->rfbi.config[1] = 0x00310000;
  95. s->rfbi.time[0] = 0;
  96. s->rfbi.time[1] = 0;
  97. s->rfbi.time[2] = 0;
  98. s->rfbi.time[3] = 0;
  99. s->rfbi.data[0] = 0;
  100. s->rfbi.data[1] = 0;
  101. s->rfbi.data[2] = 0;
  102. s->rfbi.data[3] = 0;
  103. s->rfbi.data[4] = 0;
  104. s->rfbi.data[5] = 0;
  105. s->rfbi.vsync = 0;
  106. s->rfbi.hsync = 0;
  107. }
  108. void omap_dss_reset(struct omap_dss_s *s)
  109. {
  110. s->autoidle = 0;
  111. s->control = 0;
  112. s->enable = 0;
  113. s->dig.enable = 0;
  114. s->dig.nx = 1;
  115. s->dig.ny = 1;
  116. s->lcd.enable = 0;
  117. s->lcd.nx = 1;
  118. s->lcd.ny = 1;
  119. s->dispc.idlemode = 0;
  120. s->dispc.irqst = 0;
  121. s->dispc.irqen = 0;
  122. s->dispc.control = 0;
  123. s->dispc.config = 0;
  124. s->dispc.capable = 0x161;
  125. s->dispc.timing[0] = 0;
  126. s->dispc.timing[1] = 0;
  127. s->dispc.timing[2] = 0;
  128. s->dispc.timing[3] = 0;
  129. s->dispc.line = 0;
  130. s->dispc.bg[0] = 0;
  131. s->dispc.bg[1] = 0;
  132. s->dispc.trans[0] = 0;
  133. s->dispc.trans[1] = 0;
  134. s->dispc.l[0].enable = 0;
  135. s->dispc.l[0].bpp = 0;
  136. s->dispc.l[0].addr[0] = 0;
  137. s->dispc.l[0].addr[1] = 0;
  138. s->dispc.l[0].addr[2] = 0;
  139. s->dispc.l[0].posx = 0;
  140. s->dispc.l[0].posy = 0;
  141. s->dispc.l[0].nx = 1;
  142. s->dispc.l[0].ny = 1;
  143. s->dispc.l[0].attr = 0;
  144. s->dispc.l[0].tresh = 0;
  145. s->dispc.l[0].rowinc = 1;
  146. s->dispc.l[0].colinc = 1;
  147. s->dispc.l[0].wininc = 0;
  148. omap_rfbi_reset(s);
  149. omap_dispc_interrupt_update(s);
  150. }
  151. static uint32_t omap_diss_read(void *opaque, target_phys_addr_t addr)
  152. {
  153. struct omap_dss_s *s = (struct omap_dss_s *) opaque;
  154. switch (addr) {
  155. case 0x00: /* DSS_REVISIONNUMBER */
  156. return 0x20;
  157. case 0x10: /* DSS_SYSCONFIG */
  158. return s->autoidle;
  159. case 0x14: /* DSS_SYSSTATUS */
  160. return 1; /* RESETDONE */
  161. case 0x40: /* DSS_CONTROL */
  162. return s->control;
  163. case 0x50: /* DSS_PSA_LCD_REG_1 */
  164. case 0x54: /* DSS_PSA_LCD_REG_2 */
  165. case 0x58: /* DSS_PSA_VIDEO_REG */
  166. /* TODO: fake some values when appropriate s->control bits are set */
  167. return 0;
  168. case 0x5c: /* DSS_STATUS */
  169. return 1 + (s->control & 1);
  170. default:
  171. break;
  172. }
  173. OMAP_BAD_REG(addr);
  174. return 0;
  175. }
  176. static void omap_diss_write(void *opaque, target_phys_addr_t addr,
  177. uint32_t value)
  178. {
  179. struct omap_dss_s *s = (struct omap_dss_s *) opaque;
  180. switch (addr) {
  181. case 0x00: /* DSS_REVISIONNUMBER */
  182. case 0x14: /* DSS_SYSSTATUS */
  183. case 0x50: /* DSS_PSA_LCD_REG_1 */
  184. case 0x54: /* DSS_PSA_LCD_REG_2 */
  185. case 0x58: /* DSS_PSA_VIDEO_REG */
  186. case 0x5c: /* DSS_STATUS */
  187. OMAP_RO_REG(addr);
  188. break;
  189. case 0x10: /* DSS_SYSCONFIG */
  190. if (value & 2) /* SOFTRESET */
  191. omap_dss_reset(s);
  192. s->autoidle = value & 1;
  193. break;
  194. case 0x40: /* DSS_CONTROL */
  195. s->control = value & 0x3dd;
  196. break;
  197. default:
  198. OMAP_BAD_REG(addr);
  199. }
  200. }
  201. static CPUReadMemoryFunc * const omap_diss1_readfn[] = {
  202. omap_badwidth_read32,
  203. omap_badwidth_read32,
  204. omap_diss_read,
  205. };
  206. static CPUWriteMemoryFunc * const omap_diss1_writefn[] = {
  207. omap_badwidth_write32,
  208. omap_badwidth_write32,
  209. omap_diss_write,
  210. };
  211. static uint32_t omap_disc_read(void *opaque, target_phys_addr_t addr)
  212. {
  213. struct omap_dss_s *s = (struct omap_dss_s *) opaque;
  214. switch (addr) {
  215. case 0x000: /* DISPC_REVISION */
  216. return 0x20;
  217. case 0x010: /* DISPC_SYSCONFIG */
  218. return s->dispc.idlemode;
  219. case 0x014: /* DISPC_SYSSTATUS */
  220. return 1; /* RESETDONE */
  221. case 0x018: /* DISPC_IRQSTATUS */
  222. return s->dispc.irqst;
  223. case 0x01c: /* DISPC_IRQENABLE */
  224. return s->dispc.irqen;
  225. case 0x040: /* DISPC_CONTROL */
  226. return s->dispc.control;
  227. case 0x044: /* DISPC_CONFIG */
  228. return s->dispc.config;
  229. case 0x048: /* DISPC_CAPABLE */
  230. return s->dispc.capable;
  231. case 0x04c: /* DISPC_DEFAULT_COLOR0 */
  232. return s->dispc.bg[0];
  233. case 0x050: /* DISPC_DEFAULT_COLOR1 */
  234. return s->dispc.bg[1];
  235. case 0x054: /* DISPC_TRANS_COLOR0 */
  236. return s->dispc.trans[0];
  237. case 0x058: /* DISPC_TRANS_COLOR1 */
  238. return s->dispc.trans[1];
  239. case 0x05c: /* DISPC_LINE_STATUS */
  240. return 0x7ff;
  241. case 0x060: /* DISPC_LINE_NUMBER */
  242. return s->dispc.line;
  243. case 0x064: /* DISPC_TIMING_H */
  244. return s->dispc.timing[0];
  245. case 0x068: /* DISPC_TIMING_V */
  246. return s->dispc.timing[1];
  247. case 0x06c: /* DISPC_POL_FREQ */
  248. return s->dispc.timing[2];
  249. case 0x070: /* DISPC_DIVISOR */
  250. return s->dispc.timing[3];
  251. case 0x078: /* DISPC_SIZE_DIG */
  252. return ((s->dig.ny - 1) << 16) | (s->dig.nx - 1);
  253. case 0x07c: /* DISPC_SIZE_LCD */
  254. return ((s->lcd.ny - 1) << 16) | (s->lcd.nx - 1);
  255. case 0x080: /* DISPC_GFX_BA0 */
  256. return s->dispc.l[0].addr[0];
  257. case 0x084: /* DISPC_GFX_BA1 */
  258. return s->dispc.l[0].addr[1];
  259. case 0x088: /* DISPC_GFX_POSITION */
  260. return (s->dispc.l[0].posy << 16) | s->dispc.l[0].posx;
  261. case 0x08c: /* DISPC_GFX_SIZE */
  262. return ((s->dispc.l[0].ny - 1) << 16) | (s->dispc.l[0].nx - 1);
  263. case 0x0a0: /* DISPC_GFX_ATTRIBUTES */
  264. return s->dispc.l[0].attr;
  265. case 0x0a4: /* DISPC_GFX_FIFO_TRESHOLD */
  266. return s->dispc.l[0].tresh;
  267. case 0x0a8: /* DISPC_GFX_FIFO_SIZE_STATUS */
  268. return 256;
  269. case 0x0ac: /* DISPC_GFX_ROW_INC */
  270. return s->dispc.l[0].rowinc;
  271. case 0x0b0: /* DISPC_GFX_PIXEL_INC */
  272. return s->dispc.l[0].colinc;
  273. case 0x0b4: /* DISPC_GFX_WINDOW_SKIP */
  274. return s->dispc.l[0].wininc;
  275. case 0x0b8: /* DISPC_GFX_TABLE_BA */
  276. return s->dispc.l[0].addr[2];
  277. case 0x0bc: /* DISPC_VID1_BA0 */
  278. case 0x0c0: /* DISPC_VID1_BA1 */
  279. case 0x0c4: /* DISPC_VID1_POSITION */
  280. case 0x0c8: /* DISPC_VID1_SIZE */
  281. case 0x0cc: /* DISPC_VID1_ATTRIBUTES */
  282. case 0x0d0: /* DISPC_VID1_FIFO_TRESHOLD */
  283. case 0x0d4: /* DISPC_VID1_FIFO_SIZE_STATUS */
  284. case 0x0d8: /* DISPC_VID1_ROW_INC */
  285. case 0x0dc: /* DISPC_VID1_PIXEL_INC */
  286. case 0x0e0: /* DISPC_VID1_FIR */
  287. case 0x0e4: /* DISPC_VID1_PICTURE_SIZE */
  288. case 0x0e8: /* DISPC_VID1_ACCU0 */
  289. case 0x0ec: /* DISPC_VID1_ACCU1 */
  290. case 0x0f0 ... 0x140: /* DISPC_VID1_FIR_COEF, DISPC_VID1_CONV_COEF */
  291. case 0x14c: /* DISPC_VID2_BA0 */
  292. case 0x150: /* DISPC_VID2_BA1 */
  293. case 0x154: /* DISPC_VID2_POSITION */
  294. case 0x158: /* DISPC_VID2_SIZE */
  295. case 0x15c: /* DISPC_VID2_ATTRIBUTES */
  296. case 0x160: /* DISPC_VID2_FIFO_TRESHOLD */
  297. case 0x164: /* DISPC_VID2_FIFO_SIZE_STATUS */
  298. case 0x168: /* DISPC_VID2_ROW_INC */
  299. case 0x16c: /* DISPC_VID2_PIXEL_INC */
  300. case 0x170: /* DISPC_VID2_FIR */
  301. case 0x174: /* DISPC_VID2_PICTURE_SIZE */
  302. case 0x178: /* DISPC_VID2_ACCU0 */
  303. case 0x17c: /* DISPC_VID2_ACCU1 */
  304. case 0x180 ... 0x1d0: /* DISPC_VID2_FIR_COEF, DISPC_VID2_CONV_COEF */
  305. case 0x1d4: /* DISPC_DATA_CYCLE1 */
  306. case 0x1d8: /* DISPC_DATA_CYCLE2 */
  307. case 0x1dc: /* DISPC_DATA_CYCLE3 */
  308. return 0;
  309. default:
  310. break;
  311. }
  312. OMAP_BAD_REG(addr);
  313. return 0;
  314. }
  315. static void omap_disc_write(void *opaque, target_phys_addr_t addr,
  316. uint32_t value)
  317. {
  318. struct omap_dss_s *s = (struct omap_dss_s *) opaque;
  319. switch (addr) {
  320. case 0x010: /* DISPC_SYSCONFIG */
  321. if (value & 2) /* SOFTRESET */
  322. omap_dss_reset(s);
  323. s->dispc.idlemode = value & 0x301b;
  324. break;
  325. case 0x018: /* DISPC_IRQSTATUS */
  326. s->dispc.irqst &= ~value;
  327. omap_dispc_interrupt_update(s);
  328. break;
  329. case 0x01c: /* DISPC_IRQENABLE */
  330. s->dispc.irqen = value & 0xffff;
  331. omap_dispc_interrupt_update(s);
  332. break;
  333. case 0x040: /* DISPC_CONTROL */
  334. s->dispc.control = value & 0x07ff9fff;
  335. s->dig.enable = (value >> 1) & 1;
  336. s->lcd.enable = (value >> 0) & 1;
  337. if (value & (1 << 12)) /* OVERLAY_OPTIMIZATION */
  338. if (~((s->dispc.l[1].attr | s->dispc.l[2].attr) & 1))
  339. fprintf(stderr, "%s: Overlay Optimization when no overlay "
  340. "region effectively exists leads to "
  341. "unpredictable behaviour!\n", __FUNCTION__);
  342. if (value & (1 << 6)) { /* GODIGITAL */
  343. /* XXX: Shadowed fields are:
  344. * s->dispc.config
  345. * s->dispc.capable
  346. * s->dispc.bg[0]
  347. * s->dispc.bg[1]
  348. * s->dispc.trans[0]
  349. * s->dispc.trans[1]
  350. * s->dispc.line
  351. * s->dispc.timing[0]
  352. * s->dispc.timing[1]
  353. * s->dispc.timing[2]
  354. * s->dispc.timing[3]
  355. * s->lcd.nx
  356. * s->lcd.ny
  357. * s->dig.nx
  358. * s->dig.ny
  359. * s->dispc.l[0].addr[0]
  360. * s->dispc.l[0].addr[1]
  361. * s->dispc.l[0].addr[2]
  362. * s->dispc.l[0].posx
  363. * s->dispc.l[0].posy
  364. * s->dispc.l[0].nx
  365. * s->dispc.l[0].ny
  366. * s->dispc.l[0].tresh
  367. * s->dispc.l[0].rowinc
  368. * s->dispc.l[0].colinc
  369. * s->dispc.l[0].wininc
  370. * All they need to be loaded here from their shadow registers.
  371. */
  372. }
  373. if (value & (1 << 5)) { /* GOLCD */
  374. /* XXX: Likewise for LCD here. */
  375. }
  376. s->dispc.invalidate = 1;
  377. break;
  378. case 0x044: /* DISPC_CONFIG */
  379. s->dispc.config = value & 0x3fff;
  380. /* XXX:
  381. * bits 2:1 (LOADMODE) reset to 0 after set to 1 and palette loaded
  382. * bits 2:1 (LOADMODE) reset to 2 after set to 3 and palette loaded
  383. */
  384. s->dispc.invalidate = 1;
  385. break;
  386. case 0x048: /* DISPC_CAPABLE */
  387. s->dispc.capable = value & 0x3ff;
  388. break;
  389. case 0x04c: /* DISPC_DEFAULT_COLOR0 */
  390. s->dispc.bg[0] = value & 0xffffff;
  391. s->dispc.invalidate = 1;
  392. break;
  393. case 0x050: /* DISPC_DEFAULT_COLOR1 */
  394. s->dispc.bg[1] = value & 0xffffff;
  395. s->dispc.invalidate = 1;
  396. break;
  397. case 0x054: /* DISPC_TRANS_COLOR0 */
  398. s->dispc.trans[0] = value & 0xffffff;
  399. s->dispc.invalidate = 1;
  400. break;
  401. case 0x058: /* DISPC_TRANS_COLOR1 */
  402. s->dispc.trans[1] = value & 0xffffff;
  403. s->dispc.invalidate = 1;
  404. break;
  405. case 0x060: /* DISPC_LINE_NUMBER */
  406. s->dispc.line = value & 0x7ff;
  407. break;
  408. case 0x064: /* DISPC_TIMING_H */
  409. s->dispc.timing[0] = value & 0x0ff0ff3f;
  410. break;
  411. case 0x068: /* DISPC_TIMING_V */
  412. s->dispc.timing[1] = value & 0x0ff0ff3f;
  413. break;
  414. case 0x06c: /* DISPC_POL_FREQ */
  415. s->dispc.timing[2] = value & 0x0003ffff;
  416. break;
  417. case 0x070: /* DISPC_DIVISOR */
  418. s->dispc.timing[3] = value & 0x00ff00ff;
  419. break;
  420. case 0x078: /* DISPC_SIZE_DIG */
  421. s->dig.nx = ((value >> 0) & 0x7ff) + 1; /* PPL */
  422. s->dig.ny = ((value >> 16) & 0x7ff) + 1; /* LPP */
  423. s->dispc.invalidate = 1;
  424. break;
  425. case 0x07c: /* DISPC_SIZE_LCD */
  426. s->lcd.nx = ((value >> 0) & 0x7ff) + 1; /* PPL */
  427. s->lcd.ny = ((value >> 16) & 0x7ff) + 1; /* LPP */
  428. s->dispc.invalidate = 1;
  429. break;
  430. case 0x080: /* DISPC_GFX_BA0 */
  431. s->dispc.l[0].addr[0] = (target_phys_addr_t) value;
  432. s->dispc.invalidate = 1;
  433. break;
  434. case 0x084: /* DISPC_GFX_BA1 */
  435. s->dispc.l[0].addr[1] = (target_phys_addr_t) value;
  436. s->dispc.invalidate = 1;
  437. break;
  438. case 0x088: /* DISPC_GFX_POSITION */
  439. s->dispc.l[0].posx = ((value >> 0) & 0x7ff); /* GFXPOSX */
  440. s->dispc.l[0].posy = ((value >> 16) & 0x7ff); /* GFXPOSY */
  441. s->dispc.invalidate = 1;
  442. break;
  443. case 0x08c: /* DISPC_GFX_SIZE */
  444. s->dispc.l[0].nx = ((value >> 0) & 0x7ff) + 1; /* GFXSIZEX */
  445. s->dispc.l[0].ny = ((value >> 16) & 0x7ff) + 1; /* GFXSIZEY */
  446. s->dispc.invalidate = 1;
  447. break;
  448. case 0x0a0: /* DISPC_GFX_ATTRIBUTES */
  449. s->dispc.l[0].attr = value & 0x7ff;
  450. if (value & (3 << 9))
  451. fprintf(stderr, "%s: Big-endian pixel format not supported\n",
  452. __FUNCTION__);
  453. s->dispc.l[0].enable = value & 1;
  454. s->dispc.l[0].bpp = (value >> 1) & 0xf;
  455. s->dispc.invalidate = 1;
  456. break;
  457. case 0x0a4: /* DISPC_GFX_FIFO_TRESHOLD */
  458. s->dispc.l[0].tresh = value & 0x01ff01ff;
  459. break;
  460. case 0x0ac: /* DISPC_GFX_ROW_INC */
  461. s->dispc.l[0].rowinc = value;
  462. s->dispc.invalidate = 1;
  463. break;
  464. case 0x0b0: /* DISPC_GFX_PIXEL_INC */
  465. s->dispc.l[0].colinc = value;
  466. s->dispc.invalidate = 1;
  467. break;
  468. case 0x0b4: /* DISPC_GFX_WINDOW_SKIP */
  469. s->dispc.l[0].wininc = value;
  470. break;
  471. case 0x0b8: /* DISPC_GFX_TABLE_BA */
  472. s->dispc.l[0].addr[2] = (target_phys_addr_t) value;
  473. s->dispc.invalidate = 1;
  474. break;
  475. case 0x0bc: /* DISPC_VID1_BA0 */
  476. case 0x0c0: /* DISPC_VID1_BA1 */
  477. case 0x0c4: /* DISPC_VID1_POSITION */
  478. case 0x0c8: /* DISPC_VID1_SIZE */
  479. case 0x0cc: /* DISPC_VID1_ATTRIBUTES */
  480. case 0x0d0: /* DISPC_VID1_FIFO_TRESHOLD */
  481. case 0x0d8: /* DISPC_VID1_ROW_INC */
  482. case 0x0dc: /* DISPC_VID1_PIXEL_INC */
  483. case 0x0e0: /* DISPC_VID1_FIR */
  484. case 0x0e4: /* DISPC_VID1_PICTURE_SIZE */
  485. case 0x0e8: /* DISPC_VID1_ACCU0 */
  486. case 0x0ec: /* DISPC_VID1_ACCU1 */
  487. case 0x0f0 ... 0x140: /* DISPC_VID1_FIR_COEF, DISPC_VID1_CONV_COEF */
  488. case 0x14c: /* DISPC_VID2_BA0 */
  489. case 0x150: /* DISPC_VID2_BA1 */
  490. case 0x154: /* DISPC_VID2_POSITION */
  491. case 0x158: /* DISPC_VID2_SIZE */
  492. case 0x15c: /* DISPC_VID2_ATTRIBUTES */
  493. case 0x160: /* DISPC_VID2_FIFO_TRESHOLD */
  494. case 0x168: /* DISPC_VID2_ROW_INC */
  495. case 0x16c: /* DISPC_VID2_PIXEL_INC */
  496. case 0x170: /* DISPC_VID2_FIR */
  497. case 0x174: /* DISPC_VID2_PICTURE_SIZE */
  498. case 0x178: /* DISPC_VID2_ACCU0 */
  499. case 0x17c: /* DISPC_VID2_ACCU1 */
  500. case 0x180 ... 0x1d0: /* DISPC_VID2_FIR_COEF, DISPC_VID2_CONV_COEF */
  501. case 0x1d4: /* DISPC_DATA_CYCLE1 */
  502. case 0x1d8: /* DISPC_DATA_CYCLE2 */
  503. case 0x1dc: /* DISPC_DATA_CYCLE3 */
  504. break;
  505. default:
  506. OMAP_BAD_REG(addr);
  507. }
  508. }
  509. static CPUReadMemoryFunc * const omap_disc1_readfn[] = {
  510. omap_badwidth_read32,
  511. omap_badwidth_read32,
  512. omap_disc_read,
  513. };
  514. static CPUWriteMemoryFunc * const omap_disc1_writefn[] = {
  515. omap_badwidth_write32,
  516. omap_badwidth_write32,
  517. omap_disc_write,
  518. };
  519. static void omap_rfbi_transfer_stop(struct omap_dss_s *s)
  520. {
  521. if (!s->rfbi.busy)
  522. return;
  523. /* TODO: in non-Bypass mode we probably need to just deassert the DRQ. */
  524. s->rfbi.busy = 0;
  525. }
  526. static void omap_rfbi_transfer_start(struct omap_dss_s *s)
  527. {
  528. void *data;
  529. target_phys_addr_t len;
  530. target_phys_addr_t data_addr;
  531. int pitch;
  532. static void *bounce_buffer;
  533. static target_phys_addr_t bounce_len;
  534. if (!s->rfbi.enable || s->rfbi.busy)
  535. return;
  536. if (s->rfbi.control & (1 << 1)) { /* BYPASS */
  537. /* TODO: in non-Bypass mode we probably need to just assert the
  538. * DRQ and wait for DMA to write the pixels. */
  539. fprintf(stderr, "%s: Bypass mode unimplemented\n", __FUNCTION__);
  540. return;
  541. }
  542. if (!(s->dispc.control & (1 << 11))) /* RFBIMODE */
  543. return;
  544. /* TODO: check that LCD output is enabled in DISPC. */
  545. s->rfbi.busy = 1;
  546. len = s->rfbi.pixels * 2;
  547. data_addr = s->dispc.l[0].addr[0];
  548. data = cpu_physical_memory_map(data_addr, &len, 0);
  549. if (data && len != s->rfbi.pixels * 2) {
  550. cpu_physical_memory_unmap(data, len, 0, 0);
  551. data = NULL;
  552. len = s->rfbi.pixels * 2;
  553. }
  554. if (!data) {
  555. if (len > bounce_len) {
  556. bounce_buffer = qemu_realloc(bounce_buffer, len);
  557. }
  558. data = bounce_buffer;
  559. cpu_physical_memory_read(data_addr, data, len);
  560. }
  561. /* TODO bpp */
  562. s->rfbi.pixels = 0;
  563. /* TODO: negative values */
  564. pitch = s->dispc.l[0].nx + (s->dispc.l[0].rowinc - 1) / 2;
  565. if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0])
  566. s->rfbi.chip[0]->block(s->rfbi.chip[0]->opaque, 1, data, len, pitch);
  567. if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1])
  568. s->rfbi.chip[1]->block(s->rfbi.chip[1]->opaque, 1, data, len, pitch);
  569. if (data != bounce_buffer) {
  570. cpu_physical_memory_unmap(data, len, 0, len);
  571. }
  572. omap_rfbi_transfer_stop(s);
  573. /* TODO */
  574. s->dispc.irqst |= 1; /* FRAMEDONE */
  575. omap_dispc_interrupt_update(s);
  576. }
  577. static uint32_t omap_rfbi_read(void *opaque, target_phys_addr_t addr)
  578. {
  579. struct omap_dss_s *s = (struct omap_dss_s *) opaque;
  580. switch (addr) {
  581. case 0x00: /* RFBI_REVISION */
  582. return 0x10;
  583. case 0x10: /* RFBI_SYSCONFIG */
  584. return s->rfbi.idlemode;
  585. case 0x14: /* RFBI_SYSSTATUS */
  586. return 1 | (s->rfbi.busy << 8); /* RESETDONE */
  587. case 0x40: /* RFBI_CONTROL */
  588. return s->rfbi.control;
  589. case 0x44: /* RFBI_PIXELCNT */
  590. return s->rfbi.pixels;
  591. case 0x48: /* RFBI_LINE_NUMBER */
  592. return s->rfbi.skiplines;
  593. case 0x58: /* RFBI_READ */
  594. case 0x5c: /* RFBI_STATUS */
  595. return s->rfbi.rxbuf;
  596. case 0x60: /* RFBI_CONFIG0 */
  597. return s->rfbi.config[0];
  598. case 0x64: /* RFBI_ONOFF_TIME0 */
  599. return s->rfbi.time[0];
  600. case 0x68: /* RFBI_CYCLE_TIME0 */
  601. return s->rfbi.time[1];
  602. case 0x6c: /* RFBI_DATA_CYCLE1_0 */
  603. return s->rfbi.data[0];
  604. case 0x70: /* RFBI_DATA_CYCLE2_0 */
  605. return s->rfbi.data[1];
  606. case 0x74: /* RFBI_DATA_CYCLE3_0 */
  607. return s->rfbi.data[2];
  608. case 0x78: /* RFBI_CONFIG1 */
  609. return s->rfbi.config[1];
  610. case 0x7c: /* RFBI_ONOFF_TIME1 */
  611. return s->rfbi.time[2];
  612. case 0x80: /* RFBI_CYCLE_TIME1 */
  613. return s->rfbi.time[3];
  614. case 0x84: /* RFBI_DATA_CYCLE1_1 */
  615. return s->rfbi.data[3];
  616. case 0x88: /* RFBI_DATA_CYCLE2_1 */
  617. return s->rfbi.data[4];
  618. case 0x8c: /* RFBI_DATA_CYCLE3_1 */
  619. return s->rfbi.data[5];
  620. case 0x90: /* RFBI_VSYNC_WIDTH */
  621. return s->rfbi.vsync;
  622. case 0x94: /* RFBI_HSYNC_WIDTH */
  623. return s->rfbi.hsync;
  624. }
  625. OMAP_BAD_REG(addr);
  626. return 0;
  627. }
  628. static void omap_rfbi_write(void *opaque, target_phys_addr_t addr,
  629. uint32_t value)
  630. {
  631. struct omap_dss_s *s = (struct omap_dss_s *) opaque;
  632. switch (addr) {
  633. case 0x10: /* RFBI_SYSCONFIG */
  634. if (value & 2) /* SOFTRESET */
  635. omap_rfbi_reset(s);
  636. s->rfbi.idlemode = value & 0x19;
  637. break;
  638. case 0x40: /* RFBI_CONTROL */
  639. s->rfbi.control = value & 0xf;
  640. s->rfbi.enable = value & 1;
  641. if (value & (1 << 4) && /* ITE */
  642. !(s->rfbi.config[0] & s->rfbi.config[1] & 0xc))
  643. omap_rfbi_transfer_start(s);
  644. break;
  645. case 0x44: /* RFBI_PIXELCNT */
  646. s->rfbi.pixels = value;
  647. break;
  648. case 0x48: /* RFBI_LINE_NUMBER */
  649. s->rfbi.skiplines = value & 0x7ff;
  650. break;
  651. case 0x4c: /* RFBI_CMD */
  652. if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0])
  653. s->rfbi.chip[0]->write(s->rfbi.chip[0]->opaque, 0, value & 0xffff);
  654. if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1])
  655. s->rfbi.chip[1]->write(s->rfbi.chip[1]->opaque, 0, value & 0xffff);
  656. break;
  657. case 0x50: /* RFBI_PARAM */
  658. if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0])
  659. s->rfbi.chip[0]->write(s->rfbi.chip[0]->opaque, 1, value & 0xffff);
  660. if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1])
  661. s->rfbi.chip[1]->write(s->rfbi.chip[1]->opaque, 1, value & 0xffff);
  662. break;
  663. case 0x54: /* RFBI_DATA */
  664. /* TODO: take into account the format set up in s->rfbi.config[?] and
  665. * s->rfbi.data[?], but special-case the most usual scenario so that
  666. * speed doesn't suffer. */
  667. if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0]) {
  668. s->rfbi.chip[0]->write(s->rfbi.chip[0]->opaque, 1, value & 0xffff);
  669. s->rfbi.chip[0]->write(s->rfbi.chip[0]->opaque, 1, value >> 16);
  670. }
  671. if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1]) {
  672. s->rfbi.chip[1]->write(s->rfbi.chip[1]->opaque, 1, value & 0xffff);
  673. s->rfbi.chip[1]->write(s->rfbi.chip[1]->opaque, 1, value >> 16);
  674. }
  675. if (!-- s->rfbi.pixels)
  676. omap_rfbi_transfer_stop(s);
  677. break;
  678. case 0x58: /* RFBI_READ */
  679. if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0])
  680. s->rfbi.rxbuf = s->rfbi.chip[0]->read(s->rfbi.chip[0]->opaque, 1);
  681. else if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1])
  682. s->rfbi.rxbuf = s->rfbi.chip[0]->read(s->rfbi.chip[0]->opaque, 1);
  683. if (!-- s->rfbi.pixels)
  684. omap_rfbi_transfer_stop(s);
  685. break;
  686. case 0x5c: /* RFBI_STATUS */
  687. if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0])
  688. s->rfbi.rxbuf = s->rfbi.chip[0]->read(s->rfbi.chip[0]->opaque, 0);
  689. else if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1])
  690. s->rfbi.rxbuf = s->rfbi.chip[0]->read(s->rfbi.chip[0]->opaque, 0);
  691. if (!-- s->rfbi.pixels)
  692. omap_rfbi_transfer_stop(s);
  693. break;
  694. case 0x60: /* RFBI_CONFIG0 */
  695. s->rfbi.config[0] = value & 0x003f1fff;
  696. break;
  697. case 0x64: /* RFBI_ONOFF_TIME0 */
  698. s->rfbi.time[0] = value & 0x3fffffff;
  699. break;
  700. case 0x68: /* RFBI_CYCLE_TIME0 */
  701. s->rfbi.time[1] = value & 0x0fffffff;
  702. break;
  703. case 0x6c: /* RFBI_DATA_CYCLE1_0 */
  704. s->rfbi.data[0] = value & 0x0f1f0f1f;
  705. break;
  706. case 0x70: /* RFBI_DATA_CYCLE2_0 */
  707. s->rfbi.data[1] = value & 0x0f1f0f1f;
  708. break;
  709. case 0x74: /* RFBI_DATA_CYCLE3_0 */
  710. s->rfbi.data[2] = value & 0x0f1f0f1f;
  711. break;
  712. case 0x78: /* RFBI_CONFIG1 */
  713. s->rfbi.config[1] = value & 0x003f1fff;
  714. break;
  715. case 0x7c: /* RFBI_ONOFF_TIME1 */
  716. s->rfbi.time[2] = value & 0x3fffffff;
  717. break;
  718. case 0x80: /* RFBI_CYCLE_TIME1 */
  719. s->rfbi.time[3] = value & 0x0fffffff;
  720. break;
  721. case 0x84: /* RFBI_DATA_CYCLE1_1 */
  722. s->rfbi.data[3] = value & 0x0f1f0f1f;
  723. break;
  724. case 0x88: /* RFBI_DATA_CYCLE2_1 */
  725. s->rfbi.data[4] = value & 0x0f1f0f1f;
  726. break;
  727. case 0x8c: /* RFBI_DATA_CYCLE3_1 */
  728. s->rfbi.data[5] = value & 0x0f1f0f1f;
  729. break;
  730. case 0x90: /* RFBI_VSYNC_WIDTH */
  731. s->rfbi.vsync = value & 0xffff;
  732. break;
  733. case 0x94: /* RFBI_HSYNC_WIDTH */
  734. s->rfbi.hsync = value & 0xffff;
  735. break;
  736. default:
  737. OMAP_BAD_REG(addr);
  738. }
  739. }
  740. static CPUReadMemoryFunc * const omap_rfbi1_readfn[] = {
  741. omap_badwidth_read32,
  742. omap_badwidth_read32,
  743. omap_rfbi_read,
  744. };
  745. static CPUWriteMemoryFunc * const omap_rfbi1_writefn[] = {
  746. omap_badwidth_write32,
  747. omap_badwidth_write32,
  748. omap_rfbi_write,
  749. };
  750. static uint32_t omap_venc_read(void *opaque, target_phys_addr_t addr)
  751. {
  752. switch (addr) {
  753. case 0x00: /* REV_ID */
  754. case 0x04: /* STATUS */
  755. case 0x08: /* F_CONTROL */
  756. case 0x10: /* VIDOUT_CTRL */
  757. case 0x14: /* SYNC_CTRL */
  758. case 0x1c: /* LLEN */
  759. case 0x20: /* FLENS */
  760. case 0x24: /* HFLTR_CTRL */
  761. case 0x28: /* CC_CARR_WSS_CARR */
  762. case 0x2c: /* C_PHASE */
  763. case 0x30: /* GAIN_U */
  764. case 0x34: /* GAIN_V */
  765. case 0x38: /* GAIN_Y */
  766. case 0x3c: /* BLACK_LEVEL */
  767. case 0x40: /* BLANK_LEVEL */
  768. case 0x44: /* X_COLOR */
  769. case 0x48: /* M_CONTROL */
  770. case 0x4c: /* BSTAMP_WSS_DATA */
  771. case 0x50: /* S_CARR */
  772. case 0x54: /* LINE21 */
  773. case 0x58: /* LN_SEL */
  774. case 0x5c: /* L21__WC_CTL */
  775. case 0x60: /* HTRIGGER_VTRIGGER */
  776. case 0x64: /* SAVID__EAVID */
  777. case 0x68: /* FLEN__FAL */
  778. case 0x6c: /* LAL__PHASE_RESET */
  779. case 0x70: /* HS_INT_START_STOP_X */
  780. case 0x74: /* HS_EXT_START_STOP_X */
  781. case 0x78: /* VS_INT_START_X */
  782. case 0x7c: /* VS_INT_STOP_X__VS_INT_START_Y */
  783. case 0x80: /* VS_INT_STOP_Y__VS_INT_START_X */
  784. case 0x84: /* VS_EXT_STOP_X__VS_EXT_START_Y */
  785. case 0x88: /* VS_EXT_STOP_Y */
  786. case 0x90: /* AVID_START_STOP_X */
  787. case 0x94: /* AVID_START_STOP_Y */
  788. case 0xa0: /* FID_INT_START_X__FID_INT_START_Y */
  789. case 0xa4: /* FID_INT_OFFSET_Y__FID_EXT_START_X */
  790. case 0xa8: /* FID_EXT_START_Y__FID_EXT_OFFSET_Y */
  791. case 0xb0: /* TVDETGP_INT_START_STOP_X */
  792. case 0xb4: /* TVDETGP_INT_START_STOP_Y */
  793. case 0xb8: /* GEN_CTRL */
  794. case 0xc4: /* DAC_TST__DAC_A */
  795. case 0xc8: /* DAC_B__DAC_C */
  796. return 0;
  797. default:
  798. break;
  799. }
  800. OMAP_BAD_REG(addr);
  801. return 0;
  802. }
  803. static void omap_venc_write(void *opaque, target_phys_addr_t addr,
  804. uint32_t value)
  805. {
  806. switch (addr) {
  807. case 0x08: /* F_CONTROL */
  808. case 0x10: /* VIDOUT_CTRL */
  809. case 0x14: /* SYNC_CTRL */
  810. case 0x1c: /* LLEN */
  811. case 0x20: /* FLENS */
  812. case 0x24: /* HFLTR_CTRL */
  813. case 0x28: /* CC_CARR_WSS_CARR */
  814. case 0x2c: /* C_PHASE */
  815. case 0x30: /* GAIN_U */
  816. case 0x34: /* GAIN_V */
  817. case 0x38: /* GAIN_Y */
  818. case 0x3c: /* BLACK_LEVEL */
  819. case 0x40: /* BLANK_LEVEL */
  820. case 0x44: /* X_COLOR */
  821. case 0x48: /* M_CONTROL */
  822. case 0x4c: /* BSTAMP_WSS_DATA */
  823. case 0x50: /* S_CARR */
  824. case 0x54: /* LINE21 */
  825. case 0x58: /* LN_SEL */
  826. case 0x5c: /* L21__WC_CTL */
  827. case 0x60: /* HTRIGGER_VTRIGGER */
  828. case 0x64: /* SAVID__EAVID */
  829. case 0x68: /* FLEN__FAL */
  830. case 0x6c: /* LAL__PHASE_RESET */
  831. case 0x70: /* HS_INT_START_STOP_X */
  832. case 0x74: /* HS_EXT_START_STOP_X */
  833. case 0x78: /* VS_INT_START_X */
  834. case 0x7c: /* VS_INT_STOP_X__VS_INT_START_Y */
  835. case 0x80: /* VS_INT_STOP_Y__VS_INT_START_X */
  836. case 0x84: /* VS_EXT_STOP_X__VS_EXT_START_Y */
  837. case 0x88: /* VS_EXT_STOP_Y */
  838. case 0x90: /* AVID_START_STOP_X */
  839. case 0x94: /* AVID_START_STOP_Y */
  840. case 0xa0: /* FID_INT_START_X__FID_INT_START_Y */
  841. case 0xa4: /* FID_INT_OFFSET_Y__FID_EXT_START_X */
  842. case 0xa8: /* FID_EXT_START_Y__FID_EXT_OFFSET_Y */
  843. case 0xb0: /* TVDETGP_INT_START_STOP_X */
  844. case 0xb4: /* TVDETGP_INT_START_STOP_Y */
  845. case 0xb8: /* GEN_CTRL */
  846. case 0xc4: /* DAC_TST__DAC_A */
  847. case 0xc8: /* DAC_B__DAC_C */
  848. break;
  849. default:
  850. OMAP_BAD_REG(addr);
  851. }
  852. }
  853. static CPUReadMemoryFunc * const omap_venc1_readfn[] = {
  854. omap_badwidth_read32,
  855. omap_badwidth_read32,
  856. omap_venc_read,
  857. };
  858. static CPUWriteMemoryFunc * const omap_venc1_writefn[] = {
  859. omap_badwidth_write32,
  860. omap_badwidth_write32,
  861. omap_venc_write,
  862. };
  863. static uint32_t omap_im3_read(void *opaque, target_phys_addr_t addr)
  864. {
  865. switch (addr) {
  866. case 0x0a8: /* SBIMERRLOGA */
  867. case 0x0b0: /* SBIMERRLOG */
  868. case 0x190: /* SBIMSTATE */
  869. case 0x198: /* SBTMSTATE_L */
  870. case 0x19c: /* SBTMSTATE_H */
  871. case 0x1a8: /* SBIMCONFIG_L */
  872. case 0x1ac: /* SBIMCONFIG_H */
  873. case 0x1f8: /* SBID_L */
  874. case 0x1fc: /* SBID_H */
  875. return 0;
  876. default:
  877. break;
  878. }
  879. OMAP_BAD_REG(addr);
  880. return 0;
  881. }
  882. static void omap_im3_write(void *opaque, target_phys_addr_t addr,
  883. uint32_t value)
  884. {
  885. switch (addr) {
  886. case 0x0b0: /* SBIMERRLOG */
  887. case 0x190: /* SBIMSTATE */
  888. case 0x198: /* SBTMSTATE_L */
  889. case 0x19c: /* SBTMSTATE_H */
  890. case 0x1a8: /* SBIMCONFIG_L */
  891. case 0x1ac: /* SBIMCONFIG_H */
  892. break;
  893. default:
  894. OMAP_BAD_REG(addr);
  895. }
  896. }
  897. static CPUReadMemoryFunc * const omap_im3_readfn[] = {
  898. omap_badwidth_read32,
  899. omap_badwidth_read32,
  900. omap_im3_read,
  901. };
  902. static CPUWriteMemoryFunc * const omap_im3_writefn[] = {
  903. omap_badwidth_write32,
  904. omap_badwidth_write32,
  905. omap_im3_write,
  906. };
  907. struct omap_dss_s *omap_dss_init(struct omap_target_agent_s *ta,
  908. target_phys_addr_t l3_base,
  909. qemu_irq irq, qemu_irq drq,
  910. omap_clk fck1, omap_clk fck2, omap_clk ck54m,
  911. omap_clk ick1, omap_clk ick2)
  912. {
  913. int iomemtype[5];
  914. struct omap_dss_s *s = (struct omap_dss_s *)
  915. qemu_mallocz(sizeof(struct omap_dss_s));
  916. s->irq = irq;
  917. s->drq = drq;
  918. omap_dss_reset(s);
  919. iomemtype[0] = l4_register_io_memory(omap_diss1_readfn,
  920. omap_diss1_writefn, s);
  921. iomemtype[1] = l4_register_io_memory(omap_disc1_readfn,
  922. omap_disc1_writefn, s);
  923. iomemtype[2] = l4_register_io_memory(omap_rfbi1_readfn,
  924. omap_rfbi1_writefn, s);
  925. iomemtype[3] = l4_register_io_memory(omap_venc1_readfn,
  926. omap_venc1_writefn, s);
  927. iomemtype[4] = cpu_register_io_memory(omap_im3_readfn,
  928. omap_im3_writefn, s, DEVICE_NATIVE_ENDIAN);
  929. omap_l4_attach(ta, 0, iomemtype[0]);
  930. omap_l4_attach(ta, 1, iomemtype[1]);
  931. omap_l4_attach(ta, 2, iomemtype[2]);
  932. omap_l4_attach(ta, 3, iomemtype[3]);
  933. cpu_register_physical_memory(l3_base, 0x1000, iomemtype[4]);
  934. #if 0
  935. s->state = graphic_console_init(omap_update_display,
  936. omap_invalidate_display, omap_screen_dump, s);
  937. #endif
  938. return s;
  939. }
  940. void omap_rfbi_attach(struct omap_dss_s *s, int cs, struct rfbi_chip_s *chip)
  941. {
  942. if (cs < 0 || cs > 1)
  943. hw_error("%s: wrong CS %i\n", __FUNCTION__, cs);
  944. s->rfbi.chip[cs] = chip;
  945. }