omap1.c 109 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894
  1. /*
  2. * TI OMAP processors emulation.
  3. *
  4. * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 or
  9. * (at your option) version 3 of the License.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along
  17. * with this program; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "hw.h"
  20. #include "arm-misc.h"
  21. #include "omap.h"
  22. #include "sysemu.h"
  23. #include "qemu-timer.h"
  24. #include "qemu-char.h"
  25. #include "soc_dma.h"
  26. /* We use pc-style serial ports. */
  27. #include "pc.h"
  28. #include "blockdev.h"
  29. #include "range.h"
  30. /* Should signal the TCMI/GPMC */
  31. uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
  32. {
  33. uint8_t ret;
  34. OMAP_8B_REG(addr);
  35. cpu_physical_memory_read(addr, (void *) &ret, 1);
  36. return ret;
  37. }
  38. void omap_badwidth_write8(void *opaque, target_phys_addr_t addr,
  39. uint32_t value)
  40. {
  41. uint8_t val8 = value;
  42. OMAP_8B_REG(addr);
  43. cpu_physical_memory_write(addr, (void *) &val8, 1);
  44. }
  45. uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
  46. {
  47. uint16_t ret;
  48. OMAP_16B_REG(addr);
  49. cpu_physical_memory_read(addr, (void *) &ret, 2);
  50. return ret;
  51. }
  52. void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
  53. uint32_t value)
  54. {
  55. uint16_t val16 = value;
  56. OMAP_16B_REG(addr);
  57. cpu_physical_memory_write(addr, (void *) &val16, 2);
  58. }
  59. uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
  60. {
  61. uint32_t ret;
  62. OMAP_32B_REG(addr);
  63. cpu_physical_memory_read(addr, (void *) &ret, 4);
  64. return ret;
  65. }
  66. void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
  67. uint32_t value)
  68. {
  69. OMAP_32B_REG(addr);
  70. cpu_physical_memory_write(addr, (void *) &value, 4);
  71. }
  72. /* MPU OS timers */
  73. struct omap_mpu_timer_s {
  74. qemu_irq irq;
  75. omap_clk clk;
  76. uint32_t val;
  77. int64_t time;
  78. QEMUTimer *timer;
  79. QEMUBH *tick;
  80. int64_t rate;
  81. int it_ena;
  82. int enable;
  83. int ptv;
  84. int ar;
  85. int st;
  86. uint32_t reset_val;
  87. };
  88. static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
  89. {
  90. uint64_t distance = qemu_get_clock_ns(vm_clock) - timer->time;
  91. if (timer->st && timer->enable && timer->rate)
  92. return timer->val - muldiv64(distance >> (timer->ptv + 1),
  93. timer->rate, get_ticks_per_sec());
  94. else
  95. return timer->val;
  96. }
  97. static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
  98. {
  99. timer->val = omap_timer_read(timer);
  100. timer->time = qemu_get_clock_ns(vm_clock);
  101. }
  102. static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
  103. {
  104. int64_t expires;
  105. if (timer->enable && timer->st && timer->rate) {
  106. timer->val = timer->reset_val; /* Should skip this on clk enable */
  107. expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
  108. get_ticks_per_sec(), timer->rate);
  109. /* If timer expiry would be sooner than in about 1 ms and
  110. * auto-reload isn't set, then fire immediately. This is a hack
  111. * to make systems like PalmOS run in acceptable time. PalmOS
  112. * sets the interval to a very low value and polls the status bit
  113. * in a busy loop when it wants to sleep just a couple of CPU
  114. * ticks. */
  115. if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
  116. qemu_mod_timer(timer->timer, timer->time + expires);
  117. else
  118. qemu_bh_schedule(timer->tick);
  119. } else
  120. qemu_del_timer(timer->timer);
  121. }
  122. static void omap_timer_fire(void *opaque)
  123. {
  124. struct omap_mpu_timer_s *timer = opaque;
  125. if (!timer->ar) {
  126. timer->val = 0;
  127. timer->st = 0;
  128. }
  129. if (timer->it_ena)
  130. /* Edge-triggered irq */
  131. qemu_irq_pulse(timer->irq);
  132. }
  133. static void omap_timer_tick(void *opaque)
  134. {
  135. struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
  136. omap_timer_sync(timer);
  137. omap_timer_fire(timer);
  138. omap_timer_update(timer);
  139. }
  140. static void omap_timer_clk_update(void *opaque, int line, int on)
  141. {
  142. struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
  143. omap_timer_sync(timer);
  144. timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
  145. omap_timer_update(timer);
  146. }
  147. static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
  148. {
  149. omap_clk_adduser(timer->clk,
  150. qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
  151. timer->rate = omap_clk_getrate(timer->clk);
  152. }
  153. static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr)
  154. {
  155. struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
  156. switch (addr) {
  157. case 0x00: /* CNTL_TIMER */
  158. return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
  159. case 0x04: /* LOAD_TIM */
  160. break;
  161. case 0x08: /* READ_TIM */
  162. return omap_timer_read(s);
  163. }
  164. OMAP_BAD_REG(addr);
  165. return 0;
  166. }
  167. static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
  168. uint32_t value)
  169. {
  170. struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
  171. switch (addr) {
  172. case 0x00: /* CNTL_TIMER */
  173. omap_timer_sync(s);
  174. s->enable = (value >> 5) & 1;
  175. s->ptv = (value >> 2) & 7;
  176. s->ar = (value >> 1) & 1;
  177. s->st = value & 1;
  178. omap_timer_update(s);
  179. return;
  180. case 0x04: /* LOAD_TIM */
  181. s->reset_val = value;
  182. return;
  183. case 0x08: /* READ_TIM */
  184. OMAP_RO_REG(addr);
  185. break;
  186. default:
  187. OMAP_BAD_REG(addr);
  188. }
  189. }
  190. static CPUReadMemoryFunc * const omap_mpu_timer_readfn[] = {
  191. omap_badwidth_read32,
  192. omap_badwidth_read32,
  193. omap_mpu_timer_read,
  194. };
  195. static CPUWriteMemoryFunc * const omap_mpu_timer_writefn[] = {
  196. omap_badwidth_write32,
  197. omap_badwidth_write32,
  198. omap_mpu_timer_write,
  199. };
  200. static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
  201. {
  202. qemu_del_timer(s->timer);
  203. s->enable = 0;
  204. s->reset_val = 31337;
  205. s->val = 0;
  206. s->ptv = 0;
  207. s->ar = 0;
  208. s->st = 0;
  209. s->it_ena = 1;
  210. }
  211. static struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
  212. qemu_irq irq, omap_clk clk)
  213. {
  214. int iomemtype;
  215. struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
  216. qemu_mallocz(sizeof(struct omap_mpu_timer_s));
  217. s->irq = irq;
  218. s->clk = clk;
  219. s->timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, s);
  220. s->tick = qemu_bh_new(omap_timer_fire, s);
  221. omap_mpu_timer_reset(s);
  222. omap_timer_clk_setup(s);
  223. iomemtype = cpu_register_io_memory(omap_mpu_timer_readfn,
  224. omap_mpu_timer_writefn, s, DEVICE_NATIVE_ENDIAN);
  225. cpu_register_physical_memory(base, 0x100, iomemtype);
  226. return s;
  227. }
  228. /* Watchdog timer */
  229. struct omap_watchdog_timer_s {
  230. struct omap_mpu_timer_s timer;
  231. uint8_t last_wr;
  232. int mode;
  233. int free;
  234. int reset;
  235. };
  236. static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr)
  237. {
  238. struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
  239. switch (addr) {
  240. case 0x00: /* CNTL_TIMER */
  241. return (s->timer.ptv << 9) | (s->timer.ar << 8) |
  242. (s->timer.st << 7) | (s->free << 1);
  243. case 0x04: /* READ_TIMER */
  244. return omap_timer_read(&s->timer);
  245. case 0x08: /* TIMER_MODE */
  246. return s->mode << 15;
  247. }
  248. OMAP_BAD_REG(addr);
  249. return 0;
  250. }
  251. static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
  252. uint32_t value)
  253. {
  254. struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
  255. switch (addr) {
  256. case 0x00: /* CNTL_TIMER */
  257. omap_timer_sync(&s->timer);
  258. s->timer.ptv = (value >> 9) & 7;
  259. s->timer.ar = (value >> 8) & 1;
  260. s->timer.st = (value >> 7) & 1;
  261. s->free = (value >> 1) & 1;
  262. omap_timer_update(&s->timer);
  263. break;
  264. case 0x04: /* LOAD_TIMER */
  265. s->timer.reset_val = value & 0xffff;
  266. break;
  267. case 0x08: /* TIMER_MODE */
  268. if (!s->mode && ((value >> 15) & 1))
  269. omap_clk_get(s->timer.clk);
  270. s->mode |= (value >> 15) & 1;
  271. if (s->last_wr == 0xf5) {
  272. if ((value & 0xff) == 0xa0) {
  273. if (s->mode) {
  274. s->mode = 0;
  275. omap_clk_put(s->timer.clk);
  276. }
  277. } else {
  278. /* XXX: on T|E hardware somehow this has no effect,
  279. * on Zire 71 it works as specified. */
  280. s->reset = 1;
  281. qemu_system_reset_request();
  282. }
  283. }
  284. s->last_wr = value & 0xff;
  285. break;
  286. default:
  287. OMAP_BAD_REG(addr);
  288. }
  289. }
  290. static CPUReadMemoryFunc * const omap_wd_timer_readfn[] = {
  291. omap_badwidth_read16,
  292. omap_wd_timer_read,
  293. omap_badwidth_read16,
  294. };
  295. static CPUWriteMemoryFunc * const omap_wd_timer_writefn[] = {
  296. omap_badwidth_write16,
  297. omap_wd_timer_write,
  298. omap_badwidth_write16,
  299. };
  300. static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
  301. {
  302. qemu_del_timer(s->timer.timer);
  303. if (!s->mode)
  304. omap_clk_get(s->timer.clk);
  305. s->mode = 1;
  306. s->free = 1;
  307. s->reset = 0;
  308. s->timer.enable = 1;
  309. s->timer.it_ena = 1;
  310. s->timer.reset_val = 0xffff;
  311. s->timer.val = 0;
  312. s->timer.st = 0;
  313. s->timer.ptv = 0;
  314. s->timer.ar = 0;
  315. omap_timer_update(&s->timer);
  316. }
  317. static struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
  318. qemu_irq irq, omap_clk clk)
  319. {
  320. int iomemtype;
  321. struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
  322. qemu_mallocz(sizeof(struct omap_watchdog_timer_s));
  323. s->timer.irq = irq;
  324. s->timer.clk = clk;
  325. s->timer.timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, &s->timer);
  326. omap_wd_timer_reset(s);
  327. omap_timer_clk_setup(&s->timer);
  328. iomemtype = cpu_register_io_memory(omap_wd_timer_readfn,
  329. omap_wd_timer_writefn, s, DEVICE_NATIVE_ENDIAN);
  330. cpu_register_physical_memory(base, 0x100, iomemtype);
  331. return s;
  332. }
  333. /* 32-kHz timer */
  334. struct omap_32khz_timer_s {
  335. struct omap_mpu_timer_s timer;
  336. };
  337. static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr)
  338. {
  339. struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
  340. int offset = addr & OMAP_MPUI_REG_MASK;
  341. switch (offset) {
  342. case 0x00: /* TVR */
  343. return s->timer.reset_val;
  344. case 0x04: /* TCR */
  345. return omap_timer_read(&s->timer);
  346. case 0x08: /* CR */
  347. return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
  348. default:
  349. break;
  350. }
  351. OMAP_BAD_REG(addr);
  352. return 0;
  353. }
  354. static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
  355. uint32_t value)
  356. {
  357. struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
  358. int offset = addr & OMAP_MPUI_REG_MASK;
  359. switch (offset) {
  360. case 0x00: /* TVR */
  361. s->timer.reset_val = value & 0x00ffffff;
  362. break;
  363. case 0x04: /* TCR */
  364. OMAP_RO_REG(addr);
  365. break;
  366. case 0x08: /* CR */
  367. s->timer.ar = (value >> 3) & 1;
  368. s->timer.it_ena = (value >> 2) & 1;
  369. if (s->timer.st != (value & 1) || (value & 2)) {
  370. omap_timer_sync(&s->timer);
  371. s->timer.enable = value & 1;
  372. s->timer.st = value & 1;
  373. omap_timer_update(&s->timer);
  374. }
  375. break;
  376. default:
  377. OMAP_BAD_REG(addr);
  378. }
  379. }
  380. static CPUReadMemoryFunc * const omap_os_timer_readfn[] = {
  381. omap_badwidth_read32,
  382. omap_badwidth_read32,
  383. omap_os_timer_read,
  384. };
  385. static CPUWriteMemoryFunc * const omap_os_timer_writefn[] = {
  386. omap_badwidth_write32,
  387. omap_badwidth_write32,
  388. omap_os_timer_write,
  389. };
  390. static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
  391. {
  392. qemu_del_timer(s->timer.timer);
  393. s->timer.enable = 0;
  394. s->timer.it_ena = 0;
  395. s->timer.reset_val = 0x00ffffff;
  396. s->timer.val = 0;
  397. s->timer.st = 0;
  398. s->timer.ptv = 0;
  399. s->timer.ar = 1;
  400. }
  401. static struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
  402. qemu_irq irq, omap_clk clk)
  403. {
  404. int iomemtype;
  405. struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
  406. qemu_mallocz(sizeof(struct omap_32khz_timer_s));
  407. s->timer.irq = irq;
  408. s->timer.clk = clk;
  409. s->timer.timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, &s->timer);
  410. omap_os_timer_reset(s);
  411. omap_timer_clk_setup(&s->timer);
  412. iomemtype = cpu_register_io_memory(omap_os_timer_readfn,
  413. omap_os_timer_writefn, s, DEVICE_NATIVE_ENDIAN);
  414. cpu_register_physical_memory(base, 0x800, iomemtype);
  415. return s;
  416. }
  417. /* Ultra Low-Power Device Module */
  418. static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr)
  419. {
  420. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  421. uint16_t ret;
  422. switch (addr) {
  423. case 0x14: /* IT_STATUS */
  424. ret = s->ulpd_pm_regs[addr >> 2];
  425. s->ulpd_pm_regs[addr >> 2] = 0;
  426. qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
  427. return ret;
  428. case 0x18: /* Reserved */
  429. case 0x1c: /* Reserved */
  430. case 0x20: /* Reserved */
  431. case 0x28: /* Reserved */
  432. case 0x2c: /* Reserved */
  433. OMAP_BAD_REG(addr);
  434. case 0x00: /* COUNTER_32_LSB */
  435. case 0x04: /* COUNTER_32_MSB */
  436. case 0x08: /* COUNTER_HIGH_FREQ_LSB */
  437. case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
  438. case 0x10: /* GAUGING_CTRL */
  439. case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
  440. case 0x30: /* CLOCK_CTRL */
  441. case 0x34: /* SOFT_REQ */
  442. case 0x38: /* COUNTER_32_FIQ */
  443. case 0x3c: /* DPLL_CTRL */
  444. case 0x40: /* STATUS_REQ */
  445. /* XXX: check clk::usecount state for every clock */
  446. case 0x48: /* LOCL_TIME */
  447. case 0x4c: /* APLL_CTRL */
  448. case 0x50: /* POWER_CTRL */
  449. return s->ulpd_pm_regs[addr >> 2];
  450. }
  451. OMAP_BAD_REG(addr);
  452. return 0;
  453. }
  454. static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
  455. uint16_t diff, uint16_t value)
  456. {
  457. if (diff & (1 << 4)) /* USB_MCLK_EN */
  458. omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
  459. if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
  460. omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
  461. }
  462. static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
  463. uint16_t diff, uint16_t value)
  464. {
  465. if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
  466. omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
  467. if (diff & (1 << 1)) /* SOFT_COM_REQ */
  468. omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
  469. if (diff & (1 << 2)) /* SOFT_SDW_REQ */
  470. omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
  471. if (diff & (1 << 3)) /* SOFT_USB_REQ */
  472. omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
  473. }
  474. static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
  475. uint32_t value)
  476. {
  477. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  478. int64_t now, ticks;
  479. int div, mult;
  480. static const int bypass_div[4] = { 1, 2, 4, 4 };
  481. uint16_t diff;
  482. switch (addr) {
  483. case 0x00: /* COUNTER_32_LSB */
  484. case 0x04: /* COUNTER_32_MSB */
  485. case 0x08: /* COUNTER_HIGH_FREQ_LSB */
  486. case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
  487. case 0x14: /* IT_STATUS */
  488. case 0x40: /* STATUS_REQ */
  489. OMAP_RO_REG(addr);
  490. break;
  491. case 0x10: /* GAUGING_CTRL */
  492. /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
  493. if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
  494. now = qemu_get_clock_ns(vm_clock);
  495. if (value & 1)
  496. s->ulpd_gauge_start = now;
  497. else {
  498. now -= s->ulpd_gauge_start;
  499. /* 32-kHz ticks */
  500. ticks = muldiv64(now, 32768, get_ticks_per_sec());
  501. s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
  502. s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
  503. if (ticks >> 32) /* OVERFLOW_32K */
  504. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
  505. /* High frequency ticks */
  506. ticks = muldiv64(now, 12000000, get_ticks_per_sec());
  507. s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
  508. s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
  509. if (ticks >> 32) /* OVERFLOW_HI_FREQ */
  510. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
  511. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
  512. qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
  513. }
  514. }
  515. s->ulpd_pm_regs[addr >> 2] = value;
  516. break;
  517. case 0x18: /* Reserved */
  518. case 0x1c: /* Reserved */
  519. case 0x20: /* Reserved */
  520. case 0x28: /* Reserved */
  521. case 0x2c: /* Reserved */
  522. OMAP_BAD_REG(addr);
  523. case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
  524. case 0x38: /* COUNTER_32_FIQ */
  525. case 0x48: /* LOCL_TIME */
  526. case 0x50: /* POWER_CTRL */
  527. s->ulpd_pm_regs[addr >> 2] = value;
  528. break;
  529. case 0x30: /* CLOCK_CTRL */
  530. diff = s->ulpd_pm_regs[addr >> 2] ^ value;
  531. s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
  532. omap_ulpd_clk_update(s, diff, value);
  533. break;
  534. case 0x34: /* SOFT_REQ */
  535. diff = s->ulpd_pm_regs[addr >> 2] ^ value;
  536. s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
  537. omap_ulpd_req_update(s, diff, value);
  538. break;
  539. case 0x3c: /* DPLL_CTRL */
  540. /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
  541. * omitted altogether, probably a typo. */
  542. /* This register has identical semantics with DPLL(1:3) control
  543. * registers, see omap_dpll_write() */
  544. diff = s->ulpd_pm_regs[addr >> 2] & value;
  545. s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
  546. if (diff & (0x3ff << 2)) {
  547. if (value & (1 << 4)) { /* PLL_ENABLE */
  548. div = ((value >> 5) & 3) + 1; /* PLL_DIV */
  549. mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
  550. } else {
  551. div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
  552. mult = 1;
  553. }
  554. omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
  555. }
  556. /* Enter the desired mode. */
  557. s->ulpd_pm_regs[addr >> 2] =
  558. (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
  559. ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
  560. /* Act as if the lock is restored. */
  561. s->ulpd_pm_regs[addr >> 2] |= 2;
  562. break;
  563. case 0x4c: /* APLL_CTRL */
  564. diff = s->ulpd_pm_regs[addr >> 2] & value;
  565. s->ulpd_pm_regs[addr >> 2] = value & 0xf;
  566. if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
  567. omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
  568. (value & (1 << 0)) ? "apll" : "dpll4"));
  569. break;
  570. default:
  571. OMAP_BAD_REG(addr);
  572. }
  573. }
  574. static CPUReadMemoryFunc * const omap_ulpd_pm_readfn[] = {
  575. omap_badwidth_read16,
  576. omap_ulpd_pm_read,
  577. omap_badwidth_read16,
  578. };
  579. static CPUWriteMemoryFunc * const omap_ulpd_pm_writefn[] = {
  580. omap_badwidth_write16,
  581. omap_ulpd_pm_write,
  582. omap_badwidth_write16,
  583. };
  584. static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
  585. {
  586. mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
  587. mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
  588. mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
  589. mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
  590. mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
  591. mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
  592. mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
  593. mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
  594. mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
  595. mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
  596. mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
  597. omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
  598. mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
  599. omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
  600. mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
  601. mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
  602. mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
  603. mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
  604. mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
  605. mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
  606. mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
  607. omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
  608. omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
  609. }
  610. static void omap_ulpd_pm_init(target_phys_addr_t base,
  611. struct omap_mpu_state_s *mpu)
  612. {
  613. int iomemtype = cpu_register_io_memory(omap_ulpd_pm_readfn,
  614. omap_ulpd_pm_writefn, mpu, DEVICE_NATIVE_ENDIAN);
  615. cpu_register_physical_memory(base, 0x800, iomemtype);
  616. omap_ulpd_pm_reset(mpu);
  617. }
  618. /* OMAP Pin Configuration */
  619. static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr)
  620. {
  621. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  622. switch (addr) {
  623. case 0x00: /* FUNC_MUX_CTRL_0 */
  624. case 0x04: /* FUNC_MUX_CTRL_1 */
  625. case 0x08: /* FUNC_MUX_CTRL_2 */
  626. return s->func_mux_ctrl[addr >> 2];
  627. case 0x0c: /* COMP_MODE_CTRL_0 */
  628. return s->comp_mode_ctrl[0];
  629. case 0x10: /* FUNC_MUX_CTRL_3 */
  630. case 0x14: /* FUNC_MUX_CTRL_4 */
  631. case 0x18: /* FUNC_MUX_CTRL_5 */
  632. case 0x1c: /* FUNC_MUX_CTRL_6 */
  633. case 0x20: /* FUNC_MUX_CTRL_7 */
  634. case 0x24: /* FUNC_MUX_CTRL_8 */
  635. case 0x28: /* FUNC_MUX_CTRL_9 */
  636. case 0x2c: /* FUNC_MUX_CTRL_A */
  637. case 0x30: /* FUNC_MUX_CTRL_B */
  638. case 0x34: /* FUNC_MUX_CTRL_C */
  639. case 0x38: /* FUNC_MUX_CTRL_D */
  640. return s->func_mux_ctrl[(addr >> 2) - 1];
  641. case 0x40: /* PULL_DWN_CTRL_0 */
  642. case 0x44: /* PULL_DWN_CTRL_1 */
  643. case 0x48: /* PULL_DWN_CTRL_2 */
  644. case 0x4c: /* PULL_DWN_CTRL_3 */
  645. return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
  646. case 0x50: /* GATE_INH_CTRL_0 */
  647. return s->gate_inh_ctrl[0];
  648. case 0x60: /* VOLTAGE_CTRL_0 */
  649. return s->voltage_ctrl[0];
  650. case 0x70: /* TEST_DBG_CTRL_0 */
  651. return s->test_dbg_ctrl[0];
  652. case 0x80: /* MOD_CONF_CTRL_0 */
  653. return s->mod_conf_ctrl[0];
  654. }
  655. OMAP_BAD_REG(addr);
  656. return 0;
  657. }
  658. static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
  659. uint32_t diff, uint32_t value)
  660. {
  661. if (s->compat1509) {
  662. if (diff & (1 << 9)) /* BLUETOOTH */
  663. omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
  664. (~value >> 9) & 1);
  665. if (diff & (1 << 7)) /* USB.CLKO */
  666. omap_clk_onoff(omap_findclk(s, "usb.clko"),
  667. (value >> 7) & 1);
  668. }
  669. }
  670. static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
  671. uint32_t diff, uint32_t value)
  672. {
  673. if (s->compat1509) {
  674. if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
  675. omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
  676. (value >> 31) & 1);
  677. if (diff & (1 << 1)) /* CLK32K */
  678. omap_clk_onoff(omap_findclk(s, "clk32k_out"),
  679. (~value >> 1) & 1);
  680. }
  681. }
  682. static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
  683. uint32_t diff, uint32_t value)
  684. {
  685. if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
  686. omap_clk_reparent(omap_findclk(s, "uart3_ck"),
  687. omap_findclk(s, ((value >> 31) & 1) ?
  688. "ck_48m" : "armper_ck"));
  689. if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
  690. omap_clk_reparent(omap_findclk(s, "uart2_ck"),
  691. omap_findclk(s, ((value >> 30) & 1) ?
  692. "ck_48m" : "armper_ck"));
  693. if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
  694. omap_clk_reparent(omap_findclk(s, "uart1_ck"),
  695. omap_findclk(s, ((value >> 29) & 1) ?
  696. "ck_48m" : "armper_ck"));
  697. if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
  698. omap_clk_reparent(omap_findclk(s, "mmc_ck"),
  699. omap_findclk(s, ((value >> 23) & 1) ?
  700. "ck_48m" : "armper_ck"));
  701. if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
  702. omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
  703. omap_findclk(s, ((value >> 12) & 1) ?
  704. "ck_48m" : "armper_ck"));
  705. if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
  706. omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
  707. }
  708. static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
  709. uint32_t value)
  710. {
  711. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  712. uint32_t diff;
  713. switch (addr) {
  714. case 0x00: /* FUNC_MUX_CTRL_0 */
  715. diff = s->func_mux_ctrl[addr >> 2] ^ value;
  716. s->func_mux_ctrl[addr >> 2] = value;
  717. omap_pin_funcmux0_update(s, diff, value);
  718. return;
  719. case 0x04: /* FUNC_MUX_CTRL_1 */
  720. diff = s->func_mux_ctrl[addr >> 2] ^ value;
  721. s->func_mux_ctrl[addr >> 2] = value;
  722. omap_pin_funcmux1_update(s, diff, value);
  723. return;
  724. case 0x08: /* FUNC_MUX_CTRL_2 */
  725. s->func_mux_ctrl[addr >> 2] = value;
  726. return;
  727. case 0x0c: /* COMP_MODE_CTRL_0 */
  728. s->comp_mode_ctrl[0] = value;
  729. s->compat1509 = (value != 0x0000eaef);
  730. omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
  731. omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
  732. return;
  733. case 0x10: /* FUNC_MUX_CTRL_3 */
  734. case 0x14: /* FUNC_MUX_CTRL_4 */
  735. case 0x18: /* FUNC_MUX_CTRL_5 */
  736. case 0x1c: /* FUNC_MUX_CTRL_6 */
  737. case 0x20: /* FUNC_MUX_CTRL_7 */
  738. case 0x24: /* FUNC_MUX_CTRL_8 */
  739. case 0x28: /* FUNC_MUX_CTRL_9 */
  740. case 0x2c: /* FUNC_MUX_CTRL_A */
  741. case 0x30: /* FUNC_MUX_CTRL_B */
  742. case 0x34: /* FUNC_MUX_CTRL_C */
  743. case 0x38: /* FUNC_MUX_CTRL_D */
  744. s->func_mux_ctrl[(addr >> 2) - 1] = value;
  745. return;
  746. case 0x40: /* PULL_DWN_CTRL_0 */
  747. case 0x44: /* PULL_DWN_CTRL_1 */
  748. case 0x48: /* PULL_DWN_CTRL_2 */
  749. case 0x4c: /* PULL_DWN_CTRL_3 */
  750. s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
  751. return;
  752. case 0x50: /* GATE_INH_CTRL_0 */
  753. s->gate_inh_ctrl[0] = value;
  754. return;
  755. case 0x60: /* VOLTAGE_CTRL_0 */
  756. s->voltage_ctrl[0] = value;
  757. return;
  758. case 0x70: /* TEST_DBG_CTRL_0 */
  759. s->test_dbg_ctrl[0] = value;
  760. return;
  761. case 0x80: /* MOD_CONF_CTRL_0 */
  762. diff = s->mod_conf_ctrl[0] ^ value;
  763. s->mod_conf_ctrl[0] = value;
  764. omap_pin_modconf1_update(s, diff, value);
  765. return;
  766. default:
  767. OMAP_BAD_REG(addr);
  768. }
  769. }
  770. static CPUReadMemoryFunc * const omap_pin_cfg_readfn[] = {
  771. omap_badwidth_read32,
  772. omap_badwidth_read32,
  773. omap_pin_cfg_read,
  774. };
  775. static CPUWriteMemoryFunc * const omap_pin_cfg_writefn[] = {
  776. omap_badwidth_write32,
  777. omap_badwidth_write32,
  778. omap_pin_cfg_write,
  779. };
  780. static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
  781. {
  782. /* Start in Compatibility Mode. */
  783. mpu->compat1509 = 1;
  784. omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
  785. omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
  786. omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
  787. memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
  788. memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
  789. memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
  790. memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
  791. memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
  792. memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
  793. memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
  794. }
  795. static void omap_pin_cfg_init(target_phys_addr_t base,
  796. struct omap_mpu_state_s *mpu)
  797. {
  798. int iomemtype = cpu_register_io_memory(omap_pin_cfg_readfn,
  799. omap_pin_cfg_writefn, mpu, DEVICE_NATIVE_ENDIAN);
  800. cpu_register_physical_memory(base, 0x800, iomemtype);
  801. omap_pin_cfg_reset(mpu);
  802. }
  803. /* Device Identification, Die Identification */
  804. static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr)
  805. {
  806. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  807. switch (addr) {
  808. case 0xfffe1800: /* DIE_ID_LSB */
  809. return 0xc9581f0e;
  810. case 0xfffe1804: /* DIE_ID_MSB */
  811. return 0xa8858bfa;
  812. case 0xfffe2000: /* PRODUCT_ID_LSB */
  813. return 0x00aaaafc;
  814. case 0xfffe2004: /* PRODUCT_ID_MSB */
  815. return 0xcafeb574;
  816. case 0xfffed400: /* JTAG_ID_LSB */
  817. switch (s->mpu_model) {
  818. case omap310:
  819. return 0x03310315;
  820. case omap1510:
  821. return 0x03310115;
  822. default:
  823. hw_error("%s: bad mpu model\n", __FUNCTION__);
  824. }
  825. break;
  826. case 0xfffed404: /* JTAG_ID_MSB */
  827. switch (s->mpu_model) {
  828. case omap310:
  829. return 0xfb57402f;
  830. case omap1510:
  831. return 0xfb47002f;
  832. default:
  833. hw_error("%s: bad mpu model\n", __FUNCTION__);
  834. }
  835. break;
  836. }
  837. OMAP_BAD_REG(addr);
  838. return 0;
  839. }
  840. static void omap_id_write(void *opaque, target_phys_addr_t addr,
  841. uint32_t value)
  842. {
  843. OMAP_BAD_REG(addr);
  844. }
  845. static CPUReadMemoryFunc * const omap_id_readfn[] = {
  846. omap_badwidth_read32,
  847. omap_badwidth_read32,
  848. omap_id_read,
  849. };
  850. static CPUWriteMemoryFunc * const omap_id_writefn[] = {
  851. omap_badwidth_write32,
  852. omap_badwidth_write32,
  853. omap_id_write,
  854. };
  855. static void omap_id_init(struct omap_mpu_state_s *mpu)
  856. {
  857. int iomemtype = cpu_register_io_memory(omap_id_readfn,
  858. omap_id_writefn, mpu, DEVICE_NATIVE_ENDIAN);
  859. cpu_register_physical_memory_offset(0xfffe1800, 0x800, iomemtype, 0xfffe1800);
  860. cpu_register_physical_memory_offset(0xfffed400, 0x100, iomemtype, 0xfffed400);
  861. if (!cpu_is_omap15xx(mpu))
  862. cpu_register_physical_memory_offset(0xfffe2000, 0x800, iomemtype, 0xfffe2000);
  863. }
  864. /* MPUI Control (Dummy) */
  865. static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr)
  866. {
  867. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  868. switch (addr) {
  869. case 0x00: /* CTRL */
  870. return s->mpui_ctrl;
  871. case 0x04: /* DEBUG_ADDR */
  872. return 0x01ffffff;
  873. case 0x08: /* DEBUG_DATA */
  874. return 0xffffffff;
  875. case 0x0c: /* DEBUG_FLAG */
  876. return 0x00000800;
  877. case 0x10: /* STATUS */
  878. return 0x00000000;
  879. /* Not in OMAP310 */
  880. case 0x14: /* DSP_STATUS */
  881. case 0x18: /* DSP_BOOT_CONFIG */
  882. return 0x00000000;
  883. case 0x1c: /* DSP_MPUI_CONFIG */
  884. return 0x0000ffff;
  885. }
  886. OMAP_BAD_REG(addr);
  887. return 0;
  888. }
  889. static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
  890. uint32_t value)
  891. {
  892. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  893. switch (addr) {
  894. case 0x00: /* CTRL */
  895. s->mpui_ctrl = value & 0x007fffff;
  896. break;
  897. case 0x04: /* DEBUG_ADDR */
  898. case 0x08: /* DEBUG_DATA */
  899. case 0x0c: /* DEBUG_FLAG */
  900. case 0x10: /* STATUS */
  901. /* Not in OMAP310 */
  902. case 0x14: /* DSP_STATUS */
  903. OMAP_RO_REG(addr);
  904. case 0x18: /* DSP_BOOT_CONFIG */
  905. case 0x1c: /* DSP_MPUI_CONFIG */
  906. break;
  907. default:
  908. OMAP_BAD_REG(addr);
  909. }
  910. }
  911. static CPUReadMemoryFunc * const omap_mpui_readfn[] = {
  912. omap_badwidth_read32,
  913. omap_badwidth_read32,
  914. omap_mpui_read,
  915. };
  916. static CPUWriteMemoryFunc * const omap_mpui_writefn[] = {
  917. omap_badwidth_write32,
  918. omap_badwidth_write32,
  919. omap_mpui_write,
  920. };
  921. static void omap_mpui_reset(struct omap_mpu_state_s *s)
  922. {
  923. s->mpui_ctrl = 0x0003ff1b;
  924. }
  925. static void omap_mpui_init(target_phys_addr_t base,
  926. struct omap_mpu_state_s *mpu)
  927. {
  928. int iomemtype = cpu_register_io_memory(omap_mpui_readfn,
  929. omap_mpui_writefn, mpu, DEVICE_NATIVE_ENDIAN);
  930. cpu_register_physical_memory(base, 0x100, iomemtype);
  931. omap_mpui_reset(mpu);
  932. }
  933. /* TIPB Bridges */
  934. struct omap_tipb_bridge_s {
  935. qemu_irq abort;
  936. int width_intr;
  937. uint16_t control;
  938. uint16_t alloc;
  939. uint16_t buffer;
  940. uint16_t enh_control;
  941. };
  942. static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr)
  943. {
  944. struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
  945. switch (addr) {
  946. case 0x00: /* TIPB_CNTL */
  947. return s->control;
  948. case 0x04: /* TIPB_BUS_ALLOC */
  949. return s->alloc;
  950. case 0x08: /* MPU_TIPB_CNTL */
  951. return s->buffer;
  952. case 0x0c: /* ENHANCED_TIPB_CNTL */
  953. return s->enh_control;
  954. case 0x10: /* ADDRESS_DBG */
  955. case 0x14: /* DATA_DEBUG_LOW */
  956. case 0x18: /* DATA_DEBUG_HIGH */
  957. return 0xffff;
  958. case 0x1c: /* DEBUG_CNTR_SIG */
  959. return 0x00f8;
  960. }
  961. OMAP_BAD_REG(addr);
  962. return 0;
  963. }
  964. static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
  965. uint32_t value)
  966. {
  967. struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
  968. switch (addr) {
  969. case 0x00: /* TIPB_CNTL */
  970. s->control = value & 0xffff;
  971. break;
  972. case 0x04: /* TIPB_BUS_ALLOC */
  973. s->alloc = value & 0x003f;
  974. break;
  975. case 0x08: /* MPU_TIPB_CNTL */
  976. s->buffer = value & 0x0003;
  977. break;
  978. case 0x0c: /* ENHANCED_TIPB_CNTL */
  979. s->width_intr = !(value & 2);
  980. s->enh_control = value & 0x000f;
  981. break;
  982. case 0x10: /* ADDRESS_DBG */
  983. case 0x14: /* DATA_DEBUG_LOW */
  984. case 0x18: /* DATA_DEBUG_HIGH */
  985. case 0x1c: /* DEBUG_CNTR_SIG */
  986. OMAP_RO_REG(addr);
  987. break;
  988. default:
  989. OMAP_BAD_REG(addr);
  990. }
  991. }
  992. static CPUReadMemoryFunc * const omap_tipb_bridge_readfn[] = {
  993. omap_badwidth_read16,
  994. omap_tipb_bridge_read,
  995. omap_tipb_bridge_read,
  996. };
  997. static CPUWriteMemoryFunc * const omap_tipb_bridge_writefn[] = {
  998. omap_badwidth_write16,
  999. omap_tipb_bridge_write,
  1000. omap_tipb_bridge_write,
  1001. };
  1002. static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
  1003. {
  1004. s->control = 0xffff;
  1005. s->alloc = 0x0009;
  1006. s->buffer = 0x0000;
  1007. s->enh_control = 0x000f;
  1008. }
  1009. static struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
  1010. qemu_irq abort_irq, omap_clk clk)
  1011. {
  1012. int iomemtype;
  1013. struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
  1014. qemu_mallocz(sizeof(struct omap_tipb_bridge_s));
  1015. s->abort = abort_irq;
  1016. omap_tipb_bridge_reset(s);
  1017. iomemtype = cpu_register_io_memory(omap_tipb_bridge_readfn,
  1018. omap_tipb_bridge_writefn, s, DEVICE_NATIVE_ENDIAN);
  1019. cpu_register_physical_memory(base, 0x100, iomemtype);
  1020. return s;
  1021. }
  1022. /* Dummy Traffic Controller's Memory Interface */
  1023. static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr)
  1024. {
  1025. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1026. uint32_t ret;
  1027. switch (addr) {
  1028. case 0x00: /* IMIF_PRIO */
  1029. case 0x04: /* EMIFS_PRIO */
  1030. case 0x08: /* EMIFF_PRIO */
  1031. case 0x0c: /* EMIFS_CONFIG */
  1032. case 0x10: /* EMIFS_CS0_CONFIG */
  1033. case 0x14: /* EMIFS_CS1_CONFIG */
  1034. case 0x18: /* EMIFS_CS2_CONFIG */
  1035. case 0x1c: /* EMIFS_CS3_CONFIG */
  1036. case 0x24: /* EMIFF_MRS */
  1037. case 0x28: /* TIMEOUT1 */
  1038. case 0x2c: /* TIMEOUT2 */
  1039. case 0x30: /* TIMEOUT3 */
  1040. case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
  1041. case 0x40: /* EMIFS_CFG_DYN_WAIT */
  1042. return s->tcmi_regs[addr >> 2];
  1043. case 0x20: /* EMIFF_SDRAM_CONFIG */
  1044. ret = s->tcmi_regs[addr >> 2];
  1045. s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
  1046. /* XXX: We can try using the VGA_DIRTY flag for this */
  1047. return ret;
  1048. }
  1049. OMAP_BAD_REG(addr);
  1050. return 0;
  1051. }
  1052. static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
  1053. uint32_t value)
  1054. {
  1055. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1056. switch (addr) {
  1057. case 0x00: /* IMIF_PRIO */
  1058. case 0x04: /* EMIFS_PRIO */
  1059. case 0x08: /* EMIFF_PRIO */
  1060. case 0x10: /* EMIFS_CS0_CONFIG */
  1061. case 0x14: /* EMIFS_CS1_CONFIG */
  1062. case 0x18: /* EMIFS_CS2_CONFIG */
  1063. case 0x1c: /* EMIFS_CS3_CONFIG */
  1064. case 0x20: /* EMIFF_SDRAM_CONFIG */
  1065. case 0x24: /* EMIFF_MRS */
  1066. case 0x28: /* TIMEOUT1 */
  1067. case 0x2c: /* TIMEOUT2 */
  1068. case 0x30: /* TIMEOUT3 */
  1069. case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
  1070. case 0x40: /* EMIFS_CFG_DYN_WAIT */
  1071. s->tcmi_regs[addr >> 2] = value;
  1072. break;
  1073. case 0x0c: /* EMIFS_CONFIG */
  1074. s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
  1075. break;
  1076. default:
  1077. OMAP_BAD_REG(addr);
  1078. }
  1079. }
  1080. static CPUReadMemoryFunc * const omap_tcmi_readfn[] = {
  1081. omap_badwidth_read32,
  1082. omap_badwidth_read32,
  1083. omap_tcmi_read,
  1084. };
  1085. static CPUWriteMemoryFunc * const omap_tcmi_writefn[] = {
  1086. omap_badwidth_write32,
  1087. omap_badwidth_write32,
  1088. omap_tcmi_write,
  1089. };
  1090. static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
  1091. {
  1092. mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
  1093. mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
  1094. mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
  1095. mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
  1096. mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
  1097. mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
  1098. mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
  1099. mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
  1100. mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
  1101. mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
  1102. mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
  1103. mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
  1104. mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
  1105. mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
  1106. mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
  1107. }
  1108. static void omap_tcmi_init(target_phys_addr_t base,
  1109. struct omap_mpu_state_s *mpu)
  1110. {
  1111. int iomemtype = cpu_register_io_memory(omap_tcmi_readfn,
  1112. omap_tcmi_writefn, mpu, DEVICE_NATIVE_ENDIAN);
  1113. cpu_register_physical_memory(base, 0x100, iomemtype);
  1114. omap_tcmi_reset(mpu);
  1115. }
  1116. /* Digital phase-locked loops control */
  1117. static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr)
  1118. {
  1119. struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
  1120. if (addr == 0x00) /* CTL_REG */
  1121. return s->mode;
  1122. OMAP_BAD_REG(addr);
  1123. return 0;
  1124. }
  1125. static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
  1126. uint32_t value)
  1127. {
  1128. struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
  1129. uint16_t diff;
  1130. static const int bypass_div[4] = { 1, 2, 4, 4 };
  1131. int div, mult;
  1132. if (addr == 0x00) { /* CTL_REG */
  1133. /* See omap_ulpd_pm_write() too */
  1134. diff = s->mode & value;
  1135. s->mode = value & 0x2fff;
  1136. if (diff & (0x3ff << 2)) {
  1137. if (value & (1 << 4)) { /* PLL_ENABLE */
  1138. div = ((value >> 5) & 3) + 1; /* PLL_DIV */
  1139. mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
  1140. } else {
  1141. div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
  1142. mult = 1;
  1143. }
  1144. omap_clk_setrate(s->dpll, div, mult);
  1145. }
  1146. /* Enter the desired mode. */
  1147. s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
  1148. /* Act as if the lock is restored. */
  1149. s->mode |= 2;
  1150. } else {
  1151. OMAP_BAD_REG(addr);
  1152. }
  1153. }
  1154. static CPUReadMemoryFunc * const omap_dpll_readfn[] = {
  1155. omap_badwidth_read16,
  1156. omap_dpll_read,
  1157. omap_badwidth_read16,
  1158. };
  1159. static CPUWriteMemoryFunc * const omap_dpll_writefn[] = {
  1160. omap_badwidth_write16,
  1161. omap_dpll_write,
  1162. omap_badwidth_write16,
  1163. };
  1164. static void omap_dpll_reset(struct dpll_ctl_s *s)
  1165. {
  1166. s->mode = 0x2002;
  1167. omap_clk_setrate(s->dpll, 1, 1);
  1168. }
  1169. static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base,
  1170. omap_clk clk)
  1171. {
  1172. int iomemtype = cpu_register_io_memory(omap_dpll_readfn,
  1173. omap_dpll_writefn, s, DEVICE_NATIVE_ENDIAN);
  1174. s->dpll = clk;
  1175. omap_dpll_reset(s);
  1176. cpu_register_physical_memory(base, 0x100, iomemtype);
  1177. }
  1178. /* MPU Clock/Reset/Power Mode Control */
  1179. static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr)
  1180. {
  1181. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1182. switch (addr) {
  1183. case 0x00: /* ARM_CKCTL */
  1184. return s->clkm.arm_ckctl;
  1185. case 0x04: /* ARM_IDLECT1 */
  1186. return s->clkm.arm_idlect1;
  1187. case 0x08: /* ARM_IDLECT2 */
  1188. return s->clkm.arm_idlect2;
  1189. case 0x0c: /* ARM_EWUPCT */
  1190. return s->clkm.arm_ewupct;
  1191. case 0x10: /* ARM_RSTCT1 */
  1192. return s->clkm.arm_rstct1;
  1193. case 0x14: /* ARM_RSTCT2 */
  1194. return s->clkm.arm_rstct2;
  1195. case 0x18: /* ARM_SYSST */
  1196. return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
  1197. case 0x1c: /* ARM_CKOUT1 */
  1198. return s->clkm.arm_ckout1;
  1199. case 0x20: /* ARM_CKOUT2 */
  1200. break;
  1201. }
  1202. OMAP_BAD_REG(addr);
  1203. return 0;
  1204. }
  1205. static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
  1206. uint16_t diff, uint16_t value)
  1207. {
  1208. omap_clk clk;
  1209. if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
  1210. if (value & (1 << 14))
  1211. /* Reserved */;
  1212. else {
  1213. clk = omap_findclk(s, "arminth_ck");
  1214. omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
  1215. }
  1216. }
  1217. if (diff & (1 << 12)) { /* ARM_TIMXO */
  1218. clk = omap_findclk(s, "armtim_ck");
  1219. if (value & (1 << 12))
  1220. omap_clk_reparent(clk, omap_findclk(s, "clkin"));
  1221. else
  1222. omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
  1223. }
  1224. /* XXX: en_dspck */
  1225. if (diff & (3 << 10)) { /* DSPMMUDIV */
  1226. clk = omap_findclk(s, "dspmmu_ck");
  1227. omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
  1228. }
  1229. if (diff & (3 << 8)) { /* TCDIV */
  1230. clk = omap_findclk(s, "tc_ck");
  1231. omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
  1232. }
  1233. if (diff & (3 << 6)) { /* DSPDIV */
  1234. clk = omap_findclk(s, "dsp_ck");
  1235. omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
  1236. }
  1237. if (diff & (3 << 4)) { /* ARMDIV */
  1238. clk = omap_findclk(s, "arm_ck");
  1239. omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
  1240. }
  1241. if (diff & (3 << 2)) { /* LCDDIV */
  1242. clk = omap_findclk(s, "lcd_ck");
  1243. omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
  1244. }
  1245. if (diff & (3 << 0)) { /* PERDIV */
  1246. clk = omap_findclk(s, "armper_ck");
  1247. omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
  1248. }
  1249. }
  1250. static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
  1251. uint16_t diff, uint16_t value)
  1252. {
  1253. omap_clk clk;
  1254. if (value & (1 << 11)) /* SETARM_IDLE */
  1255. cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
  1256. if (!(value & (1 << 10))) /* WKUP_MODE */
  1257. qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
  1258. #define SET_CANIDLE(clock, bit) \
  1259. if (diff & (1 << bit)) { \
  1260. clk = omap_findclk(s, clock); \
  1261. omap_clk_canidle(clk, (value >> bit) & 1); \
  1262. }
  1263. SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
  1264. SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
  1265. SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
  1266. SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
  1267. SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
  1268. SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
  1269. SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
  1270. SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
  1271. SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
  1272. SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
  1273. SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
  1274. SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
  1275. SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
  1276. SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
  1277. }
  1278. static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
  1279. uint16_t diff, uint16_t value)
  1280. {
  1281. omap_clk clk;
  1282. #define SET_ONOFF(clock, bit) \
  1283. if (diff & (1 << bit)) { \
  1284. clk = omap_findclk(s, clock); \
  1285. omap_clk_onoff(clk, (value >> bit) & 1); \
  1286. }
  1287. SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
  1288. SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
  1289. SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
  1290. SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
  1291. SET_ONOFF("lb_ck", 4) /* EN_LBCK */
  1292. SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
  1293. SET_ONOFF("mpui_ck", 6) /* EN_APICK */
  1294. SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
  1295. SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
  1296. SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
  1297. SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
  1298. }
  1299. static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
  1300. uint16_t diff, uint16_t value)
  1301. {
  1302. omap_clk clk;
  1303. if (diff & (3 << 4)) { /* TCLKOUT */
  1304. clk = omap_findclk(s, "tclk_out");
  1305. switch ((value >> 4) & 3) {
  1306. case 1:
  1307. omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
  1308. omap_clk_onoff(clk, 1);
  1309. break;
  1310. case 2:
  1311. omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
  1312. omap_clk_onoff(clk, 1);
  1313. break;
  1314. default:
  1315. omap_clk_onoff(clk, 0);
  1316. }
  1317. }
  1318. if (diff & (3 << 2)) { /* DCLKOUT */
  1319. clk = omap_findclk(s, "dclk_out");
  1320. switch ((value >> 2) & 3) {
  1321. case 0:
  1322. omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
  1323. break;
  1324. case 1:
  1325. omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
  1326. break;
  1327. case 2:
  1328. omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
  1329. break;
  1330. case 3:
  1331. omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
  1332. break;
  1333. }
  1334. }
  1335. if (diff & (3 << 0)) { /* ACLKOUT */
  1336. clk = omap_findclk(s, "aclk_out");
  1337. switch ((value >> 0) & 3) {
  1338. case 1:
  1339. omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
  1340. omap_clk_onoff(clk, 1);
  1341. break;
  1342. case 2:
  1343. omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
  1344. omap_clk_onoff(clk, 1);
  1345. break;
  1346. case 3:
  1347. omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
  1348. omap_clk_onoff(clk, 1);
  1349. break;
  1350. default:
  1351. omap_clk_onoff(clk, 0);
  1352. }
  1353. }
  1354. }
  1355. static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
  1356. uint32_t value)
  1357. {
  1358. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1359. uint16_t diff;
  1360. omap_clk clk;
  1361. static const char *clkschemename[8] = {
  1362. "fully synchronous", "fully asynchronous", "synchronous scalable",
  1363. "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
  1364. };
  1365. switch (addr) {
  1366. case 0x00: /* ARM_CKCTL */
  1367. diff = s->clkm.arm_ckctl ^ value;
  1368. s->clkm.arm_ckctl = value & 0x7fff;
  1369. omap_clkm_ckctl_update(s, diff, value);
  1370. return;
  1371. case 0x04: /* ARM_IDLECT1 */
  1372. diff = s->clkm.arm_idlect1 ^ value;
  1373. s->clkm.arm_idlect1 = value & 0x0fff;
  1374. omap_clkm_idlect1_update(s, diff, value);
  1375. return;
  1376. case 0x08: /* ARM_IDLECT2 */
  1377. diff = s->clkm.arm_idlect2 ^ value;
  1378. s->clkm.arm_idlect2 = value & 0x07ff;
  1379. omap_clkm_idlect2_update(s, diff, value);
  1380. return;
  1381. case 0x0c: /* ARM_EWUPCT */
  1382. s->clkm.arm_ewupct = value & 0x003f;
  1383. return;
  1384. case 0x10: /* ARM_RSTCT1 */
  1385. diff = s->clkm.arm_rstct1 ^ value;
  1386. s->clkm.arm_rstct1 = value & 0x0007;
  1387. if (value & 9) {
  1388. qemu_system_reset_request();
  1389. s->clkm.cold_start = 0xa;
  1390. }
  1391. if (diff & ~value & 4) { /* DSP_RST */
  1392. omap_mpui_reset(s);
  1393. omap_tipb_bridge_reset(s->private_tipb);
  1394. omap_tipb_bridge_reset(s->public_tipb);
  1395. }
  1396. if (diff & 2) { /* DSP_EN */
  1397. clk = omap_findclk(s, "dsp_ck");
  1398. omap_clk_canidle(clk, (~value >> 1) & 1);
  1399. }
  1400. return;
  1401. case 0x14: /* ARM_RSTCT2 */
  1402. s->clkm.arm_rstct2 = value & 0x0001;
  1403. return;
  1404. case 0x18: /* ARM_SYSST */
  1405. if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
  1406. s->clkm.clocking_scheme = (value >> 11) & 7;
  1407. printf("%s: clocking scheme set to %s\n", __FUNCTION__,
  1408. clkschemename[s->clkm.clocking_scheme]);
  1409. }
  1410. s->clkm.cold_start &= value & 0x3f;
  1411. return;
  1412. case 0x1c: /* ARM_CKOUT1 */
  1413. diff = s->clkm.arm_ckout1 ^ value;
  1414. s->clkm.arm_ckout1 = value & 0x003f;
  1415. omap_clkm_ckout1_update(s, diff, value);
  1416. return;
  1417. case 0x20: /* ARM_CKOUT2 */
  1418. default:
  1419. OMAP_BAD_REG(addr);
  1420. }
  1421. }
  1422. static CPUReadMemoryFunc * const omap_clkm_readfn[] = {
  1423. omap_badwidth_read16,
  1424. omap_clkm_read,
  1425. omap_badwidth_read16,
  1426. };
  1427. static CPUWriteMemoryFunc * const omap_clkm_writefn[] = {
  1428. omap_badwidth_write16,
  1429. omap_clkm_write,
  1430. omap_badwidth_write16,
  1431. };
  1432. static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr)
  1433. {
  1434. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1435. switch (addr) {
  1436. case 0x04: /* DSP_IDLECT1 */
  1437. return s->clkm.dsp_idlect1;
  1438. case 0x08: /* DSP_IDLECT2 */
  1439. return s->clkm.dsp_idlect2;
  1440. case 0x14: /* DSP_RSTCT2 */
  1441. return s->clkm.dsp_rstct2;
  1442. case 0x18: /* DSP_SYSST */
  1443. return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
  1444. (s->env->halted << 6); /* Quite useless... */
  1445. }
  1446. OMAP_BAD_REG(addr);
  1447. return 0;
  1448. }
  1449. static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
  1450. uint16_t diff, uint16_t value)
  1451. {
  1452. omap_clk clk;
  1453. SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
  1454. }
  1455. static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
  1456. uint16_t diff, uint16_t value)
  1457. {
  1458. omap_clk clk;
  1459. SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
  1460. }
  1461. static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
  1462. uint32_t value)
  1463. {
  1464. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1465. uint16_t diff;
  1466. switch (addr) {
  1467. case 0x04: /* DSP_IDLECT1 */
  1468. diff = s->clkm.dsp_idlect1 ^ value;
  1469. s->clkm.dsp_idlect1 = value & 0x01f7;
  1470. omap_clkdsp_idlect1_update(s, diff, value);
  1471. break;
  1472. case 0x08: /* DSP_IDLECT2 */
  1473. s->clkm.dsp_idlect2 = value & 0x0037;
  1474. diff = s->clkm.dsp_idlect1 ^ value;
  1475. omap_clkdsp_idlect2_update(s, diff, value);
  1476. break;
  1477. case 0x14: /* DSP_RSTCT2 */
  1478. s->clkm.dsp_rstct2 = value & 0x0001;
  1479. break;
  1480. case 0x18: /* DSP_SYSST */
  1481. s->clkm.cold_start &= value & 0x3f;
  1482. break;
  1483. default:
  1484. OMAP_BAD_REG(addr);
  1485. }
  1486. }
  1487. static CPUReadMemoryFunc * const omap_clkdsp_readfn[] = {
  1488. omap_badwidth_read16,
  1489. omap_clkdsp_read,
  1490. omap_badwidth_read16,
  1491. };
  1492. static CPUWriteMemoryFunc * const omap_clkdsp_writefn[] = {
  1493. omap_badwidth_write16,
  1494. omap_clkdsp_write,
  1495. omap_badwidth_write16,
  1496. };
  1497. static void omap_clkm_reset(struct omap_mpu_state_s *s)
  1498. {
  1499. if (s->wdt && s->wdt->reset)
  1500. s->clkm.cold_start = 0x6;
  1501. s->clkm.clocking_scheme = 0;
  1502. omap_clkm_ckctl_update(s, ~0, 0x3000);
  1503. s->clkm.arm_ckctl = 0x3000;
  1504. omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
  1505. s->clkm.arm_idlect1 = 0x0400;
  1506. omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
  1507. s->clkm.arm_idlect2 = 0x0100;
  1508. s->clkm.arm_ewupct = 0x003f;
  1509. s->clkm.arm_rstct1 = 0x0000;
  1510. s->clkm.arm_rstct2 = 0x0000;
  1511. s->clkm.arm_ckout1 = 0x0015;
  1512. s->clkm.dpll1_mode = 0x2002;
  1513. omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
  1514. s->clkm.dsp_idlect1 = 0x0040;
  1515. omap_clkdsp_idlect2_update(s, ~0, 0x0000);
  1516. s->clkm.dsp_idlect2 = 0x0000;
  1517. s->clkm.dsp_rstct2 = 0x0000;
  1518. }
  1519. static void omap_clkm_init(target_phys_addr_t mpu_base,
  1520. target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
  1521. {
  1522. int iomemtype[2] = {
  1523. cpu_register_io_memory(omap_clkm_readfn, omap_clkm_writefn, s,
  1524. DEVICE_NATIVE_ENDIAN),
  1525. cpu_register_io_memory(omap_clkdsp_readfn, omap_clkdsp_writefn, s,
  1526. DEVICE_NATIVE_ENDIAN),
  1527. };
  1528. s->clkm.arm_idlect1 = 0x03ff;
  1529. s->clkm.arm_idlect2 = 0x0100;
  1530. s->clkm.dsp_idlect1 = 0x0002;
  1531. omap_clkm_reset(s);
  1532. s->clkm.cold_start = 0x3a;
  1533. cpu_register_physical_memory(mpu_base, 0x100, iomemtype[0]);
  1534. cpu_register_physical_memory(dsp_base, 0x1000, iomemtype[1]);
  1535. }
  1536. /* MPU I/O */
  1537. struct omap_mpuio_s {
  1538. qemu_irq irq;
  1539. qemu_irq kbd_irq;
  1540. qemu_irq *in;
  1541. qemu_irq handler[16];
  1542. qemu_irq wakeup;
  1543. uint16_t inputs;
  1544. uint16_t outputs;
  1545. uint16_t dir;
  1546. uint16_t edge;
  1547. uint16_t mask;
  1548. uint16_t ints;
  1549. uint16_t debounce;
  1550. uint16_t latch;
  1551. uint8_t event;
  1552. uint8_t buttons[5];
  1553. uint8_t row_latch;
  1554. uint8_t cols;
  1555. int kbd_mask;
  1556. int clk;
  1557. };
  1558. static void omap_mpuio_set(void *opaque, int line, int level)
  1559. {
  1560. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  1561. uint16_t prev = s->inputs;
  1562. if (level)
  1563. s->inputs |= 1 << line;
  1564. else
  1565. s->inputs &= ~(1 << line);
  1566. if (((1 << line) & s->dir & ~s->mask) && s->clk) {
  1567. if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
  1568. s->ints |= 1 << line;
  1569. qemu_irq_raise(s->irq);
  1570. /* TODO: wakeup */
  1571. }
  1572. if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
  1573. (s->event >> 1) == line) /* PIN_SELECT */
  1574. s->latch = s->inputs;
  1575. }
  1576. }
  1577. static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
  1578. {
  1579. int i;
  1580. uint8_t *row, rows = 0, cols = ~s->cols;
  1581. for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
  1582. if (*row & cols)
  1583. rows |= i;
  1584. qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
  1585. s->row_latch = ~rows;
  1586. }
  1587. static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr)
  1588. {
  1589. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  1590. int offset = addr & OMAP_MPUI_REG_MASK;
  1591. uint16_t ret;
  1592. switch (offset) {
  1593. case 0x00: /* INPUT_LATCH */
  1594. return s->inputs;
  1595. case 0x04: /* OUTPUT_REG */
  1596. return s->outputs;
  1597. case 0x08: /* IO_CNTL */
  1598. return s->dir;
  1599. case 0x10: /* KBR_LATCH */
  1600. return s->row_latch;
  1601. case 0x14: /* KBC_REG */
  1602. return s->cols;
  1603. case 0x18: /* GPIO_EVENT_MODE_REG */
  1604. return s->event;
  1605. case 0x1c: /* GPIO_INT_EDGE_REG */
  1606. return s->edge;
  1607. case 0x20: /* KBD_INT */
  1608. return (~s->row_latch & 0x1f) && !s->kbd_mask;
  1609. case 0x24: /* GPIO_INT */
  1610. ret = s->ints;
  1611. s->ints &= s->mask;
  1612. if (ret)
  1613. qemu_irq_lower(s->irq);
  1614. return ret;
  1615. case 0x28: /* KBD_MASKIT */
  1616. return s->kbd_mask;
  1617. case 0x2c: /* GPIO_MASKIT */
  1618. return s->mask;
  1619. case 0x30: /* GPIO_DEBOUNCING_REG */
  1620. return s->debounce;
  1621. case 0x34: /* GPIO_LATCH_REG */
  1622. return s->latch;
  1623. }
  1624. OMAP_BAD_REG(addr);
  1625. return 0;
  1626. }
  1627. static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
  1628. uint32_t value)
  1629. {
  1630. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  1631. int offset = addr & OMAP_MPUI_REG_MASK;
  1632. uint16_t diff;
  1633. int ln;
  1634. switch (offset) {
  1635. case 0x04: /* OUTPUT_REG */
  1636. diff = (s->outputs ^ value) & ~s->dir;
  1637. s->outputs = value;
  1638. while ((ln = ffs(diff))) {
  1639. ln --;
  1640. if (s->handler[ln])
  1641. qemu_set_irq(s->handler[ln], (value >> ln) & 1);
  1642. diff &= ~(1 << ln);
  1643. }
  1644. break;
  1645. case 0x08: /* IO_CNTL */
  1646. diff = s->outputs & (s->dir ^ value);
  1647. s->dir = value;
  1648. value = s->outputs & ~s->dir;
  1649. while ((ln = ffs(diff))) {
  1650. ln --;
  1651. if (s->handler[ln])
  1652. qemu_set_irq(s->handler[ln], (value >> ln) & 1);
  1653. diff &= ~(1 << ln);
  1654. }
  1655. break;
  1656. case 0x14: /* KBC_REG */
  1657. s->cols = value;
  1658. omap_mpuio_kbd_update(s);
  1659. break;
  1660. case 0x18: /* GPIO_EVENT_MODE_REG */
  1661. s->event = value & 0x1f;
  1662. break;
  1663. case 0x1c: /* GPIO_INT_EDGE_REG */
  1664. s->edge = value;
  1665. break;
  1666. case 0x28: /* KBD_MASKIT */
  1667. s->kbd_mask = value & 1;
  1668. omap_mpuio_kbd_update(s);
  1669. break;
  1670. case 0x2c: /* GPIO_MASKIT */
  1671. s->mask = value;
  1672. break;
  1673. case 0x30: /* GPIO_DEBOUNCING_REG */
  1674. s->debounce = value & 0x1ff;
  1675. break;
  1676. case 0x00: /* INPUT_LATCH */
  1677. case 0x10: /* KBR_LATCH */
  1678. case 0x20: /* KBD_INT */
  1679. case 0x24: /* GPIO_INT */
  1680. case 0x34: /* GPIO_LATCH_REG */
  1681. OMAP_RO_REG(addr);
  1682. return;
  1683. default:
  1684. OMAP_BAD_REG(addr);
  1685. return;
  1686. }
  1687. }
  1688. static CPUReadMemoryFunc * const omap_mpuio_readfn[] = {
  1689. omap_badwidth_read16,
  1690. omap_mpuio_read,
  1691. omap_badwidth_read16,
  1692. };
  1693. static CPUWriteMemoryFunc * const omap_mpuio_writefn[] = {
  1694. omap_badwidth_write16,
  1695. omap_mpuio_write,
  1696. omap_badwidth_write16,
  1697. };
  1698. static void omap_mpuio_reset(struct omap_mpuio_s *s)
  1699. {
  1700. s->inputs = 0;
  1701. s->outputs = 0;
  1702. s->dir = ~0;
  1703. s->event = 0;
  1704. s->edge = 0;
  1705. s->kbd_mask = 0;
  1706. s->mask = 0;
  1707. s->debounce = 0;
  1708. s->latch = 0;
  1709. s->ints = 0;
  1710. s->row_latch = 0x1f;
  1711. s->clk = 1;
  1712. }
  1713. static void omap_mpuio_onoff(void *opaque, int line, int on)
  1714. {
  1715. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  1716. s->clk = on;
  1717. if (on)
  1718. omap_mpuio_kbd_update(s);
  1719. }
  1720. struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
  1721. qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
  1722. omap_clk clk)
  1723. {
  1724. int iomemtype;
  1725. struct omap_mpuio_s *s = (struct omap_mpuio_s *)
  1726. qemu_mallocz(sizeof(struct omap_mpuio_s));
  1727. s->irq = gpio_int;
  1728. s->kbd_irq = kbd_int;
  1729. s->wakeup = wakeup;
  1730. s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
  1731. omap_mpuio_reset(s);
  1732. iomemtype = cpu_register_io_memory(omap_mpuio_readfn,
  1733. omap_mpuio_writefn, s, DEVICE_NATIVE_ENDIAN);
  1734. cpu_register_physical_memory(base, 0x800, iomemtype);
  1735. omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
  1736. return s;
  1737. }
  1738. qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
  1739. {
  1740. return s->in;
  1741. }
  1742. void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
  1743. {
  1744. if (line >= 16 || line < 0)
  1745. hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
  1746. s->handler[line] = handler;
  1747. }
  1748. void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
  1749. {
  1750. if (row >= 5 || row < 0)
  1751. hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
  1752. if (down)
  1753. s->buttons[row] |= 1 << col;
  1754. else
  1755. s->buttons[row] &= ~(1 << col);
  1756. omap_mpuio_kbd_update(s);
  1757. }
  1758. /* MicroWire Interface */
  1759. struct omap_uwire_s {
  1760. qemu_irq txirq;
  1761. qemu_irq rxirq;
  1762. qemu_irq txdrq;
  1763. uint16_t txbuf;
  1764. uint16_t rxbuf;
  1765. uint16_t control;
  1766. uint16_t setup[5];
  1767. uWireSlave *chip[4];
  1768. };
  1769. static void omap_uwire_transfer_start(struct omap_uwire_s *s)
  1770. {
  1771. int chipselect = (s->control >> 10) & 3; /* INDEX */
  1772. uWireSlave *slave = s->chip[chipselect];
  1773. if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
  1774. if (s->control & (1 << 12)) /* CS_CMD */
  1775. if (slave && slave->send)
  1776. slave->send(slave->opaque,
  1777. s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
  1778. s->control &= ~(1 << 14); /* CSRB */
  1779. /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
  1780. * a DRQ. When is the level IRQ supposed to be reset? */
  1781. }
  1782. if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
  1783. if (s->control & (1 << 12)) /* CS_CMD */
  1784. if (slave && slave->receive)
  1785. s->rxbuf = slave->receive(slave->opaque);
  1786. s->control |= 1 << 15; /* RDRB */
  1787. /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
  1788. * a DRQ. When is the level IRQ supposed to be reset? */
  1789. }
  1790. }
  1791. static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr)
  1792. {
  1793. struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
  1794. int offset = addr & OMAP_MPUI_REG_MASK;
  1795. switch (offset) {
  1796. case 0x00: /* RDR */
  1797. s->control &= ~(1 << 15); /* RDRB */
  1798. return s->rxbuf;
  1799. case 0x04: /* CSR */
  1800. return s->control;
  1801. case 0x08: /* SR1 */
  1802. return s->setup[0];
  1803. case 0x0c: /* SR2 */
  1804. return s->setup[1];
  1805. case 0x10: /* SR3 */
  1806. return s->setup[2];
  1807. case 0x14: /* SR4 */
  1808. return s->setup[3];
  1809. case 0x18: /* SR5 */
  1810. return s->setup[4];
  1811. }
  1812. OMAP_BAD_REG(addr);
  1813. return 0;
  1814. }
  1815. static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
  1816. uint32_t value)
  1817. {
  1818. struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
  1819. int offset = addr & OMAP_MPUI_REG_MASK;
  1820. switch (offset) {
  1821. case 0x00: /* TDR */
  1822. s->txbuf = value; /* TD */
  1823. if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
  1824. ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
  1825. (s->control & (1 << 12)))) { /* CS_CMD */
  1826. s->control |= 1 << 14; /* CSRB */
  1827. omap_uwire_transfer_start(s);
  1828. }
  1829. break;
  1830. case 0x04: /* CSR */
  1831. s->control = value & 0x1fff;
  1832. if (value & (1 << 13)) /* START */
  1833. omap_uwire_transfer_start(s);
  1834. break;
  1835. case 0x08: /* SR1 */
  1836. s->setup[0] = value & 0x003f;
  1837. break;
  1838. case 0x0c: /* SR2 */
  1839. s->setup[1] = value & 0x0fc0;
  1840. break;
  1841. case 0x10: /* SR3 */
  1842. s->setup[2] = value & 0x0003;
  1843. break;
  1844. case 0x14: /* SR4 */
  1845. s->setup[3] = value & 0x0001;
  1846. break;
  1847. case 0x18: /* SR5 */
  1848. s->setup[4] = value & 0x000f;
  1849. break;
  1850. default:
  1851. OMAP_BAD_REG(addr);
  1852. return;
  1853. }
  1854. }
  1855. static CPUReadMemoryFunc * const omap_uwire_readfn[] = {
  1856. omap_badwidth_read16,
  1857. omap_uwire_read,
  1858. omap_badwidth_read16,
  1859. };
  1860. static CPUWriteMemoryFunc * const omap_uwire_writefn[] = {
  1861. omap_badwidth_write16,
  1862. omap_uwire_write,
  1863. omap_badwidth_write16,
  1864. };
  1865. static void omap_uwire_reset(struct omap_uwire_s *s)
  1866. {
  1867. s->control = 0;
  1868. s->setup[0] = 0;
  1869. s->setup[1] = 0;
  1870. s->setup[2] = 0;
  1871. s->setup[3] = 0;
  1872. s->setup[4] = 0;
  1873. }
  1874. struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
  1875. qemu_irq *irq, qemu_irq dma, omap_clk clk)
  1876. {
  1877. int iomemtype;
  1878. struct omap_uwire_s *s = (struct omap_uwire_s *)
  1879. qemu_mallocz(sizeof(struct omap_uwire_s));
  1880. s->txirq = irq[0];
  1881. s->rxirq = irq[1];
  1882. s->txdrq = dma;
  1883. omap_uwire_reset(s);
  1884. iomemtype = cpu_register_io_memory(omap_uwire_readfn,
  1885. omap_uwire_writefn, s, DEVICE_NATIVE_ENDIAN);
  1886. cpu_register_physical_memory(base, 0x800, iomemtype);
  1887. return s;
  1888. }
  1889. void omap_uwire_attach(struct omap_uwire_s *s,
  1890. uWireSlave *slave, int chipselect)
  1891. {
  1892. if (chipselect < 0 || chipselect > 3) {
  1893. fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
  1894. exit(-1);
  1895. }
  1896. s->chip[chipselect] = slave;
  1897. }
  1898. /* Pseudonoise Pulse-Width Light Modulator */
  1899. static void omap_pwl_update(struct omap_mpu_state_s *s)
  1900. {
  1901. int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0;
  1902. if (output != s->pwl.output) {
  1903. s->pwl.output = output;
  1904. printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
  1905. }
  1906. }
  1907. static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr)
  1908. {
  1909. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1910. int offset = addr & OMAP_MPUI_REG_MASK;
  1911. switch (offset) {
  1912. case 0x00: /* PWL_LEVEL */
  1913. return s->pwl.level;
  1914. case 0x04: /* PWL_CTRL */
  1915. return s->pwl.enable;
  1916. }
  1917. OMAP_BAD_REG(addr);
  1918. return 0;
  1919. }
  1920. static void omap_pwl_write(void *opaque, target_phys_addr_t addr,
  1921. uint32_t value)
  1922. {
  1923. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1924. int offset = addr & OMAP_MPUI_REG_MASK;
  1925. switch (offset) {
  1926. case 0x00: /* PWL_LEVEL */
  1927. s->pwl.level = value;
  1928. omap_pwl_update(s);
  1929. break;
  1930. case 0x04: /* PWL_CTRL */
  1931. s->pwl.enable = value & 1;
  1932. omap_pwl_update(s);
  1933. break;
  1934. default:
  1935. OMAP_BAD_REG(addr);
  1936. return;
  1937. }
  1938. }
  1939. static CPUReadMemoryFunc * const omap_pwl_readfn[] = {
  1940. omap_pwl_read,
  1941. omap_badwidth_read8,
  1942. omap_badwidth_read8,
  1943. };
  1944. static CPUWriteMemoryFunc * const omap_pwl_writefn[] = {
  1945. omap_pwl_write,
  1946. omap_badwidth_write8,
  1947. omap_badwidth_write8,
  1948. };
  1949. static void omap_pwl_reset(struct omap_mpu_state_s *s)
  1950. {
  1951. s->pwl.output = 0;
  1952. s->pwl.level = 0;
  1953. s->pwl.enable = 0;
  1954. s->pwl.clk = 1;
  1955. omap_pwl_update(s);
  1956. }
  1957. static void omap_pwl_clk_update(void *opaque, int line, int on)
  1958. {
  1959. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1960. s->pwl.clk = on;
  1961. omap_pwl_update(s);
  1962. }
  1963. static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
  1964. omap_clk clk)
  1965. {
  1966. int iomemtype;
  1967. omap_pwl_reset(s);
  1968. iomemtype = cpu_register_io_memory(omap_pwl_readfn,
  1969. omap_pwl_writefn, s, DEVICE_NATIVE_ENDIAN);
  1970. cpu_register_physical_memory(base, 0x800, iomemtype);
  1971. omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
  1972. }
  1973. /* Pulse-Width Tone module */
  1974. static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr)
  1975. {
  1976. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1977. int offset = addr & OMAP_MPUI_REG_MASK;
  1978. switch (offset) {
  1979. case 0x00: /* FRC */
  1980. return s->pwt.frc;
  1981. case 0x04: /* VCR */
  1982. return s->pwt.vrc;
  1983. case 0x08: /* GCR */
  1984. return s->pwt.gcr;
  1985. }
  1986. OMAP_BAD_REG(addr);
  1987. return 0;
  1988. }
  1989. static void omap_pwt_write(void *opaque, target_phys_addr_t addr,
  1990. uint32_t value)
  1991. {
  1992. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1993. int offset = addr & OMAP_MPUI_REG_MASK;
  1994. switch (offset) {
  1995. case 0x00: /* FRC */
  1996. s->pwt.frc = value & 0x3f;
  1997. break;
  1998. case 0x04: /* VRC */
  1999. if ((value ^ s->pwt.vrc) & 1) {
  2000. if (value & 1)
  2001. printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
  2002. /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
  2003. ((omap_clk_getrate(s->pwt.clk) >> 3) /
  2004. /* Pre-multiplexer divider */
  2005. ((s->pwt.gcr & 2) ? 1 : 154) /
  2006. /* Octave multiplexer */
  2007. (2 << (value & 3)) *
  2008. /* 101/107 divider */
  2009. ((value & (1 << 2)) ? 101 : 107) *
  2010. /* 49/55 divider */
  2011. ((value & (1 << 3)) ? 49 : 55) *
  2012. /* 50/63 divider */
  2013. ((value & (1 << 4)) ? 50 : 63) *
  2014. /* 80/127 divider */
  2015. ((value & (1 << 5)) ? 80 : 127) /
  2016. (107 * 55 * 63 * 127)));
  2017. else
  2018. printf("%s: silence!\n", __FUNCTION__);
  2019. }
  2020. s->pwt.vrc = value & 0x7f;
  2021. break;
  2022. case 0x08: /* GCR */
  2023. s->pwt.gcr = value & 3;
  2024. break;
  2025. default:
  2026. OMAP_BAD_REG(addr);
  2027. return;
  2028. }
  2029. }
  2030. static CPUReadMemoryFunc * const omap_pwt_readfn[] = {
  2031. omap_pwt_read,
  2032. omap_badwidth_read8,
  2033. omap_badwidth_read8,
  2034. };
  2035. static CPUWriteMemoryFunc * const omap_pwt_writefn[] = {
  2036. omap_pwt_write,
  2037. omap_badwidth_write8,
  2038. omap_badwidth_write8,
  2039. };
  2040. static void omap_pwt_reset(struct omap_mpu_state_s *s)
  2041. {
  2042. s->pwt.frc = 0;
  2043. s->pwt.vrc = 0;
  2044. s->pwt.gcr = 0;
  2045. }
  2046. static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
  2047. omap_clk clk)
  2048. {
  2049. int iomemtype;
  2050. s->pwt.clk = clk;
  2051. omap_pwt_reset(s);
  2052. iomemtype = cpu_register_io_memory(omap_pwt_readfn,
  2053. omap_pwt_writefn, s, DEVICE_NATIVE_ENDIAN);
  2054. cpu_register_physical_memory(base, 0x800, iomemtype);
  2055. }
  2056. /* Real-time Clock module */
  2057. struct omap_rtc_s {
  2058. qemu_irq irq;
  2059. qemu_irq alarm;
  2060. QEMUTimer *clk;
  2061. uint8_t interrupts;
  2062. uint8_t status;
  2063. int16_t comp_reg;
  2064. int running;
  2065. int pm_am;
  2066. int auto_comp;
  2067. int round;
  2068. struct tm alarm_tm;
  2069. time_t alarm_ti;
  2070. struct tm current_tm;
  2071. time_t ti;
  2072. uint64_t tick;
  2073. };
  2074. static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
  2075. {
  2076. /* s->alarm is level-triggered */
  2077. qemu_set_irq(s->alarm, (s->status >> 6) & 1);
  2078. }
  2079. static void omap_rtc_alarm_update(struct omap_rtc_s *s)
  2080. {
  2081. s->alarm_ti = mktimegm(&s->alarm_tm);
  2082. if (s->alarm_ti == -1)
  2083. printf("%s: conversion failed\n", __FUNCTION__);
  2084. }
  2085. static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr)
  2086. {
  2087. struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
  2088. int offset = addr & OMAP_MPUI_REG_MASK;
  2089. uint8_t i;
  2090. switch (offset) {
  2091. case 0x00: /* SECONDS_REG */
  2092. return to_bcd(s->current_tm.tm_sec);
  2093. case 0x04: /* MINUTES_REG */
  2094. return to_bcd(s->current_tm.tm_min);
  2095. case 0x08: /* HOURS_REG */
  2096. if (s->pm_am)
  2097. return ((s->current_tm.tm_hour > 11) << 7) |
  2098. to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
  2099. else
  2100. return to_bcd(s->current_tm.tm_hour);
  2101. case 0x0c: /* DAYS_REG */
  2102. return to_bcd(s->current_tm.tm_mday);
  2103. case 0x10: /* MONTHS_REG */
  2104. return to_bcd(s->current_tm.tm_mon + 1);
  2105. case 0x14: /* YEARS_REG */
  2106. return to_bcd(s->current_tm.tm_year % 100);
  2107. case 0x18: /* WEEK_REG */
  2108. return s->current_tm.tm_wday;
  2109. case 0x20: /* ALARM_SECONDS_REG */
  2110. return to_bcd(s->alarm_tm.tm_sec);
  2111. case 0x24: /* ALARM_MINUTES_REG */
  2112. return to_bcd(s->alarm_tm.tm_min);
  2113. case 0x28: /* ALARM_HOURS_REG */
  2114. if (s->pm_am)
  2115. return ((s->alarm_tm.tm_hour > 11) << 7) |
  2116. to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
  2117. else
  2118. return to_bcd(s->alarm_tm.tm_hour);
  2119. case 0x2c: /* ALARM_DAYS_REG */
  2120. return to_bcd(s->alarm_tm.tm_mday);
  2121. case 0x30: /* ALARM_MONTHS_REG */
  2122. return to_bcd(s->alarm_tm.tm_mon + 1);
  2123. case 0x34: /* ALARM_YEARS_REG */
  2124. return to_bcd(s->alarm_tm.tm_year % 100);
  2125. case 0x40: /* RTC_CTRL_REG */
  2126. return (s->pm_am << 3) | (s->auto_comp << 2) |
  2127. (s->round << 1) | s->running;
  2128. case 0x44: /* RTC_STATUS_REG */
  2129. i = s->status;
  2130. s->status &= ~0x3d;
  2131. return i;
  2132. case 0x48: /* RTC_INTERRUPTS_REG */
  2133. return s->interrupts;
  2134. case 0x4c: /* RTC_COMP_LSB_REG */
  2135. return ((uint16_t) s->comp_reg) & 0xff;
  2136. case 0x50: /* RTC_COMP_MSB_REG */
  2137. return ((uint16_t) s->comp_reg) >> 8;
  2138. }
  2139. OMAP_BAD_REG(addr);
  2140. return 0;
  2141. }
  2142. static void omap_rtc_write(void *opaque, target_phys_addr_t addr,
  2143. uint32_t value)
  2144. {
  2145. struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
  2146. int offset = addr & OMAP_MPUI_REG_MASK;
  2147. struct tm new_tm;
  2148. time_t ti[2];
  2149. switch (offset) {
  2150. case 0x00: /* SECONDS_REG */
  2151. #ifdef ALMDEBUG
  2152. printf("RTC SEC_REG <-- %02x\n", value);
  2153. #endif
  2154. s->ti -= s->current_tm.tm_sec;
  2155. s->ti += from_bcd(value);
  2156. return;
  2157. case 0x04: /* MINUTES_REG */
  2158. #ifdef ALMDEBUG
  2159. printf("RTC MIN_REG <-- %02x\n", value);
  2160. #endif
  2161. s->ti -= s->current_tm.tm_min * 60;
  2162. s->ti += from_bcd(value) * 60;
  2163. return;
  2164. case 0x08: /* HOURS_REG */
  2165. #ifdef ALMDEBUG
  2166. printf("RTC HRS_REG <-- %02x\n", value);
  2167. #endif
  2168. s->ti -= s->current_tm.tm_hour * 3600;
  2169. if (s->pm_am) {
  2170. s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
  2171. s->ti += ((value >> 7) & 1) * 43200;
  2172. } else
  2173. s->ti += from_bcd(value & 0x3f) * 3600;
  2174. return;
  2175. case 0x0c: /* DAYS_REG */
  2176. #ifdef ALMDEBUG
  2177. printf("RTC DAY_REG <-- %02x\n", value);
  2178. #endif
  2179. s->ti -= s->current_tm.tm_mday * 86400;
  2180. s->ti += from_bcd(value) * 86400;
  2181. return;
  2182. case 0x10: /* MONTHS_REG */
  2183. #ifdef ALMDEBUG
  2184. printf("RTC MTH_REG <-- %02x\n", value);
  2185. #endif
  2186. memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
  2187. new_tm.tm_mon = from_bcd(value);
  2188. ti[0] = mktimegm(&s->current_tm);
  2189. ti[1] = mktimegm(&new_tm);
  2190. if (ti[0] != -1 && ti[1] != -1) {
  2191. s->ti -= ti[0];
  2192. s->ti += ti[1];
  2193. } else {
  2194. /* A less accurate version */
  2195. s->ti -= s->current_tm.tm_mon * 2592000;
  2196. s->ti += from_bcd(value) * 2592000;
  2197. }
  2198. return;
  2199. case 0x14: /* YEARS_REG */
  2200. #ifdef ALMDEBUG
  2201. printf("RTC YRS_REG <-- %02x\n", value);
  2202. #endif
  2203. memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
  2204. new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
  2205. ti[0] = mktimegm(&s->current_tm);
  2206. ti[1] = mktimegm(&new_tm);
  2207. if (ti[0] != -1 && ti[1] != -1) {
  2208. s->ti -= ti[0];
  2209. s->ti += ti[1];
  2210. } else {
  2211. /* A less accurate version */
  2212. s->ti -= (s->current_tm.tm_year % 100) * 31536000;
  2213. s->ti += from_bcd(value) * 31536000;
  2214. }
  2215. return;
  2216. case 0x18: /* WEEK_REG */
  2217. return; /* Ignored */
  2218. case 0x20: /* ALARM_SECONDS_REG */
  2219. #ifdef ALMDEBUG
  2220. printf("ALM SEC_REG <-- %02x\n", value);
  2221. #endif
  2222. s->alarm_tm.tm_sec = from_bcd(value);
  2223. omap_rtc_alarm_update(s);
  2224. return;
  2225. case 0x24: /* ALARM_MINUTES_REG */
  2226. #ifdef ALMDEBUG
  2227. printf("ALM MIN_REG <-- %02x\n", value);
  2228. #endif
  2229. s->alarm_tm.tm_min = from_bcd(value);
  2230. omap_rtc_alarm_update(s);
  2231. return;
  2232. case 0x28: /* ALARM_HOURS_REG */
  2233. #ifdef ALMDEBUG
  2234. printf("ALM HRS_REG <-- %02x\n", value);
  2235. #endif
  2236. if (s->pm_am)
  2237. s->alarm_tm.tm_hour =
  2238. ((from_bcd(value & 0x3f)) % 12) +
  2239. ((value >> 7) & 1) * 12;
  2240. else
  2241. s->alarm_tm.tm_hour = from_bcd(value);
  2242. omap_rtc_alarm_update(s);
  2243. return;
  2244. case 0x2c: /* ALARM_DAYS_REG */
  2245. #ifdef ALMDEBUG
  2246. printf("ALM DAY_REG <-- %02x\n", value);
  2247. #endif
  2248. s->alarm_tm.tm_mday = from_bcd(value);
  2249. omap_rtc_alarm_update(s);
  2250. return;
  2251. case 0x30: /* ALARM_MONTHS_REG */
  2252. #ifdef ALMDEBUG
  2253. printf("ALM MON_REG <-- %02x\n", value);
  2254. #endif
  2255. s->alarm_tm.tm_mon = from_bcd(value);
  2256. omap_rtc_alarm_update(s);
  2257. return;
  2258. case 0x34: /* ALARM_YEARS_REG */
  2259. #ifdef ALMDEBUG
  2260. printf("ALM YRS_REG <-- %02x\n", value);
  2261. #endif
  2262. s->alarm_tm.tm_year = from_bcd(value);
  2263. omap_rtc_alarm_update(s);
  2264. return;
  2265. case 0x40: /* RTC_CTRL_REG */
  2266. #ifdef ALMDEBUG
  2267. printf("RTC CONTROL <-- %02x\n", value);
  2268. #endif
  2269. s->pm_am = (value >> 3) & 1;
  2270. s->auto_comp = (value >> 2) & 1;
  2271. s->round = (value >> 1) & 1;
  2272. s->running = value & 1;
  2273. s->status &= 0xfd;
  2274. s->status |= s->running << 1;
  2275. return;
  2276. case 0x44: /* RTC_STATUS_REG */
  2277. #ifdef ALMDEBUG
  2278. printf("RTC STATUSL <-- %02x\n", value);
  2279. #endif
  2280. s->status &= ~((value & 0xc0) ^ 0x80);
  2281. omap_rtc_interrupts_update(s);
  2282. return;
  2283. case 0x48: /* RTC_INTERRUPTS_REG */
  2284. #ifdef ALMDEBUG
  2285. printf("RTC INTRS <-- %02x\n", value);
  2286. #endif
  2287. s->interrupts = value;
  2288. return;
  2289. case 0x4c: /* RTC_COMP_LSB_REG */
  2290. #ifdef ALMDEBUG
  2291. printf("RTC COMPLSB <-- %02x\n", value);
  2292. #endif
  2293. s->comp_reg &= 0xff00;
  2294. s->comp_reg |= 0x00ff & value;
  2295. return;
  2296. case 0x50: /* RTC_COMP_MSB_REG */
  2297. #ifdef ALMDEBUG
  2298. printf("RTC COMPMSB <-- %02x\n", value);
  2299. #endif
  2300. s->comp_reg &= 0x00ff;
  2301. s->comp_reg |= 0xff00 & (value << 8);
  2302. return;
  2303. default:
  2304. OMAP_BAD_REG(addr);
  2305. return;
  2306. }
  2307. }
  2308. static CPUReadMemoryFunc * const omap_rtc_readfn[] = {
  2309. omap_rtc_read,
  2310. omap_badwidth_read8,
  2311. omap_badwidth_read8,
  2312. };
  2313. static CPUWriteMemoryFunc * const omap_rtc_writefn[] = {
  2314. omap_rtc_write,
  2315. omap_badwidth_write8,
  2316. omap_badwidth_write8,
  2317. };
  2318. static void omap_rtc_tick(void *opaque)
  2319. {
  2320. struct omap_rtc_s *s = opaque;
  2321. if (s->round) {
  2322. /* Round to nearest full minute. */
  2323. if (s->current_tm.tm_sec < 30)
  2324. s->ti -= s->current_tm.tm_sec;
  2325. else
  2326. s->ti += 60 - s->current_tm.tm_sec;
  2327. s->round = 0;
  2328. }
  2329. memcpy(&s->current_tm, localtime(&s->ti), sizeof(s->current_tm));
  2330. if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
  2331. s->status |= 0x40;
  2332. omap_rtc_interrupts_update(s);
  2333. }
  2334. if (s->interrupts & 0x04)
  2335. switch (s->interrupts & 3) {
  2336. case 0:
  2337. s->status |= 0x04;
  2338. qemu_irq_pulse(s->irq);
  2339. break;
  2340. case 1:
  2341. if (s->current_tm.tm_sec)
  2342. break;
  2343. s->status |= 0x08;
  2344. qemu_irq_pulse(s->irq);
  2345. break;
  2346. case 2:
  2347. if (s->current_tm.tm_sec || s->current_tm.tm_min)
  2348. break;
  2349. s->status |= 0x10;
  2350. qemu_irq_pulse(s->irq);
  2351. break;
  2352. case 3:
  2353. if (s->current_tm.tm_sec ||
  2354. s->current_tm.tm_min || s->current_tm.tm_hour)
  2355. break;
  2356. s->status |= 0x20;
  2357. qemu_irq_pulse(s->irq);
  2358. break;
  2359. }
  2360. /* Move on */
  2361. if (s->running)
  2362. s->ti ++;
  2363. s->tick += 1000;
  2364. /*
  2365. * Every full hour add a rough approximation of the compensation
  2366. * register to the 32kHz Timer (which drives the RTC) value.
  2367. */
  2368. if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
  2369. s->tick += s->comp_reg * 1000 / 32768;
  2370. qemu_mod_timer(s->clk, s->tick);
  2371. }
  2372. static void omap_rtc_reset(struct omap_rtc_s *s)
  2373. {
  2374. struct tm tm;
  2375. s->interrupts = 0;
  2376. s->comp_reg = 0;
  2377. s->running = 0;
  2378. s->pm_am = 0;
  2379. s->auto_comp = 0;
  2380. s->round = 0;
  2381. s->tick = qemu_get_clock_ms(rt_clock);
  2382. memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
  2383. s->alarm_tm.tm_mday = 0x01;
  2384. s->status = 1 << 7;
  2385. qemu_get_timedate(&tm, 0);
  2386. s->ti = mktimegm(&tm);
  2387. omap_rtc_alarm_update(s);
  2388. omap_rtc_tick(s);
  2389. }
  2390. static struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base,
  2391. qemu_irq *irq, omap_clk clk)
  2392. {
  2393. int iomemtype;
  2394. struct omap_rtc_s *s = (struct omap_rtc_s *)
  2395. qemu_mallocz(sizeof(struct omap_rtc_s));
  2396. s->irq = irq[0];
  2397. s->alarm = irq[1];
  2398. s->clk = qemu_new_timer_ms(rt_clock, omap_rtc_tick, s);
  2399. omap_rtc_reset(s);
  2400. iomemtype = cpu_register_io_memory(omap_rtc_readfn,
  2401. omap_rtc_writefn, s, DEVICE_NATIVE_ENDIAN);
  2402. cpu_register_physical_memory(base, 0x800, iomemtype);
  2403. return s;
  2404. }
  2405. /* Multi-channel Buffered Serial Port interfaces */
  2406. struct omap_mcbsp_s {
  2407. qemu_irq txirq;
  2408. qemu_irq rxirq;
  2409. qemu_irq txdrq;
  2410. qemu_irq rxdrq;
  2411. uint16_t spcr[2];
  2412. uint16_t rcr[2];
  2413. uint16_t xcr[2];
  2414. uint16_t srgr[2];
  2415. uint16_t mcr[2];
  2416. uint16_t pcr;
  2417. uint16_t rcer[8];
  2418. uint16_t xcer[8];
  2419. int tx_rate;
  2420. int rx_rate;
  2421. int tx_req;
  2422. int rx_req;
  2423. I2SCodec *codec;
  2424. QEMUTimer *source_timer;
  2425. QEMUTimer *sink_timer;
  2426. };
  2427. static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
  2428. {
  2429. int irq;
  2430. switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
  2431. case 0:
  2432. irq = (s->spcr[0] >> 1) & 1; /* RRDY */
  2433. break;
  2434. case 3:
  2435. irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
  2436. break;
  2437. default:
  2438. irq = 0;
  2439. break;
  2440. }
  2441. if (irq)
  2442. qemu_irq_pulse(s->rxirq);
  2443. switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
  2444. case 0:
  2445. irq = (s->spcr[1] >> 1) & 1; /* XRDY */
  2446. break;
  2447. case 3:
  2448. irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
  2449. break;
  2450. default:
  2451. irq = 0;
  2452. break;
  2453. }
  2454. if (irq)
  2455. qemu_irq_pulse(s->txirq);
  2456. }
  2457. static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
  2458. {
  2459. if ((s->spcr[0] >> 1) & 1) /* RRDY */
  2460. s->spcr[0] |= 1 << 2; /* RFULL */
  2461. s->spcr[0] |= 1 << 1; /* RRDY */
  2462. qemu_irq_raise(s->rxdrq);
  2463. omap_mcbsp_intr_update(s);
  2464. }
  2465. static void omap_mcbsp_source_tick(void *opaque)
  2466. {
  2467. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2468. static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
  2469. if (!s->rx_rate)
  2470. return;
  2471. if (s->rx_req)
  2472. printf("%s: Rx FIFO overrun\n", __FUNCTION__);
  2473. s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
  2474. omap_mcbsp_rx_newdata(s);
  2475. qemu_mod_timer(s->source_timer, qemu_get_clock_ns(vm_clock) +
  2476. get_ticks_per_sec());
  2477. }
  2478. static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
  2479. {
  2480. if (!s->codec || !s->codec->rts)
  2481. omap_mcbsp_source_tick(s);
  2482. else if (s->codec->in.len) {
  2483. s->rx_req = s->codec->in.len;
  2484. omap_mcbsp_rx_newdata(s);
  2485. }
  2486. }
  2487. static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
  2488. {
  2489. qemu_del_timer(s->source_timer);
  2490. }
  2491. static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
  2492. {
  2493. s->spcr[0] &= ~(1 << 1); /* RRDY */
  2494. qemu_irq_lower(s->rxdrq);
  2495. omap_mcbsp_intr_update(s);
  2496. }
  2497. static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
  2498. {
  2499. s->spcr[1] |= 1 << 1; /* XRDY */
  2500. qemu_irq_raise(s->txdrq);
  2501. omap_mcbsp_intr_update(s);
  2502. }
  2503. static void omap_mcbsp_sink_tick(void *opaque)
  2504. {
  2505. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2506. static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
  2507. if (!s->tx_rate)
  2508. return;
  2509. if (s->tx_req)
  2510. printf("%s: Tx FIFO underrun\n", __FUNCTION__);
  2511. s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
  2512. omap_mcbsp_tx_newdata(s);
  2513. qemu_mod_timer(s->sink_timer, qemu_get_clock_ns(vm_clock) +
  2514. get_ticks_per_sec());
  2515. }
  2516. static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
  2517. {
  2518. if (!s->codec || !s->codec->cts)
  2519. omap_mcbsp_sink_tick(s);
  2520. else if (s->codec->out.size) {
  2521. s->tx_req = s->codec->out.size;
  2522. omap_mcbsp_tx_newdata(s);
  2523. }
  2524. }
  2525. static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
  2526. {
  2527. s->spcr[1] &= ~(1 << 1); /* XRDY */
  2528. qemu_irq_lower(s->txdrq);
  2529. omap_mcbsp_intr_update(s);
  2530. if (s->codec && s->codec->cts)
  2531. s->codec->tx_swallow(s->codec->opaque);
  2532. }
  2533. static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
  2534. {
  2535. s->tx_req = 0;
  2536. omap_mcbsp_tx_done(s);
  2537. qemu_del_timer(s->sink_timer);
  2538. }
  2539. static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
  2540. {
  2541. int prev_rx_rate, prev_tx_rate;
  2542. int rx_rate = 0, tx_rate = 0;
  2543. int cpu_rate = 1500000; /* XXX */
  2544. /* TODO: check CLKSTP bit */
  2545. if (s->spcr[1] & (1 << 6)) { /* GRST */
  2546. if (s->spcr[0] & (1 << 0)) { /* RRST */
  2547. if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
  2548. (s->pcr & (1 << 8))) { /* CLKRM */
  2549. if (~s->pcr & (1 << 7)) /* SCLKME */
  2550. rx_rate = cpu_rate /
  2551. ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
  2552. } else
  2553. if (s->codec)
  2554. rx_rate = s->codec->rx_rate;
  2555. }
  2556. if (s->spcr[1] & (1 << 0)) { /* XRST */
  2557. if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
  2558. (s->pcr & (1 << 9))) { /* CLKXM */
  2559. if (~s->pcr & (1 << 7)) /* SCLKME */
  2560. tx_rate = cpu_rate /
  2561. ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
  2562. } else
  2563. if (s->codec)
  2564. tx_rate = s->codec->tx_rate;
  2565. }
  2566. }
  2567. prev_tx_rate = s->tx_rate;
  2568. prev_rx_rate = s->rx_rate;
  2569. s->tx_rate = tx_rate;
  2570. s->rx_rate = rx_rate;
  2571. if (s->codec)
  2572. s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
  2573. if (!prev_tx_rate && tx_rate)
  2574. omap_mcbsp_tx_start(s);
  2575. else if (s->tx_rate && !tx_rate)
  2576. omap_mcbsp_tx_stop(s);
  2577. if (!prev_rx_rate && rx_rate)
  2578. omap_mcbsp_rx_start(s);
  2579. else if (prev_tx_rate && !tx_rate)
  2580. omap_mcbsp_rx_stop(s);
  2581. }
  2582. static uint32_t omap_mcbsp_read(void *opaque, target_phys_addr_t addr)
  2583. {
  2584. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2585. int offset = addr & OMAP_MPUI_REG_MASK;
  2586. uint16_t ret;
  2587. switch (offset) {
  2588. case 0x00: /* DRR2 */
  2589. if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
  2590. return 0x0000;
  2591. /* Fall through. */
  2592. case 0x02: /* DRR1 */
  2593. if (s->rx_req < 2) {
  2594. printf("%s: Rx FIFO underrun\n", __FUNCTION__);
  2595. omap_mcbsp_rx_done(s);
  2596. } else {
  2597. s->tx_req -= 2;
  2598. if (s->codec && s->codec->in.len >= 2) {
  2599. ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
  2600. ret |= s->codec->in.fifo[s->codec->in.start ++];
  2601. s->codec->in.len -= 2;
  2602. } else
  2603. ret = 0x0000;
  2604. if (!s->tx_req)
  2605. omap_mcbsp_rx_done(s);
  2606. return ret;
  2607. }
  2608. return 0x0000;
  2609. case 0x04: /* DXR2 */
  2610. case 0x06: /* DXR1 */
  2611. return 0x0000;
  2612. case 0x08: /* SPCR2 */
  2613. return s->spcr[1];
  2614. case 0x0a: /* SPCR1 */
  2615. return s->spcr[0];
  2616. case 0x0c: /* RCR2 */
  2617. return s->rcr[1];
  2618. case 0x0e: /* RCR1 */
  2619. return s->rcr[0];
  2620. case 0x10: /* XCR2 */
  2621. return s->xcr[1];
  2622. case 0x12: /* XCR1 */
  2623. return s->xcr[0];
  2624. case 0x14: /* SRGR2 */
  2625. return s->srgr[1];
  2626. case 0x16: /* SRGR1 */
  2627. return s->srgr[0];
  2628. case 0x18: /* MCR2 */
  2629. return s->mcr[1];
  2630. case 0x1a: /* MCR1 */
  2631. return s->mcr[0];
  2632. case 0x1c: /* RCERA */
  2633. return s->rcer[0];
  2634. case 0x1e: /* RCERB */
  2635. return s->rcer[1];
  2636. case 0x20: /* XCERA */
  2637. return s->xcer[0];
  2638. case 0x22: /* XCERB */
  2639. return s->xcer[1];
  2640. case 0x24: /* PCR0 */
  2641. return s->pcr;
  2642. case 0x26: /* RCERC */
  2643. return s->rcer[2];
  2644. case 0x28: /* RCERD */
  2645. return s->rcer[3];
  2646. case 0x2a: /* XCERC */
  2647. return s->xcer[2];
  2648. case 0x2c: /* XCERD */
  2649. return s->xcer[3];
  2650. case 0x2e: /* RCERE */
  2651. return s->rcer[4];
  2652. case 0x30: /* RCERF */
  2653. return s->rcer[5];
  2654. case 0x32: /* XCERE */
  2655. return s->xcer[4];
  2656. case 0x34: /* XCERF */
  2657. return s->xcer[5];
  2658. case 0x36: /* RCERG */
  2659. return s->rcer[6];
  2660. case 0x38: /* RCERH */
  2661. return s->rcer[7];
  2662. case 0x3a: /* XCERG */
  2663. return s->xcer[6];
  2664. case 0x3c: /* XCERH */
  2665. return s->xcer[7];
  2666. }
  2667. OMAP_BAD_REG(addr);
  2668. return 0;
  2669. }
  2670. static void omap_mcbsp_writeh(void *opaque, target_phys_addr_t addr,
  2671. uint32_t value)
  2672. {
  2673. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2674. int offset = addr & OMAP_MPUI_REG_MASK;
  2675. switch (offset) {
  2676. case 0x00: /* DRR2 */
  2677. case 0x02: /* DRR1 */
  2678. OMAP_RO_REG(addr);
  2679. return;
  2680. case 0x04: /* DXR2 */
  2681. if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
  2682. return;
  2683. /* Fall through. */
  2684. case 0x06: /* DXR1 */
  2685. if (s->tx_req > 1) {
  2686. s->tx_req -= 2;
  2687. if (s->codec && s->codec->cts) {
  2688. s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
  2689. s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
  2690. }
  2691. if (s->tx_req < 2)
  2692. omap_mcbsp_tx_done(s);
  2693. } else
  2694. printf("%s: Tx FIFO overrun\n", __FUNCTION__);
  2695. return;
  2696. case 0x08: /* SPCR2 */
  2697. s->spcr[1] &= 0x0002;
  2698. s->spcr[1] |= 0x03f9 & value;
  2699. s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
  2700. if (~value & 1) /* XRST */
  2701. s->spcr[1] &= ~6;
  2702. omap_mcbsp_req_update(s);
  2703. return;
  2704. case 0x0a: /* SPCR1 */
  2705. s->spcr[0] &= 0x0006;
  2706. s->spcr[0] |= 0xf8f9 & value;
  2707. if (value & (1 << 15)) /* DLB */
  2708. printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
  2709. if (~value & 1) { /* RRST */
  2710. s->spcr[0] &= ~6;
  2711. s->rx_req = 0;
  2712. omap_mcbsp_rx_done(s);
  2713. }
  2714. omap_mcbsp_req_update(s);
  2715. return;
  2716. case 0x0c: /* RCR2 */
  2717. s->rcr[1] = value & 0xffff;
  2718. return;
  2719. case 0x0e: /* RCR1 */
  2720. s->rcr[0] = value & 0x7fe0;
  2721. return;
  2722. case 0x10: /* XCR2 */
  2723. s->xcr[1] = value & 0xffff;
  2724. return;
  2725. case 0x12: /* XCR1 */
  2726. s->xcr[0] = value & 0x7fe0;
  2727. return;
  2728. case 0x14: /* SRGR2 */
  2729. s->srgr[1] = value & 0xffff;
  2730. omap_mcbsp_req_update(s);
  2731. return;
  2732. case 0x16: /* SRGR1 */
  2733. s->srgr[0] = value & 0xffff;
  2734. omap_mcbsp_req_update(s);
  2735. return;
  2736. case 0x18: /* MCR2 */
  2737. s->mcr[1] = value & 0x03e3;
  2738. if (value & 3) /* XMCM */
  2739. printf("%s: Tx channel selection mode enable attempt\n",
  2740. __FUNCTION__);
  2741. return;
  2742. case 0x1a: /* MCR1 */
  2743. s->mcr[0] = value & 0x03e1;
  2744. if (value & 1) /* RMCM */
  2745. printf("%s: Rx channel selection mode enable attempt\n",
  2746. __FUNCTION__);
  2747. return;
  2748. case 0x1c: /* RCERA */
  2749. s->rcer[0] = value & 0xffff;
  2750. return;
  2751. case 0x1e: /* RCERB */
  2752. s->rcer[1] = value & 0xffff;
  2753. return;
  2754. case 0x20: /* XCERA */
  2755. s->xcer[0] = value & 0xffff;
  2756. return;
  2757. case 0x22: /* XCERB */
  2758. s->xcer[1] = value & 0xffff;
  2759. return;
  2760. case 0x24: /* PCR0 */
  2761. s->pcr = value & 0x7faf;
  2762. return;
  2763. case 0x26: /* RCERC */
  2764. s->rcer[2] = value & 0xffff;
  2765. return;
  2766. case 0x28: /* RCERD */
  2767. s->rcer[3] = value & 0xffff;
  2768. return;
  2769. case 0x2a: /* XCERC */
  2770. s->xcer[2] = value & 0xffff;
  2771. return;
  2772. case 0x2c: /* XCERD */
  2773. s->xcer[3] = value & 0xffff;
  2774. return;
  2775. case 0x2e: /* RCERE */
  2776. s->rcer[4] = value & 0xffff;
  2777. return;
  2778. case 0x30: /* RCERF */
  2779. s->rcer[5] = value & 0xffff;
  2780. return;
  2781. case 0x32: /* XCERE */
  2782. s->xcer[4] = value & 0xffff;
  2783. return;
  2784. case 0x34: /* XCERF */
  2785. s->xcer[5] = value & 0xffff;
  2786. return;
  2787. case 0x36: /* RCERG */
  2788. s->rcer[6] = value & 0xffff;
  2789. return;
  2790. case 0x38: /* RCERH */
  2791. s->rcer[7] = value & 0xffff;
  2792. return;
  2793. case 0x3a: /* XCERG */
  2794. s->xcer[6] = value & 0xffff;
  2795. return;
  2796. case 0x3c: /* XCERH */
  2797. s->xcer[7] = value & 0xffff;
  2798. return;
  2799. }
  2800. OMAP_BAD_REG(addr);
  2801. }
  2802. static void omap_mcbsp_writew(void *opaque, target_phys_addr_t addr,
  2803. uint32_t value)
  2804. {
  2805. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2806. int offset = addr & OMAP_MPUI_REG_MASK;
  2807. if (offset == 0x04) { /* DXR */
  2808. if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
  2809. return;
  2810. if (s->tx_req > 3) {
  2811. s->tx_req -= 4;
  2812. if (s->codec && s->codec->cts) {
  2813. s->codec->out.fifo[s->codec->out.len ++] =
  2814. (value >> 24) & 0xff;
  2815. s->codec->out.fifo[s->codec->out.len ++] =
  2816. (value >> 16) & 0xff;
  2817. s->codec->out.fifo[s->codec->out.len ++] =
  2818. (value >> 8) & 0xff;
  2819. s->codec->out.fifo[s->codec->out.len ++] =
  2820. (value >> 0) & 0xff;
  2821. }
  2822. if (s->tx_req < 4)
  2823. omap_mcbsp_tx_done(s);
  2824. } else
  2825. printf("%s: Tx FIFO overrun\n", __FUNCTION__);
  2826. return;
  2827. }
  2828. omap_badwidth_write16(opaque, addr, value);
  2829. }
  2830. static CPUReadMemoryFunc * const omap_mcbsp_readfn[] = {
  2831. omap_badwidth_read16,
  2832. omap_mcbsp_read,
  2833. omap_badwidth_read16,
  2834. };
  2835. static CPUWriteMemoryFunc * const omap_mcbsp_writefn[] = {
  2836. omap_badwidth_write16,
  2837. omap_mcbsp_writeh,
  2838. omap_mcbsp_writew,
  2839. };
  2840. static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
  2841. {
  2842. memset(&s->spcr, 0, sizeof(s->spcr));
  2843. memset(&s->rcr, 0, sizeof(s->rcr));
  2844. memset(&s->xcr, 0, sizeof(s->xcr));
  2845. s->srgr[0] = 0x0001;
  2846. s->srgr[1] = 0x2000;
  2847. memset(&s->mcr, 0, sizeof(s->mcr));
  2848. memset(&s->pcr, 0, sizeof(s->pcr));
  2849. memset(&s->rcer, 0, sizeof(s->rcer));
  2850. memset(&s->xcer, 0, sizeof(s->xcer));
  2851. s->tx_req = 0;
  2852. s->rx_req = 0;
  2853. s->tx_rate = 0;
  2854. s->rx_rate = 0;
  2855. qemu_del_timer(s->source_timer);
  2856. qemu_del_timer(s->sink_timer);
  2857. }
  2858. struct omap_mcbsp_s *omap_mcbsp_init(target_phys_addr_t base,
  2859. qemu_irq *irq, qemu_irq *dma, omap_clk clk)
  2860. {
  2861. int iomemtype;
  2862. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
  2863. qemu_mallocz(sizeof(struct omap_mcbsp_s));
  2864. s->txirq = irq[0];
  2865. s->rxirq = irq[1];
  2866. s->txdrq = dma[0];
  2867. s->rxdrq = dma[1];
  2868. s->sink_timer = qemu_new_timer_ns(vm_clock, omap_mcbsp_sink_tick, s);
  2869. s->source_timer = qemu_new_timer_ns(vm_clock, omap_mcbsp_source_tick, s);
  2870. omap_mcbsp_reset(s);
  2871. iomemtype = cpu_register_io_memory(omap_mcbsp_readfn,
  2872. omap_mcbsp_writefn, s, DEVICE_NATIVE_ENDIAN);
  2873. cpu_register_physical_memory(base, 0x800, iomemtype);
  2874. return s;
  2875. }
  2876. static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
  2877. {
  2878. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2879. if (s->rx_rate) {
  2880. s->rx_req = s->codec->in.len;
  2881. omap_mcbsp_rx_newdata(s);
  2882. }
  2883. }
  2884. static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
  2885. {
  2886. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2887. if (s->tx_rate) {
  2888. s->tx_req = s->codec->out.size;
  2889. omap_mcbsp_tx_newdata(s);
  2890. }
  2891. }
  2892. void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
  2893. {
  2894. s->codec = slave;
  2895. slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
  2896. slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
  2897. }
  2898. /* LED Pulse Generators */
  2899. struct omap_lpg_s {
  2900. QEMUTimer *tm;
  2901. uint8_t control;
  2902. uint8_t power;
  2903. int64_t on;
  2904. int64_t period;
  2905. int clk;
  2906. int cycle;
  2907. };
  2908. static void omap_lpg_tick(void *opaque)
  2909. {
  2910. struct omap_lpg_s *s = opaque;
  2911. if (s->cycle)
  2912. qemu_mod_timer(s->tm, qemu_get_clock_ms(rt_clock) + s->period - s->on);
  2913. else
  2914. qemu_mod_timer(s->tm, qemu_get_clock_ms(rt_clock) + s->on);
  2915. s->cycle = !s->cycle;
  2916. printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
  2917. }
  2918. static void omap_lpg_update(struct omap_lpg_s *s)
  2919. {
  2920. int64_t on, period = 1, ticks = 1000;
  2921. static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
  2922. if (~s->control & (1 << 6)) /* LPGRES */
  2923. on = 0;
  2924. else if (s->control & (1 << 7)) /* PERM_ON */
  2925. on = period;
  2926. else {
  2927. period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
  2928. 256 / 32);
  2929. on = (s->clk && s->power) ? muldiv64(ticks,
  2930. per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
  2931. }
  2932. qemu_del_timer(s->tm);
  2933. if (on == period && s->on < s->period)
  2934. printf("%s: LED is on\n", __FUNCTION__);
  2935. else if (on == 0 && s->on)
  2936. printf("%s: LED is off\n", __FUNCTION__);
  2937. else if (on && (on != s->on || period != s->period)) {
  2938. s->cycle = 0;
  2939. s->on = on;
  2940. s->period = period;
  2941. omap_lpg_tick(s);
  2942. return;
  2943. }
  2944. s->on = on;
  2945. s->period = period;
  2946. }
  2947. static void omap_lpg_reset(struct omap_lpg_s *s)
  2948. {
  2949. s->control = 0x00;
  2950. s->power = 0x00;
  2951. s->clk = 1;
  2952. omap_lpg_update(s);
  2953. }
  2954. static uint32_t omap_lpg_read(void *opaque, target_phys_addr_t addr)
  2955. {
  2956. struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
  2957. int offset = addr & OMAP_MPUI_REG_MASK;
  2958. switch (offset) {
  2959. case 0x00: /* LCR */
  2960. return s->control;
  2961. case 0x04: /* PMR */
  2962. return s->power;
  2963. }
  2964. OMAP_BAD_REG(addr);
  2965. return 0;
  2966. }
  2967. static void omap_lpg_write(void *opaque, target_phys_addr_t addr,
  2968. uint32_t value)
  2969. {
  2970. struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
  2971. int offset = addr & OMAP_MPUI_REG_MASK;
  2972. switch (offset) {
  2973. case 0x00: /* LCR */
  2974. if (~value & (1 << 6)) /* LPGRES */
  2975. omap_lpg_reset(s);
  2976. s->control = value & 0xff;
  2977. omap_lpg_update(s);
  2978. return;
  2979. case 0x04: /* PMR */
  2980. s->power = value & 0x01;
  2981. omap_lpg_update(s);
  2982. return;
  2983. default:
  2984. OMAP_BAD_REG(addr);
  2985. return;
  2986. }
  2987. }
  2988. static CPUReadMemoryFunc * const omap_lpg_readfn[] = {
  2989. omap_lpg_read,
  2990. omap_badwidth_read8,
  2991. omap_badwidth_read8,
  2992. };
  2993. static CPUWriteMemoryFunc * const omap_lpg_writefn[] = {
  2994. omap_lpg_write,
  2995. omap_badwidth_write8,
  2996. omap_badwidth_write8,
  2997. };
  2998. static void omap_lpg_clk_update(void *opaque, int line, int on)
  2999. {
  3000. struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
  3001. s->clk = on;
  3002. omap_lpg_update(s);
  3003. }
  3004. static struct omap_lpg_s *omap_lpg_init(target_phys_addr_t base, omap_clk clk)
  3005. {
  3006. int iomemtype;
  3007. struct omap_lpg_s *s = (struct omap_lpg_s *)
  3008. qemu_mallocz(sizeof(struct omap_lpg_s));
  3009. s->tm = qemu_new_timer_ms(rt_clock, omap_lpg_tick, s);
  3010. omap_lpg_reset(s);
  3011. iomemtype = cpu_register_io_memory(omap_lpg_readfn,
  3012. omap_lpg_writefn, s, DEVICE_NATIVE_ENDIAN);
  3013. cpu_register_physical_memory(base, 0x800, iomemtype);
  3014. omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
  3015. return s;
  3016. }
  3017. /* MPUI Peripheral Bridge configuration */
  3018. static uint32_t omap_mpui_io_read(void *opaque, target_phys_addr_t addr)
  3019. {
  3020. if (addr == OMAP_MPUI_BASE) /* CMR */
  3021. return 0xfe4d;
  3022. OMAP_BAD_REG(addr);
  3023. return 0;
  3024. }
  3025. static CPUReadMemoryFunc * const omap_mpui_io_readfn[] = {
  3026. omap_badwidth_read16,
  3027. omap_mpui_io_read,
  3028. omap_badwidth_read16,
  3029. };
  3030. static CPUWriteMemoryFunc * const omap_mpui_io_writefn[] = {
  3031. omap_badwidth_write16,
  3032. omap_badwidth_write16,
  3033. omap_badwidth_write16,
  3034. };
  3035. static void omap_setup_mpui_io(struct omap_mpu_state_s *mpu)
  3036. {
  3037. int iomemtype = cpu_register_io_memory(omap_mpui_io_readfn,
  3038. omap_mpui_io_writefn, mpu, DEVICE_NATIVE_ENDIAN);
  3039. cpu_register_physical_memory(OMAP_MPUI_BASE, 0x7fff, iomemtype);
  3040. }
  3041. /* General chip reset */
  3042. static void omap1_mpu_reset(void *opaque)
  3043. {
  3044. struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
  3045. omap_inth_reset(mpu->ih[0]);
  3046. omap_inth_reset(mpu->ih[1]);
  3047. omap_dma_reset(mpu->dma);
  3048. omap_mpu_timer_reset(mpu->timer[0]);
  3049. omap_mpu_timer_reset(mpu->timer[1]);
  3050. omap_mpu_timer_reset(mpu->timer[2]);
  3051. omap_wd_timer_reset(mpu->wdt);
  3052. omap_os_timer_reset(mpu->os_timer);
  3053. omap_lcdc_reset(mpu->lcd);
  3054. omap_ulpd_pm_reset(mpu);
  3055. omap_pin_cfg_reset(mpu);
  3056. omap_mpui_reset(mpu);
  3057. omap_tipb_bridge_reset(mpu->private_tipb);
  3058. omap_tipb_bridge_reset(mpu->public_tipb);
  3059. omap_dpll_reset(&mpu->dpll[0]);
  3060. omap_dpll_reset(&mpu->dpll[1]);
  3061. omap_dpll_reset(&mpu->dpll[2]);
  3062. omap_uart_reset(mpu->uart[0]);
  3063. omap_uart_reset(mpu->uart[1]);
  3064. omap_uart_reset(mpu->uart[2]);
  3065. omap_mmc_reset(mpu->mmc);
  3066. omap_mpuio_reset(mpu->mpuio);
  3067. omap_gpio_reset(mpu->gpio);
  3068. omap_uwire_reset(mpu->microwire);
  3069. omap_pwl_reset(mpu);
  3070. omap_pwt_reset(mpu);
  3071. omap_i2c_reset(mpu->i2c[0]);
  3072. omap_rtc_reset(mpu->rtc);
  3073. omap_mcbsp_reset(mpu->mcbsp1);
  3074. omap_mcbsp_reset(mpu->mcbsp2);
  3075. omap_mcbsp_reset(mpu->mcbsp3);
  3076. omap_lpg_reset(mpu->led[0]);
  3077. omap_lpg_reset(mpu->led[1]);
  3078. omap_clkm_reset(mpu);
  3079. cpu_reset(mpu->env);
  3080. }
  3081. static const struct omap_map_s {
  3082. target_phys_addr_t phys_dsp;
  3083. target_phys_addr_t phys_mpu;
  3084. uint32_t size;
  3085. const char *name;
  3086. } omap15xx_dsp_mm[] = {
  3087. /* Strobe 0 */
  3088. { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
  3089. { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
  3090. { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
  3091. { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
  3092. { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
  3093. { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
  3094. { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
  3095. { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
  3096. { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
  3097. { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
  3098. { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
  3099. { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
  3100. { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
  3101. { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
  3102. { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
  3103. { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
  3104. { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
  3105. /* Strobe 1 */
  3106. { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
  3107. { 0 }
  3108. };
  3109. static void omap_setup_dsp_mapping(const struct omap_map_s *map)
  3110. {
  3111. int io;
  3112. for (; map->phys_dsp; map ++) {
  3113. io = cpu_get_physical_page_desc(map->phys_mpu);
  3114. cpu_register_physical_memory(map->phys_dsp, map->size, io);
  3115. }
  3116. }
  3117. void omap_mpu_wakeup(void *opaque, int irq, int req)
  3118. {
  3119. struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
  3120. if (mpu->env->halted)
  3121. cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
  3122. }
  3123. static const struct dma_irq_map omap1_dma_irq_map[] = {
  3124. { 0, OMAP_INT_DMA_CH0_6 },
  3125. { 0, OMAP_INT_DMA_CH1_7 },
  3126. { 0, OMAP_INT_DMA_CH2_8 },
  3127. { 0, OMAP_INT_DMA_CH3 },
  3128. { 0, OMAP_INT_DMA_CH4 },
  3129. { 0, OMAP_INT_DMA_CH5 },
  3130. { 1, OMAP_INT_1610_DMA_CH6 },
  3131. { 1, OMAP_INT_1610_DMA_CH7 },
  3132. { 1, OMAP_INT_1610_DMA_CH8 },
  3133. { 1, OMAP_INT_1610_DMA_CH9 },
  3134. { 1, OMAP_INT_1610_DMA_CH10 },
  3135. { 1, OMAP_INT_1610_DMA_CH11 },
  3136. { 1, OMAP_INT_1610_DMA_CH12 },
  3137. { 1, OMAP_INT_1610_DMA_CH13 },
  3138. { 1, OMAP_INT_1610_DMA_CH14 },
  3139. { 1, OMAP_INT_1610_DMA_CH15 }
  3140. };
  3141. /* DMA ports for OMAP1 */
  3142. static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
  3143. target_phys_addr_t addr)
  3144. {
  3145. return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
  3146. }
  3147. static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
  3148. target_phys_addr_t addr)
  3149. {
  3150. return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
  3151. addr);
  3152. }
  3153. static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
  3154. target_phys_addr_t addr)
  3155. {
  3156. return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
  3157. }
  3158. static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
  3159. target_phys_addr_t addr)
  3160. {
  3161. return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
  3162. }
  3163. static int omap_validate_local_addr(struct omap_mpu_state_s *s,
  3164. target_phys_addr_t addr)
  3165. {
  3166. return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
  3167. }
  3168. static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
  3169. target_phys_addr_t addr)
  3170. {
  3171. return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
  3172. }
  3173. struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
  3174. const char *core)
  3175. {
  3176. int i;
  3177. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
  3178. qemu_mallocz(sizeof(struct omap_mpu_state_s));
  3179. ram_addr_t imif_base, emiff_base;
  3180. qemu_irq *cpu_irq;
  3181. qemu_irq dma_irqs[6];
  3182. DriveInfo *dinfo;
  3183. if (!core)
  3184. core = "ti925t";
  3185. /* Core */
  3186. s->mpu_model = omap310;
  3187. s->env = cpu_init(core);
  3188. if (!s->env) {
  3189. fprintf(stderr, "Unable to find CPU definition\n");
  3190. exit(1);
  3191. }
  3192. s->sdram_size = sdram_size;
  3193. s->sram_size = OMAP15XX_SRAM_SIZE;
  3194. s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
  3195. /* Clocks */
  3196. omap_clk_init(s);
  3197. /* Memory-mapped stuff */
  3198. cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size,
  3199. (emiff_base = qemu_ram_alloc(NULL, "omap1.dram",
  3200. s->sdram_size)) | IO_MEM_RAM);
  3201. cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size,
  3202. (imif_base = qemu_ram_alloc(NULL, "omap1.sram",
  3203. s->sram_size)) | IO_MEM_RAM);
  3204. omap_clkm_init(0xfffece00, 0xe1008000, s);
  3205. cpu_irq = arm_pic_init_cpu(s->env);
  3206. s->ih[0] = omap_inth_init(0xfffecb00, 0x100, 1, &s->irq[0],
  3207. cpu_irq[ARM_PIC_CPU_IRQ], cpu_irq[ARM_PIC_CPU_FIQ],
  3208. omap_findclk(s, "arminth_ck"));
  3209. s->ih[1] = omap_inth_init(0xfffe0000, 0x800, 1, &s->irq[1],
  3210. omap_inth_get_pin(s->ih[0], OMAP_INT_15XX_IH2_IRQ),
  3211. NULL, omap_findclk(s, "arminth_ck"));
  3212. for (i = 0; i < 6; i ++)
  3213. dma_irqs[i] =
  3214. s->irq[omap1_dma_irq_map[i].ih][omap1_dma_irq_map[i].intr];
  3215. s->dma = omap_dma_init(0xfffed800, dma_irqs, s->irq[0][OMAP_INT_DMA_LCD],
  3216. s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
  3217. s->port[emiff ].addr_valid = omap_validate_emiff_addr;
  3218. s->port[emifs ].addr_valid = omap_validate_emifs_addr;
  3219. s->port[imif ].addr_valid = omap_validate_imif_addr;
  3220. s->port[tipb ].addr_valid = omap_validate_tipb_addr;
  3221. s->port[local ].addr_valid = omap_validate_local_addr;
  3222. s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
  3223. /* Register SDRAM and SRAM DMA ports for fast transfers. */
  3224. soc_dma_port_add_mem_ram(s->dma,
  3225. emiff_base, OMAP_EMIFF_BASE, s->sdram_size);
  3226. soc_dma_port_add_mem_ram(s->dma,
  3227. imif_base, OMAP_IMIF_BASE, s->sram_size);
  3228. s->timer[0] = omap_mpu_timer_init(0xfffec500,
  3229. s->irq[0][OMAP_INT_TIMER1],
  3230. omap_findclk(s, "mputim_ck"));
  3231. s->timer[1] = omap_mpu_timer_init(0xfffec600,
  3232. s->irq[0][OMAP_INT_TIMER2],
  3233. omap_findclk(s, "mputim_ck"));
  3234. s->timer[2] = omap_mpu_timer_init(0xfffec700,
  3235. s->irq[0][OMAP_INT_TIMER3],
  3236. omap_findclk(s, "mputim_ck"));
  3237. s->wdt = omap_wd_timer_init(0xfffec800,
  3238. s->irq[0][OMAP_INT_WD_TIMER],
  3239. omap_findclk(s, "armwdt_ck"));
  3240. s->os_timer = omap_os_timer_init(0xfffb9000,
  3241. s->irq[1][OMAP_INT_OS_TIMER],
  3242. omap_findclk(s, "clk32-kHz"));
  3243. s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL],
  3244. omap_dma_get_lcdch(s->dma), imif_base, emiff_base,
  3245. omap_findclk(s, "lcd_ck"));
  3246. omap_ulpd_pm_init(0xfffe0800, s);
  3247. omap_pin_cfg_init(0xfffe1000, s);
  3248. omap_id_init(s);
  3249. omap_mpui_init(0xfffec900, s);
  3250. s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
  3251. s->irq[0][OMAP_INT_BRIDGE_PRIV],
  3252. omap_findclk(s, "tipb_ck"));
  3253. s->public_tipb = omap_tipb_bridge_init(0xfffed300,
  3254. s->irq[0][OMAP_INT_BRIDGE_PUB],
  3255. omap_findclk(s, "tipb_ck"));
  3256. omap_tcmi_init(0xfffecc00, s);
  3257. s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1],
  3258. omap_findclk(s, "uart1_ck"),
  3259. omap_findclk(s, "uart1_ck"),
  3260. s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
  3261. "uart1",
  3262. serial_hds[0]);
  3263. s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2],
  3264. omap_findclk(s, "uart2_ck"),
  3265. omap_findclk(s, "uart2_ck"),
  3266. s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
  3267. "uart2",
  3268. serial_hds[0] ? serial_hds[1] : NULL);
  3269. s->uart[2] = omap_uart_init(0xfffb9800, s->irq[0][OMAP_INT_UART3],
  3270. omap_findclk(s, "uart3_ck"),
  3271. omap_findclk(s, "uart3_ck"),
  3272. s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
  3273. "uart3",
  3274. serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
  3275. omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
  3276. omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
  3277. omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
  3278. dinfo = drive_get(IF_SD, 0, 0);
  3279. if (!dinfo) {
  3280. fprintf(stderr, "qemu: missing SecureDigital device\n");
  3281. exit(1);
  3282. }
  3283. s->mmc = omap_mmc_init(0xfffb7800, dinfo->bdrv,
  3284. s->irq[1][OMAP_INT_OQN], &s->drq[OMAP_DMA_MMC_TX],
  3285. omap_findclk(s, "mmc_ck"));
  3286. s->mpuio = omap_mpuio_init(0xfffb5000,
  3287. s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO],
  3288. s->wakeup, omap_findclk(s, "clk32-kHz"));
  3289. s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1],
  3290. omap_findclk(s, "arm_gpio_ck"));
  3291. s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX],
  3292. s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
  3293. omap_pwl_init(0xfffb5800, s, omap_findclk(s, "armxor_ck"));
  3294. omap_pwt_init(0xfffb6000, s, omap_findclk(s, "armxor_ck"));
  3295. s->i2c[0] = omap_i2c_init(0xfffb3800, s->irq[1][OMAP_INT_I2C],
  3296. &s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck"));
  3297. s->rtc = omap_rtc_init(0xfffb4800, &s->irq[1][OMAP_INT_RTC_TIMER],
  3298. omap_findclk(s, "clk32-kHz"));
  3299. s->mcbsp1 = omap_mcbsp_init(0xfffb1800, &s->irq[1][OMAP_INT_McBSP1TX],
  3300. &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
  3301. s->mcbsp2 = omap_mcbsp_init(0xfffb1000, &s->irq[0][OMAP_INT_310_McBSP2_TX],
  3302. &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
  3303. s->mcbsp3 = omap_mcbsp_init(0xfffb7000, &s->irq[1][OMAP_INT_McBSP3TX],
  3304. &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
  3305. s->led[0] = omap_lpg_init(0xfffbd000, omap_findclk(s, "clk32-kHz"));
  3306. s->led[1] = omap_lpg_init(0xfffbd800, omap_findclk(s, "clk32-kHz"));
  3307. /* Register mappings not currenlty implemented:
  3308. * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
  3309. * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
  3310. * USB W2FC fffb4000 - fffb47ff
  3311. * Camera Interface fffb6800 - fffb6fff
  3312. * USB Host fffba000 - fffba7ff
  3313. * FAC fffba800 - fffbafff
  3314. * HDQ/1-Wire fffbc000 - fffbc7ff
  3315. * TIPB switches fffbc800 - fffbcfff
  3316. * Mailbox fffcf000 - fffcf7ff
  3317. * Local bus IF fffec100 - fffec1ff
  3318. * Local bus MMU fffec200 - fffec2ff
  3319. * DSP MMU fffed200 - fffed2ff
  3320. */
  3321. omap_setup_dsp_mapping(omap15xx_dsp_mm);
  3322. omap_setup_mpui_io(s);
  3323. qemu_register_reset(omap1_mpu_reset, s);
  3324. return s;
  3325. }