nand.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666
  1. /*
  2. * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
  3. * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
  4. * Samsung Electronic.
  5. *
  6. * Copyright (c) 2006 Openedhand Ltd.
  7. * Written by Andrzej Zaborowski <balrog@zabor.org>
  8. *
  9. * This code is licensed under the GNU GPL v2.
  10. */
  11. #ifndef NAND_IO
  12. # include "hw.h"
  13. # include "flash.h"
  14. # include "blockdev.h"
  15. /* FIXME: Pass block device as an argument. */
  16. # define NAND_CMD_READ0 0x00
  17. # define NAND_CMD_READ1 0x01
  18. # define NAND_CMD_READ2 0x50
  19. # define NAND_CMD_LPREAD2 0x30
  20. # define NAND_CMD_NOSERIALREAD2 0x35
  21. # define NAND_CMD_RANDOMREAD1 0x05
  22. # define NAND_CMD_RANDOMREAD2 0xe0
  23. # define NAND_CMD_READID 0x90
  24. # define NAND_CMD_RESET 0xff
  25. # define NAND_CMD_PAGEPROGRAM1 0x80
  26. # define NAND_CMD_PAGEPROGRAM2 0x10
  27. # define NAND_CMD_CACHEPROGRAM2 0x15
  28. # define NAND_CMD_BLOCKERASE1 0x60
  29. # define NAND_CMD_BLOCKERASE2 0xd0
  30. # define NAND_CMD_READSTATUS 0x70
  31. # define NAND_CMD_COPYBACKPRG1 0x85
  32. # define NAND_IOSTATUS_ERROR (1 << 0)
  33. # define NAND_IOSTATUS_PLANE0 (1 << 1)
  34. # define NAND_IOSTATUS_PLANE1 (1 << 2)
  35. # define NAND_IOSTATUS_PLANE2 (1 << 3)
  36. # define NAND_IOSTATUS_PLANE3 (1 << 4)
  37. # define NAND_IOSTATUS_BUSY (1 << 6)
  38. # define NAND_IOSTATUS_UNPROTCT (1 << 7)
  39. # define MAX_PAGE 0x800
  40. # define MAX_OOB 0x40
  41. struct NANDFlashState {
  42. uint8_t manf_id, chip_id;
  43. int size, pages;
  44. int page_shift, oob_shift, erase_shift, addr_shift;
  45. uint8_t *storage;
  46. BlockDriverState *bdrv;
  47. int mem_oob;
  48. uint8_t cle, ale, ce, wp, gnd;
  49. uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
  50. uint8_t *ioaddr;
  51. int iolen;
  52. uint32_t cmd, addr;
  53. int addrlen;
  54. int status;
  55. int offset;
  56. void (*blk_write)(NANDFlashState *s);
  57. void (*blk_erase)(NANDFlashState *s);
  58. void (*blk_load)(NANDFlashState *s, uint32_t addr, int offset);
  59. uint32_t ioaddr_vmstate;
  60. };
  61. # define NAND_NO_AUTOINCR 0x00000001
  62. # define NAND_BUSWIDTH_16 0x00000002
  63. # define NAND_NO_PADDING 0x00000004
  64. # define NAND_CACHEPRG 0x00000008
  65. # define NAND_COPYBACK 0x00000010
  66. # define NAND_IS_AND 0x00000020
  67. # define NAND_4PAGE_ARRAY 0x00000040
  68. # define NAND_NO_READRDY 0x00000100
  69. # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
  70. # define NAND_IO
  71. # define PAGE(addr) ((addr) >> ADDR_SHIFT)
  72. # define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
  73. # define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
  74. # define OOB_SHIFT (PAGE_SHIFT - 5)
  75. # define OOB_SIZE (1 << OOB_SHIFT)
  76. # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
  77. # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
  78. # define PAGE_SIZE 256
  79. # define PAGE_SHIFT 8
  80. # define PAGE_SECTORS 1
  81. # define ADDR_SHIFT 8
  82. # include "nand.c"
  83. # define PAGE_SIZE 512
  84. # define PAGE_SHIFT 9
  85. # define PAGE_SECTORS 1
  86. # define ADDR_SHIFT 8
  87. # include "nand.c"
  88. # define PAGE_SIZE 2048
  89. # define PAGE_SHIFT 11
  90. # define PAGE_SECTORS 4
  91. # define ADDR_SHIFT 16
  92. # include "nand.c"
  93. /* Information based on Linux drivers/mtd/nand/nand_ids.c */
  94. static const struct {
  95. int size;
  96. int width;
  97. int page_shift;
  98. int erase_shift;
  99. uint32_t options;
  100. } nand_flash_ids[0x100] = {
  101. [0 ... 0xff] = { 0 },
  102. [0x6e] = { 1, 8, 8, 4, 0 },
  103. [0x64] = { 2, 8, 8, 4, 0 },
  104. [0x6b] = { 4, 8, 9, 4, 0 },
  105. [0xe8] = { 1, 8, 8, 4, 0 },
  106. [0xec] = { 1, 8, 8, 4, 0 },
  107. [0xea] = { 2, 8, 8, 4, 0 },
  108. [0xd5] = { 4, 8, 9, 4, 0 },
  109. [0xe3] = { 4, 8, 9, 4, 0 },
  110. [0xe5] = { 4, 8, 9, 4, 0 },
  111. [0xd6] = { 8, 8, 9, 4, 0 },
  112. [0x39] = { 8, 8, 9, 4, 0 },
  113. [0xe6] = { 8, 8, 9, 4, 0 },
  114. [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
  115. [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
  116. [0x33] = { 16, 8, 9, 5, 0 },
  117. [0x73] = { 16, 8, 9, 5, 0 },
  118. [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
  119. [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
  120. [0x35] = { 32, 8, 9, 5, 0 },
  121. [0x75] = { 32, 8, 9, 5, 0 },
  122. [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
  123. [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
  124. [0x36] = { 64, 8, 9, 5, 0 },
  125. [0x76] = { 64, 8, 9, 5, 0 },
  126. [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
  127. [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
  128. [0x78] = { 128, 8, 9, 5, 0 },
  129. [0x39] = { 128, 8, 9, 5, 0 },
  130. [0x79] = { 128, 8, 9, 5, 0 },
  131. [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
  132. [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
  133. [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
  134. [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
  135. [0x71] = { 256, 8, 9, 5, 0 },
  136. /*
  137. * These are the new chips with large page size. The pagesize and the
  138. * erasesize is determined from the extended id bytes
  139. */
  140. # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
  141. # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
  142. /* 512 Megabit */
  143. [0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
  144. [0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
  145. [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
  146. [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
  147. /* 1 Gigabit */
  148. [0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
  149. [0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
  150. [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
  151. [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
  152. /* 2 Gigabit */
  153. [0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
  154. [0xda] = { 256, 8, 0, 0, LP_OPTIONS },
  155. [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
  156. [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
  157. /* 4 Gigabit */
  158. [0xac] = { 512, 8, 0, 0, LP_OPTIONS },
  159. [0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
  160. [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
  161. [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
  162. /* 8 Gigabit */
  163. [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
  164. [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
  165. [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
  166. [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
  167. /* 16 Gigabit */
  168. [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
  169. [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
  170. [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
  171. [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
  172. };
  173. static void nand_reset(NANDFlashState *s)
  174. {
  175. s->cmd = NAND_CMD_READ0;
  176. s->addr = 0;
  177. s->addrlen = 0;
  178. s->iolen = 0;
  179. s->offset = 0;
  180. s->status &= NAND_IOSTATUS_UNPROTCT;
  181. }
  182. static void nand_command(NANDFlashState *s)
  183. {
  184. unsigned int offset;
  185. switch (s->cmd) {
  186. case NAND_CMD_READ0:
  187. s->iolen = 0;
  188. break;
  189. case NAND_CMD_READID:
  190. s->io[0] = s->manf_id;
  191. s->io[1] = s->chip_id;
  192. s->io[2] = 'Q'; /* Don't-care byte (often 0xa5) */
  193. if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
  194. s->io[3] = 0x15; /* Page Size, Block Size, Spare Size.. */
  195. else
  196. s->io[3] = 0xc0; /* Multi-plane */
  197. s->ioaddr = s->io;
  198. s->iolen = 4;
  199. break;
  200. case NAND_CMD_RANDOMREAD2:
  201. case NAND_CMD_NOSERIALREAD2:
  202. if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
  203. break;
  204. offset = s->addr & ((1 << s->addr_shift) - 1);
  205. s->blk_load(s, s->addr, offset);
  206. if (s->gnd)
  207. s->iolen = (1 << s->page_shift) - offset;
  208. else
  209. s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
  210. break;
  211. case NAND_CMD_RESET:
  212. nand_reset(s);
  213. break;
  214. case NAND_CMD_PAGEPROGRAM1:
  215. s->ioaddr = s->io;
  216. s->iolen = 0;
  217. break;
  218. case NAND_CMD_PAGEPROGRAM2:
  219. if (s->wp) {
  220. s->blk_write(s);
  221. }
  222. break;
  223. case NAND_CMD_BLOCKERASE1:
  224. break;
  225. case NAND_CMD_BLOCKERASE2:
  226. if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
  227. s->addr <<= 16;
  228. else
  229. s->addr <<= 8;
  230. if (s->wp) {
  231. s->blk_erase(s);
  232. }
  233. break;
  234. case NAND_CMD_READSTATUS:
  235. s->io[0] = s->status;
  236. s->ioaddr = s->io;
  237. s->iolen = 1;
  238. break;
  239. default:
  240. printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
  241. }
  242. }
  243. static void nand_pre_save(void *opaque)
  244. {
  245. NANDFlashState *s = opaque;
  246. s->ioaddr_vmstate = s->ioaddr - s->io;
  247. }
  248. static int nand_post_load(void *opaque, int version_id)
  249. {
  250. NANDFlashState *s = opaque;
  251. if (s->ioaddr_vmstate > sizeof(s->io)) {
  252. return -EINVAL;
  253. }
  254. s->ioaddr = s->io + s->ioaddr_vmstate;
  255. return 0;
  256. }
  257. static const VMStateDescription vmstate_nand = {
  258. .name = "nand",
  259. .version_id = 0,
  260. .minimum_version_id = 0,
  261. .minimum_version_id_old = 0,
  262. .pre_save = nand_pre_save,
  263. .post_load = nand_post_load,
  264. .fields = (VMStateField[]) {
  265. VMSTATE_UINT8(cle, NANDFlashState),
  266. VMSTATE_UINT8(ale, NANDFlashState),
  267. VMSTATE_UINT8(ce, NANDFlashState),
  268. VMSTATE_UINT8(wp, NANDFlashState),
  269. VMSTATE_UINT8(gnd, NANDFlashState),
  270. VMSTATE_BUFFER(io, NANDFlashState),
  271. VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
  272. VMSTATE_INT32(iolen, NANDFlashState),
  273. VMSTATE_UINT32(cmd, NANDFlashState),
  274. VMSTATE_UINT32(addr, NANDFlashState),
  275. VMSTATE_INT32(addrlen, NANDFlashState),
  276. VMSTATE_INT32(status, NANDFlashState),
  277. VMSTATE_INT32(offset, NANDFlashState),
  278. /* XXX: do we want to save s->storage too? */
  279. VMSTATE_END_OF_LIST()
  280. }
  281. };
  282. /*
  283. * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
  284. * outputs are R/B and eight I/O pins.
  285. *
  286. * CE, WP and R/B are active low.
  287. */
  288. void nand_setpins(NANDFlashState *s, uint8_t cle, uint8_t ale,
  289. uint8_t ce, uint8_t wp, uint8_t gnd)
  290. {
  291. s->cle = cle;
  292. s->ale = ale;
  293. s->ce = ce;
  294. s->wp = wp;
  295. s->gnd = gnd;
  296. if (wp)
  297. s->status |= NAND_IOSTATUS_UNPROTCT;
  298. else
  299. s->status &= ~NAND_IOSTATUS_UNPROTCT;
  300. }
  301. void nand_getpins(NANDFlashState *s, int *rb)
  302. {
  303. *rb = 1;
  304. }
  305. void nand_setio(NANDFlashState *s, uint8_t value)
  306. {
  307. if (!s->ce && s->cle) {
  308. if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
  309. if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
  310. return;
  311. if (value == NAND_CMD_RANDOMREAD1) {
  312. s->addr &= ~((1 << s->addr_shift) - 1);
  313. s->addrlen = 0;
  314. return;
  315. }
  316. }
  317. if (value == NAND_CMD_READ0)
  318. s->offset = 0;
  319. else if (value == NAND_CMD_READ1) {
  320. s->offset = 0x100;
  321. value = NAND_CMD_READ0;
  322. }
  323. else if (value == NAND_CMD_READ2) {
  324. s->offset = 1 << s->page_shift;
  325. value = NAND_CMD_READ0;
  326. }
  327. s->cmd = value;
  328. if (s->cmd == NAND_CMD_READSTATUS ||
  329. s->cmd == NAND_CMD_PAGEPROGRAM2 ||
  330. s->cmd == NAND_CMD_BLOCKERASE1 ||
  331. s->cmd == NAND_CMD_BLOCKERASE2 ||
  332. s->cmd == NAND_CMD_NOSERIALREAD2 ||
  333. s->cmd == NAND_CMD_RANDOMREAD2 ||
  334. s->cmd == NAND_CMD_RESET)
  335. nand_command(s);
  336. if (s->cmd != NAND_CMD_RANDOMREAD2) {
  337. s->addrlen = 0;
  338. }
  339. }
  340. if (s->ale) {
  341. unsigned int shift = s->addrlen * 8;
  342. unsigned int mask = ~(0xff << shift);
  343. unsigned int v = value << shift;
  344. s->addr = (s->addr & mask) | v;
  345. s->addrlen ++;
  346. if (s->addrlen == 1 && s->cmd == NAND_CMD_READID)
  347. nand_command(s);
  348. if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
  349. s->addrlen == 3 && (
  350. s->cmd == NAND_CMD_READ0 ||
  351. s->cmd == NAND_CMD_PAGEPROGRAM1))
  352. nand_command(s);
  353. if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
  354. s->addrlen == 4 && (
  355. s->cmd == NAND_CMD_READ0 ||
  356. s->cmd == NAND_CMD_PAGEPROGRAM1))
  357. nand_command(s);
  358. }
  359. if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
  360. if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift))
  361. s->io[s->iolen ++] = value;
  362. } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
  363. if ((s->addr & ((1 << s->addr_shift) - 1)) <
  364. (1 << s->page_shift) + (1 << s->oob_shift)) {
  365. s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] = value;
  366. s->addr ++;
  367. }
  368. }
  369. }
  370. uint8_t nand_getio(NANDFlashState *s)
  371. {
  372. int offset;
  373. /* Allow sequential reading */
  374. if (!s->iolen && s->cmd == NAND_CMD_READ0) {
  375. offset = (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
  376. s->offset = 0;
  377. s->blk_load(s, s->addr, offset);
  378. if (s->gnd)
  379. s->iolen = (1 << s->page_shift) - offset;
  380. else
  381. s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
  382. }
  383. if (s->ce || s->iolen <= 0)
  384. return 0;
  385. s->iolen --;
  386. s->addr++;
  387. return *(s->ioaddr ++);
  388. }
  389. NANDFlashState *nand_init(int manf_id, int chip_id)
  390. {
  391. int pagesize;
  392. NANDFlashState *s;
  393. DriveInfo *dinfo;
  394. if (nand_flash_ids[chip_id].size == 0) {
  395. hw_error("%s: Unsupported NAND chip ID.\n", __FUNCTION__);
  396. }
  397. s = (NANDFlashState *) qemu_mallocz(sizeof(NANDFlashState));
  398. dinfo = drive_get(IF_MTD, 0, 0);
  399. if (dinfo)
  400. s->bdrv = dinfo->bdrv;
  401. s->manf_id = manf_id;
  402. s->chip_id = chip_id;
  403. s->size = nand_flash_ids[s->chip_id].size << 20;
  404. if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
  405. s->page_shift = 11;
  406. s->erase_shift = 6;
  407. } else {
  408. s->page_shift = nand_flash_ids[s->chip_id].page_shift;
  409. s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
  410. }
  411. switch (1 << s->page_shift) {
  412. case 256:
  413. nand_init_256(s);
  414. break;
  415. case 512:
  416. nand_init_512(s);
  417. break;
  418. case 2048:
  419. nand_init_2048(s);
  420. break;
  421. default:
  422. hw_error("%s: Unsupported NAND block size.\n", __FUNCTION__);
  423. }
  424. pagesize = 1 << s->oob_shift;
  425. s->mem_oob = 1;
  426. if (s->bdrv && bdrv_getlength(s->bdrv) >=
  427. (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
  428. pagesize = 0;
  429. s->mem_oob = 0;
  430. }
  431. if (!s->bdrv)
  432. pagesize += 1 << s->page_shift;
  433. if (pagesize)
  434. s->storage = (uint8_t *) memset(qemu_malloc(s->pages * pagesize),
  435. 0xff, s->pages * pagesize);
  436. /* Give s->ioaddr a sane value in case we save state before it
  437. is used. */
  438. s->ioaddr = s->io;
  439. vmstate_register(NULL, -1, &vmstate_nand, s);
  440. return s;
  441. }
  442. void nand_done(NANDFlashState *s)
  443. {
  444. if (s->bdrv) {
  445. bdrv_close(s->bdrv);
  446. bdrv_delete(s->bdrv);
  447. }
  448. if (!s->bdrv || s->mem_oob)
  449. qemu_free(s->storage);
  450. qemu_free(s);
  451. }
  452. #else
  453. /* Program a single page */
  454. static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
  455. {
  456. uint32_t off, page, sector, soff;
  457. uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
  458. if (PAGE(s->addr) >= s->pages)
  459. return;
  460. if (!s->bdrv) {
  461. memcpy(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
  462. s->offset, s->io, s->iolen);
  463. } else if (s->mem_oob) {
  464. sector = SECTOR(s->addr);
  465. off = (s->addr & PAGE_MASK) + s->offset;
  466. soff = SECTOR_OFFSET(s->addr);
  467. if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1) {
  468. printf("%s: read error in sector %i\n", __FUNCTION__, sector);
  469. return;
  470. }
  471. memcpy(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
  472. if (off + s->iolen > PAGE_SIZE) {
  473. page = PAGE(s->addr);
  474. memcpy(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
  475. MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
  476. }
  477. if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1)
  478. printf("%s: write error in sector %i\n", __FUNCTION__, sector);
  479. } else {
  480. off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
  481. sector = off >> 9;
  482. soff = off & 0x1ff;
  483. if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1) {
  484. printf("%s: read error in sector %i\n", __FUNCTION__, sector);
  485. return;
  486. }
  487. memcpy(iobuf + soff, s->io, s->iolen);
  488. if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1)
  489. printf("%s: write error in sector %i\n", __FUNCTION__, sector);
  490. }
  491. s->offset = 0;
  492. }
  493. /* Erase a single block */
  494. static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
  495. {
  496. uint32_t i, page, addr;
  497. uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
  498. addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
  499. if (PAGE(addr) >= s->pages)
  500. return;
  501. if (!s->bdrv) {
  502. memset(s->storage + PAGE_START(addr),
  503. 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
  504. } else if (s->mem_oob) {
  505. memset(s->storage + (PAGE(addr) << OOB_SHIFT),
  506. 0xff, OOB_SIZE << s->erase_shift);
  507. i = SECTOR(addr);
  508. page = SECTOR(addr + (ADDR_SHIFT + s->erase_shift));
  509. for (; i < page; i ++)
  510. if (bdrv_write(s->bdrv, i, iobuf, 1) == -1)
  511. printf("%s: write error in sector %i\n", __FUNCTION__, i);
  512. } else {
  513. addr = PAGE_START(addr);
  514. page = addr >> 9;
  515. if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
  516. printf("%s: read error in sector %i\n", __FUNCTION__, page);
  517. memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
  518. if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
  519. printf("%s: write error in sector %i\n", __FUNCTION__, page);
  520. memset(iobuf, 0xff, 0x200);
  521. i = (addr & ~0x1ff) + 0x200;
  522. for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
  523. i < addr; i += 0x200)
  524. if (bdrv_write(s->bdrv, i >> 9, iobuf, 1) == -1)
  525. printf("%s: write error in sector %i\n", __FUNCTION__, i >> 9);
  526. page = i >> 9;
  527. if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
  528. printf("%s: read error in sector %i\n", __FUNCTION__, page);
  529. memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
  530. if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
  531. printf("%s: write error in sector %i\n", __FUNCTION__, page);
  532. }
  533. }
  534. static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
  535. uint32_t addr, int offset)
  536. {
  537. if (PAGE(addr) >= s->pages)
  538. return;
  539. if (s->bdrv) {
  540. if (s->mem_oob) {
  541. if (bdrv_read(s->bdrv, SECTOR(addr), s->io, PAGE_SECTORS) == -1)
  542. printf("%s: read error in sector %i\n",
  543. __FUNCTION__, SECTOR(addr));
  544. memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
  545. s->storage + (PAGE(s->addr) << OOB_SHIFT),
  546. OOB_SIZE);
  547. s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
  548. } else {
  549. if (bdrv_read(s->bdrv, PAGE_START(addr) >> 9,
  550. s->io, (PAGE_SECTORS + 2)) == -1)
  551. printf("%s: read error in sector %i\n",
  552. __FUNCTION__, PAGE_START(addr) >> 9);
  553. s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
  554. }
  555. } else {
  556. memcpy(s->io, s->storage + PAGE_START(s->addr) +
  557. offset, PAGE_SIZE + OOB_SIZE - offset);
  558. s->ioaddr = s->io;
  559. }
  560. }
  561. static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
  562. {
  563. s->oob_shift = PAGE_SHIFT - 5;
  564. s->pages = s->size >> PAGE_SHIFT;
  565. s->addr_shift = ADDR_SHIFT;
  566. s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
  567. s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
  568. s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
  569. }
  570. # undef PAGE_SIZE
  571. # undef PAGE_SHIFT
  572. # undef PAGE_SECTORS
  573. # undef ADDR_SHIFT
  574. #endif /* NAND_IO */