mips_r4k.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310
  1. /*
  2. * QEMU/MIPS pseudo-board
  3. *
  4. * emulates a simple machine with ISA-like bus.
  5. * ISA IO space mapped to the 0x14000000 (PHYS) and
  6. * ISA memory at the 0x10000000 (PHYS, 16Mb in size).
  7. * All peripherial devices are attached to this "bus" with
  8. * the standard PC ISA addresses.
  9. */
  10. #include "hw.h"
  11. #include "mips.h"
  12. #include "mips_cpudevs.h"
  13. #include "pc.h"
  14. #include "isa.h"
  15. #include "net.h"
  16. #include "sysemu.h"
  17. #include "boards.h"
  18. #include "flash.h"
  19. #include "qemu-log.h"
  20. #include "mips-bios.h"
  21. #include "ide.h"
  22. #include "loader.h"
  23. #include "elf.h"
  24. #include "mc146818rtc.h"
  25. #include "blockdev.h"
  26. #define MAX_IDE_BUS 2
  27. static const int ide_iobase[2] = { 0x1f0, 0x170 };
  28. static const int ide_iobase2[2] = { 0x3f6, 0x376 };
  29. static const int ide_irq[2] = { 14, 15 };
  30. static ISADevice *pit; /* PIT i8254 */
  31. /* i8254 PIT is attached to the IRQ0 at PIC i8259 */
  32. static struct _loaderparams {
  33. int ram_size;
  34. const char *kernel_filename;
  35. const char *kernel_cmdline;
  36. const char *initrd_filename;
  37. } loaderparams;
  38. static void mips_qemu_writel (void *opaque, target_phys_addr_t addr,
  39. uint32_t val)
  40. {
  41. if ((addr & 0xffff) == 0 && val == 42)
  42. qemu_system_reset_request ();
  43. else if ((addr & 0xffff) == 4 && val == 42)
  44. qemu_system_shutdown_request ();
  45. }
  46. static uint32_t mips_qemu_readl (void *opaque, target_phys_addr_t addr)
  47. {
  48. return 0;
  49. }
  50. static CPUWriteMemoryFunc * const mips_qemu_write[] = {
  51. &mips_qemu_writel,
  52. &mips_qemu_writel,
  53. &mips_qemu_writel,
  54. };
  55. static CPUReadMemoryFunc * const mips_qemu_read[] = {
  56. &mips_qemu_readl,
  57. &mips_qemu_readl,
  58. &mips_qemu_readl,
  59. };
  60. static int mips_qemu_iomemtype = 0;
  61. typedef struct ResetData {
  62. CPUState *env;
  63. uint64_t vector;
  64. } ResetData;
  65. static int64_t load_kernel(void)
  66. {
  67. int64_t entry, kernel_high;
  68. long kernel_size, initrd_size, params_size;
  69. ram_addr_t initrd_offset;
  70. uint32_t *params_buf;
  71. int big_endian;
  72. #ifdef TARGET_WORDS_BIGENDIAN
  73. big_endian = 1;
  74. #else
  75. big_endian = 0;
  76. #endif
  77. kernel_size = load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys,
  78. NULL, (uint64_t *)&entry, NULL,
  79. (uint64_t *)&kernel_high, big_endian,
  80. ELF_MACHINE, 1);
  81. if (kernel_size >= 0) {
  82. if ((entry & ~0x7fffffffULL) == 0x80000000)
  83. entry = (int32_t)entry;
  84. } else {
  85. fprintf(stderr, "qemu: could not load kernel '%s'\n",
  86. loaderparams.kernel_filename);
  87. exit(1);
  88. }
  89. /* load initrd */
  90. initrd_size = 0;
  91. initrd_offset = 0;
  92. if (loaderparams.initrd_filename) {
  93. initrd_size = get_image_size (loaderparams.initrd_filename);
  94. if (initrd_size > 0) {
  95. initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
  96. if (initrd_offset + initrd_size > ram_size) {
  97. fprintf(stderr,
  98. "qemu: memory too small for initial ram disk '%s'\n",
  99. loaderparams.initrd_filename);
  100. exit(1);
  101. }
  102. initrd_size = load_image_targphys(loaderparams.initrd_filename,
  103. initrd_offset,
  104. ram_size - initrd_offset);
  105. }
  106. if (initrd_size == (target_ulong) -1) {
  107. fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
  108. loaderparams.initrd_filename);
  109. exit(1);
  110. }
  111. }
  112. /* Store command line. */
  113. params_size = 264;
  114. params_buf = qemu_malloc(params_size);
  115. params_buf[0] = tswap32(ram_size);
  116. params_buf[1] = tswap32(0x12345678);
  117. if (initrd_size > 0) {
  118. snprintf((char *)params_buf + 8, 256, "rd_start=0x%" PRIx64 " rd_size=%li %s",
  119. cpu_mips_phys_to_kseg0(NULL, initrd_offset),
  120. initrd_size, loaderparams.kernel_cmdline);
  121. } else {
  122. snprintf((char *)params_buf + 8, 256, "%s", loaderparams.kernel_cmdline);
  123. }
  124. rom_add_blob_fixed("params", params_buf, params_size,
  125. (16 << 20) - 264);
  126. return entry;
  127. }
  128. static void main_cpu_reset(void *opaque)
  129. {
  130. ResetData *s = (ResetData *)opaque;
  131. CPUState *env = s->env;
  132. cpu_reset(env);
  133. env->active_tc.PC = s->vector;
  134. }
  135. static const int sector_len = 32 * 1024;
  136. static
  137. void mips_r4k_init (ram_addr_t ram_size,
  138. const char *boot_device,
  139. const char *kernel_filename, const char *kernel_cmdline,
  140. const char *initrd_filename, const char *cpu_model)
  141. {
  142. char *filename;
  143. ram_addr_t ram_offset;
  144. ram_addr_t bios_offset;
  145. int bios_size;
  146. CPUState *env;
  147. ResetData *reset_info;
  148. int i;
  149. qemu_irq *i8259;
  150. DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
  151. DriveInfo *dinfo;
  152. int be;
  153. /* init CPUs */
  154. if (cpu_model == NULL) {
  155. #ifdef TARGET_MIPS64
  156. cpu_model = "R4000";
  157. #else
  158. cpu_model = "24Kf";
  159. #endif
  160. }
  161. env = cpu_init(cpu_model);
  162. if (!env) {
  163. fprintf(stderr, "Unable to find CPU definition\n");
  164. exit(1);
  165. }
  166. reset_info = qemu_mallocz(sizeof(ResetData));
  167. reset_info->env = env;
  168. reset_info->vector = env->active_tc.PC;
  169. qemu_register_reset(main_cpu_reset, reset_info);
  170. /* allocate RAM */
  171. if (ram_size > (256 << 20)) {
  172. fprintf(stderr,
  173. "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
  174. ((unsigned int)ram_size / (1 << 20)));
  175. exit(1);
  176. }
  177. ram_offset = qemu_ram_alloc(NULL, "mips_r4k.ram", ram_size);
  178. cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
  179. if (!mips_qemu_iomemtype) {
  180. mips_qemu_iomemtype = cpu_register_io_memory(mips_qemu_read,
  181. mips_qemu_write, NULL,
  182. DEVICE_NATIVE_ENDIAN);
  183. }
  184. cpu_register_physical_memory(0x1fbf0000, 0x10000, mips_qemu_iomemtype);
  185. /* Try to load a BIOS image. If this fails, we continue regardless,
  186. but initialize the hardware ourselves. When a kernel gets
  187. preloaded we also initialize the hardware, since the BIOS wasn't
  188. run. */
  189. if (bios_name == NULL)
  190. bios_name = BIOS_FILENAME;
  191. filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
  192. if (filename) {
  193. bios_size = get_image_size(filename);
  194. } else {
  195. bios_size = -1;
  196. }
  197. #ifdef TARGET_WORDS_BIGENDIAN
  198. be = 1;
  199. #else
  200. be = 0;
  201. #endif
  202. if ((bios_size > 0) && (bios_size <= BIOS_SIZE)) {
  203. bios_offset = qemu_ram_alloc(NULL, "mips_r4k.bios", BIOS_SIZE);
  204. cpu_register_physical_memory(0x1fc00000, BIOS_SIZE,
  205. bios_offset | IO_MEM_ROM);
  206. load_image_targphys(filename, 0x1fc00000, BIOS_SIZE);
  207. } else if ((dinfo = drive_get(IF_PFLASH, 0, 0)) != NULL) {
  208. uint32_t mips_rom = 0x00400000;
  209. bios_offset = qemu_ram_alloc(NULL, "mips_r4k.bios", mips_rom);
  210. if (!pflash_cfi01_register(0x1fc00000, bios_offset,
  211. dinfo->bdrv, sector_len,
  212. mips_rom / sector_len,
  213. 4, 0, 0, 0, 0, be)) {
  214. fprintf(stderr, "qemu: Error registering flash memory.\n");
  215. }
  216. }
  217. else {
  218. /* not fatal */
  219. fprintf(stderr, "qemu: Warning, could not load MIPS bios '%s'\n",
  220. bios_name);
  221. }
  222. if (filename) {
  223. qemu_free(filename);
  224. }
  225. if (kernel_filename) {
  226. loaderparams.ram_size = ram_size;
  227. loaderparams.kernel_filename = kernel_filename;
  228. loaderparams.kernel_cmdline = kernel_cmdline;
  229. loaderparams.initrd_filename = initrd_filename;
  230. reset_info->vector = load_kernel();
  231. }
  232. /* Init CPU internal devices */
  233. cpu_mips_irq_init_cpu(env);
  234. cpu_mips_clock_init(env);
  235. /* The PIC is attached to the MIPS CPU INT0 pin */
  236. i8259 = i8259_init(env->irq[2]);
  237. isa_bus_new(NULL);
  238. isa_bus_irqs(i8259);
  239. rtc_init(2000, NULL);
  240. /* Register 64 KB of ISA IO space at 0x14000000 */
  241. isa_mmio_init(0x14000000, 0x00010000);
  242. isa_mem_base = 0x10000000;
  243. pit = pit_init(0x40, 0);
  244. for(i = 0; i < MAX_SERIAL_PORTS; i++) {
  245. if (serial_hds[i]) {
  246. serial_isa_init(i, serial_hds[i]);
  247. }
  248. }
  249. isa_vga_init();
  250. if (nd_table[0].vlan)
  251. isa_ne2000_init(0x300, 9, &nd_table[0]);
  252. ide_drive_get(hd, MAX_IDE_BUS);
  253. for(i = 0; i < MAX_IDE_BUS; i++)
  254. isa_ide_init(ide_iobase[i], ide_iobase2[i], ide_irq[i],
  255. hd[MAX_IDE_DEVS * i],
  256. hd[MAX_IDE_DEVS * i + 1]);
  257. isa_create_simple("i8042");
  258. }
  259. static QEMUMachine mips_machine = {
  260. .name = "mips",
  261. .desc = "mips r4k platform",
  262. .init = mips_r4k_init,
  263. };
  264. static void mips_machine_init(void)
  265. {
  266. qemu_register_machine(&mips_machine);
  267. }
  268. machine_init(mips_machine_init);