lm32_boards.c 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304
  1. /*
  2. * QEMU models for LatticeMico32 uclinux and evr32 boards.
  3. *
  4. * Copyright (c) 2010 Michael Walle <michael@walle.cc>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "sysbus.h"
  20. #include "hw.h"
  21. #include "net.h"
  22. #include "flash.h"
  23. #include "devices.h"
  24. #include "boards.h"
  25. #include "loader.h"
  26. #include "blockdev.h"
  27. #include "elf.h"
  28. #include "lm32_hwsetup.h"
  29. #include "lm32.h"
  30. typedef struct {
  31. CPUState *env;
  32. target_phys_addr_t bootstrap_pc;
  33. target_phys_addr_t flash_base;
  34. target_phys_addr_t hwsetup_base;
  35. target_phys_addr_t initrd_base;
  36. size_t initrd_size;
  37. target_phys_addr_t cmdline_base;
  38. } ResetInfo;
  39. static void cpu_irq_handler(void *opaque, int irq, int level)
  40. {
  41. CPUState *env = opaque;
  42. if (level) {
  43. cpu_interrupt(env, CPU_INTERRUPT_HARD);
  44. } else {
  45. cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
  46. }
  47. }
  48. static void main_cpu_reset(void *opaque)
  49. {
  50. ResetInfo *reset_info = opaque;
  51. CPUState *env = reset_info->env;
  52. cpu_reset(env);
  53. /* init defaults */
  54. env->pc = (uint32_t)reset_info->bootstrap_pc;
  55. env->regs[R_R1] = (uint32_t)reset_info->hwsetup_base;
  56. env->regs[R_R2] = (uint32_t)reset_info->cmdline_base;
  57. env->regs[R_R3] = (uint32_t)reset_info->initrd_base;
  58. env->regs[R_R4] = (uint32_t)(reset_info->initrd_base +
  59. reset_info->initrd_size);
  60. env->eba = reset_info->flash_base;
  61. env->deba = reset_info->flash_base;
  62. }
  63. static void lm32_evr_init(ram_addr_t ram_size_not_used,
  64. const char *boot_device,
  65. const char *kernel_filename,
  66. const char *kernel_cmdline,
  67. const char *initrd_filename, const char *cpu_model)
  68. {
  69. CPUState *env;
  70. DriveInfo *dinfo;
  71. ram_addr_t phys_ram;
  72. ram_addr_t phys_flash;
  73. qemu_irq *cpu_irq, irq[32];
  74. ResetInfo *reset_info;
  75. int i;
  76. /* memory map */
  77. target_phys_addr_t flash_base = 0x04000000;
  78. size_t flash_sector_size = 256 * 1024;
  79. size_t flash_size = 32 * 1024 * 1024;
  80. target_phys_addr_t ram_base = 0x08000000;
  81. size_t ram_size = 64 * 1024 * 1024;
  82. target_phys_addr_t timer0_base = 0x80002000;
  83. target_phys_addr_t uart0_base = 0x80006000;
  84. target_phys_addr_t timer1_base = 0x8000a000;
  85. int uart0_irq = 0;
  86. int timer0_irq = 1;
  87. int timer1_irq = 3;
  88. reset_info = qemu_mallocz(sizeof(ResetInfo));
  89. if (cpu_model == NULL) {
  90. cpu_model = "lm32-full";
  91. }
  92. env = cpu_init(cpu_model);
  93. reset_info->env = env;
  94. reset_info->flash_base = flash_base;
  95. phys_ram = qemu_ram_alloc(NULL, "lm32_evr.sdram", ram_size);
  96. cpu_register_physical_memory(ram_base, ram_size, phys_ram | IO_MEM_RAM);
  97. phys_flash = qemu_ram_alloc(NULL, "lm32_evr.flash", flash_size);
  98. dinfo = drive_get(IF_PFLASH, 0, 0);
  99. /* Spansion S29NS128P */
  100. pflash_cfi02_register(flash_base, phys_flash,
  101. dinfo ? dinfo->bdrv : NULL, flash_sector_size,
  102. flash_size / flash_sector_size, 1, 2,
  103. 0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
  104. /* create irq lines */
  105. cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
  106. env->pic_state = lm32_pic_init(*cpu_irq);
  107. for (i = 0; i < 32; i++) {
  108. irq[i] = qdev_get_gpio_in(env->pic_state, i);
  109. }
  110. sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
  111. sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
  112. sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
  113. /* make sure juart isn't the first chardev */
  114. env->juart_state = lm32_juart_init();
  115. reset_info->bootstrap_pc = flash_base;
  116. if (kernel_filename) {
  117. uint64_t entry;
  118. int kernel_size;
  119. kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
  120. 1, ELF_MACHINE, 0);
  121. reset_info->bootstrap_pc = entry;
  122. if (kernel_size < 0) {
  123. kernel_size = load_image_targphys(kernel_filename, ram_base,
  124. ram_size);
  125. reset_info->bootstrap_pc = ram_base;
  126. }
  127. if (kernel_size < 0) {
  128. fprintf(stderr, "qemu: could not load kernel '%s'\n",
  129. kernel_filename);
  130. exit(1);
  131. }
  132. }
  133. qemu_register_reset(main_cpu_reset, reset_info);
  134. }
  135. static void lm32_uclinux_init(ram_addr_t ram_size_not_used,
  136. const char *boot_device,
  137. const char *kernel_filename,
  138. const char *kernel_cmdline,
  139. const char *initrd_filename, const char *cpu_model)
  140. {
  141. CPUState *env;
  142. DriveInfo *dinfo;
  143. ram_addr_t phys_ram;
  144. ram_addr_t phys_flash;
  145. qemu_irq *cpu_irq, irq[32];
  146. HWSetup *hw;
  147. ResetInfo *reset_info;
  148. int i;
  149. /* memory map */
  150. target_phys_addr_t flash_base = 0x04000000;
  151. size_t flash_sector_size = 256 * 1024;
  152. size_t flash_size = 32 * 1024 * 1024;
  153. target_phys_addr_t ram_base = 0x08000000;
  154. size_t ram_size = 64 * 1024 * 1024;
  155. target_phys_addr_t uart0_base = 0x80000000;
  156. target_phys_addr_t timer0_base = 0x80002000;
  157. target_phys_addr_t timer1_base = 0x80010000;
  158. target_phys_addr_t timer2_base = 0x80012000;
  159. int uart0_irq = 0;
  160. int timer0_irq = 1;
  161. int timer1_irq = 20;
  162. int timer2_irq = 21;
  163. target_phys_addr_t hwsetup_base = 0x0bffe000;
  164. target_phys_addr_t cmdline_base = 0x0bfff000;
  165. target_phys_addr_t initrd_base = 0x08400000;
  166. size_t initrd_max = 0x01000000;
  167. reset_info = qemu_mallocz(sizeof(ResetInfo));
  168. if (cpu_model == NULL) {
  169. cpu_model = "lm32-full";
  170. }
  171. env = cpu_init(cpu_model);
  172. reset_info->env = env;
  173. reset_info->flash_base = flash_base;
  174. phys_ram = qemu_ram_alloc(NULL, "lm32_uclinux.sdram", ram_size);
  175. cpu_register_physical_memory(ram_base, ram_size, phys_ram | IO_MEM_RAM);
  176. phys_flash = qemu_ram_alloc(NULL, "lm32_uclinux.flash", flash_size);
  177. dinfo = drive_get(IF_PFLASH, 0, 0);
  178. /* Spansion S29NS128P */
  179. pflash_cfi02_register(flash_base, phys_flash,
  180. dinfo ? dinfo->bdrv : NULL, flash_sector_size,
  181. flash_size / flash_sector_size, 1, 2,
  182. 0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
  183. /* create irq lines */
  184. cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
  185. env->pic_state = lm32_pic_init(*cpu_irq);
  186. for (i = 0; i < 32; i++) {
  187. irq[i] = qdev_get_gpio_in(env->pic_state, i);
  188. }
  189. sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
  190. sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
  191. sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
  192. sysbus_create_simple("lm32-timer", timer2_base, irq[timer2_irq]);
  193. /* make sure juart isn't the first chardev */
  194. env->juart_state = lm32_juart_init();
  195. reset_info->bootstrap_pc = flash_base;
  196. if (kernel_filename) {
  197. uint64_t entry;
  198. int kernel_size;
  199. kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
  200. 1, ELF_MACHINE, 0);
  201. reset_info->bootstrap_pc = entry;
  202. if (kernel_size < 0) {
  203. kernel_size = load_image_targphys(kernel_filename, ram_base,
  204. ram_size);
  205. reset_info->bootstrap_pc = ram_base;
  206. }
  207. if (kernel_size < 0) {
  208. fprintf(stderr, "qemu: could not load kernel '%s'\n",
  209. kernel_filename);
  210. exit(1);
  211. }
  212. }
  213. /* generate a rom with the hardware description */
  214. hw = hwsetup_init();
  215. hwsetup_add_cpu(hw, "LM32", 75000000);
  216. hwsetup_add_flash(hw, "flash", flash_base, flash_size);
  217. hwsetup_add_ddr_sdram(hw, "ddr_sdram", ram_base, ram_size);
  218. hwsetup_add_timer(hw, "timer0", timer0_base, timer0_irq);
  219. hwsetup_add_timer(hw, "timer1_dev_only", timer1_base, timer1_irq);
  220. hwsetup_add_timer(hw, "timer2_dev_only", timer2_base, timer2_irq);
  221. hwsetup_add_uart(hw, "uart", uart0_base, uart0_irq);
  222. hwsetup_add_trailer(hw);
  223. hwsetup_create_rom(hw, hwsetup_base);
  224. hwsetup_free(hw);
  225. reset_info->hwsetup_base = hwsetup_base;
  226. if (kernel_cmdline && strlen(kernel_cmdline)) {
  227. pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE,
  228. kernel_cmdline);
  229. reset_info->cmdline_base = cmdline_base;
  230. }
  231. if (initrd_filename) {
  232. size_t initrd_size;
  233. initrd_size = load_image_targphys(initrd_filename, initrd_base,
  234. initrd_max);
  235. reset_info->initrd_base = initrd_base;
  236. reset_info->initrd_size = initrd_size;
  237. }
  238. qemu_register_reset(main_cpu_reset, reset_info);
  239. }
  240. static QEMUMachine lm32_evr_machine = {
  241. .name = "lm32-evr",
  242. .desc = "LatticeMico32 EVR32 eval system",
  243. .init = lm32_evr_init,
  244. .is_default = 1
  245. };
  246. static QEMUMachine lm32_uclinux_machine = {
  247. .name = "lm32-uclinux",
  248. .desc = "lm32 platform for uClinux and u-boot by Theobroma Systems",
  249. .init = lm32_uclinux_init,
  250. .is_default = 0
  251. };
  252. static void lm32_machine_init(void)
  253. {
  254. qemu_register_machine(&lm32_uclinux_machine);
  255. qemu_register_machine(&lm32_evr_machine);
  256. }
  257. machine_init(lm32_machine_init);