intel-hda.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284
  1. /*
  2. * Copyright (C) 2010 Red Hat, Inc.
  3. *
  4. * written by Gerd Hoffmann <kraxel@redhat.com>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 or
  9. * (at your option) version 3 of the License.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "hw.h"
  20. #include "pci.h"
  21. #include "msi.h"
  22. #include "qemu-timer.h"
  23. #include "audiodev.h"
  24. #include "intel-hda.h"
  25. #include "intel-hda-defs.h"
  26. /* --------------------------------------------------------------------- */
  27. /* hda bus */
  28. static struct BusInfo hda_codec_bus_info = {
  29. .name = "HDA",
  30. .size = sizeof(HDACodecBus),
  31. .props = (Property[]) {
  32. DEFINE_PROP_UINT32("cad", HDACodecDevice, cad, -1),
  33. DEFINE_PROP_END_OF_LIST()
  34. }
  35. };
  36. void hda_codec_bus_init(DeviceState *dev, HDACodecBus *bus,
  37. hda_codec_response_func response,
  38. hda_codec_xfer_func xfer)
  39. {
  40. qbus_create_inplace(&bus->qbus, &hda_codec_bus_info, dev, NULL);
  41. bus->response = response;
  42. bus->xfer = xfer;
  43. }
  44. static int hda_codec_dev_init(DeviceState *qdev, DeviceInfo *base)
  45. {
  46. HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, qdev->parent_bus);
  47. HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev);
  48. HDACodecDeviceInfo *info = DO_UPCAST(HDACodecDeviceInfo, qdev, base);
  49. dev->info = info;
  50. if (dev->cad == -1) {
  51. dev->cad = bus->next_cad;
  52. }
  53. if (dev->cad >= 15) {
  54. return -1;
  55. }
  56. bus->next_cad = dev->cad + 1;
  57. return info->init(dev);
  58. }
  59. static int hda_codec_dev_exit(DeviceState *qdev)
  60. {
  61. HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev);
  62. if (dev->info->exit) {
  63. dev->info->exit(dev);
  64. }
  65. return 0;
  66. }
  67. void hda_codec_register(HDACodecDeviceInfo *info)
  68. {
  69. info->qdev.init = hda_codec_dev_init;
  70. info->qdev.exit = hda_codec_dev_exit;
  71. info->qdev.bus_info = &hda_codec_bus_info;
  72. qdev_register(&info->qdev);
  73. }
  74. HDACodecDevice *hda_codec_find(HDACodecBus *bus, uint32_t cad)
  75. {
  76. DeviceState *qdev;
  77. HDACodecDevice *cdev;
  78. QLIST_FOREACH(qdev, &bus->qbus.children, sibling) {
  79. cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
  80. if (cdev->cad == cad) {
  81. return cdev;
  82. }
  83. }
  84. return NULL;
  85. }
  86. void hda_codec_response(HDACodecDevice *dev, bool solicited, uint32_t response)
  87. {
  88. HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
  89. bus->response(dev, solicited, response);
  90. }
  91. bool hda_codec_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
  92. uint8_t *buf, uint32_t len)
  93. {
  94. HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
  95. return bus->xfer(dev, stnr, output, buf, len);
  96. }
  97. /* --------------------------------------------------------------------- */
  98. /* intel hda emulation */
  99. typedef struct IntelHDAStream IntelHDAStream;
  100. typedef struct IntelHDAState IntelHDAState;
  101. typedef struct IntelHDAReg IntelHDAReg;
  102. typedef struct bpl {
  103. uint64_t addr;
  104. uint32_t len;
  105. uint32_t flags;
  106. } bpl;
  107. struct IntelHDAStream {
  108. /* registers */
  109. uint32_t ctl;
  110. uint32_t lpib;
  111. uint32_t cbl;
  112. uint32_t lvi;
  113. uint32_t fmt;
  114. uint32_t bdlp_lbase;
  115. uint32_t bdlp_ubase;
  116. /* state */
  117. bpl *bpl;
  118. uint32_t bentries;
  119. uint32_t bsize, be, bp;
  120. };
  121. struct IntelHDAState {
  122. PCIDevice pci;
  123. const char *name;
  124. HDACodecBus codecs;
  125. /* registers */
  126. uint32_t g_ctl;
  127. uint32_t wake_en;
  128. uint32_t state_sts;
  129. uint32_t int_ctl;
  130. uint32_t int_sts;
  131. uint32_t wall_clk;
  132. uint32_t corb_lbase;
  133. uint32_t corb_ubase;
  134. uint32_t corb_rp;
  135. uint32_t corb_wp;
  136. uint32_t corb_ctl;
  137. uint32_t corb_sts;
  138. uint32_t corb_size;
  139. uint32_t rirb_lbase;
  140. uint32_t rirb_ubase;
  141. uint32_t rirb_wp;
  142. uint32_t rirb_cnt;
  143. uint32_t rirb_ctl;
  144. uint32_t rirb_sts;
  145. uint32_t rirb_size;
  146. uint32_t dp_lbase;
  147. uint32_t dp_ubase;
  148. uint32_t icw;
  149. uint32_t irr;
  150. uint32_t ics;
  151. /* streams */
  152. IntelHDAStream st[8];
  153. /* state */
  154. int mmio_addr;
  155. uint32_t rirb_count;
  156. int64_t wall_base_ns;
  157. /* debug logging */
  158. const IntelHDAReg *last_reg;
  159. uint32_t last_val;
  160. uint32_t last_write;
  161. uint32_t last_sec;
  162. uint32_t repeat_count;
  163. /* properties */
  164. uint32_t debug;
  165. uint32_t msi;
  166. };
  167. struct IntelHDAReg {
  168. const char *name; /* register name */
  169. uint32_t size; /* size in bytes */
  170. uint32_t reset; /* reset value */
  171. uint32_t wmask; /* write mask */
  172. uint32_t wclear; /* write 1 to clear bits */
  173. uint32_t offset; /* location in IntelHDAState */
  174. uint32_t shift; /* byte access entries for dwords */
  175. uint32_t stream;
  176. void (*whandler)(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old);
  177. void (*rhandler)(IntelHDAState *d, const IntelHDAReg *reg);
  178. };
  179. static void intel_hda_reset(DeviceState *dev);
  180. /* --------------------------------------------------------------------- */
  181. static target_phys_addr_t intel_hda_addr(uint32_t lbase, uint32_t ubase)
  182. {
  183. target_phys_addr_t addr;
  184. #if TARGET_PHYS_ADDR_BITS == 32
  185. addr = lbase;
  186. #else
  187. addr = ubase;
  188. addr <<= 32;
  189. addr |= lbase;
  190. #endif
  191. return addr;
  192. }
  193. static void intel_hda_update_int_sts(IntelHDAState *d)
  194. {
  195. uint32_t sts = 0;
  196. uint32_t i;
  197. /* update controller status */
  198. if (d->rirb_sts & ICH6_RBSTS_IRQ) {
  199. sts |= (1 << 30);
  200. }
  201. if (d->rirb_sts & ICH6_RBSTS_OVERRUN) {
  202. sts |= (1 << 30);
  203. }
  204. if (d->state_sts & d->wake_en) {
  205. sts |= (1 << 30);
  206. }
  207. /* update stream status */
  208. for (i = 0; i < 8; i++) {
  209. /* buffer completion interrupt */
  210. if (d->st[i].ctl & (1 << 26)) {
  211. sts |= (1 << i);
  212. }
  213. }
  214. /* update global status */
  215. if (sts & d->int_ctl) {
  216. sts |= (1 << 31);
  217. }
  218. d->int_sts = sts;
  219. }
  220. static void intel_hda_update_irq(IntelHDAState *d)
  221. {
  222. int msi = d->msi && msi_enabled(&d->pci);
  223. int level;
  224. intel_hda_update_int_sts(d);
  225. if (d->int_sts & (1 << 31) && d->int_ctl & (1 << 31)) {
  226. level = 1;
  227. } else {
  228. level = 0;
  229. }
  230. dprint(d, 2, "%s: level %d [%s]\n", __FUNCTION__,
  231. level, msi ? "msi" : "intx");
  232. if (msi) {
  233. if (level) {
  234. msi_notify(&d->pci, 0);
  235. }
  236. } else {
  237. qemu_set_irq(d->pci.irq[0], level);
  238. }
  239. }
  240. static int intel_hda_send_command(IntelHDAState *d, uint32_t verb)
  241. {
  242. uint32_t cad, nid, data;
  243. HDACodecDevice *codec;
  244. cad = (verb >> 28) & 0x0f;
  245. if (verb & (1 << 27)) {
  246. /* indirect node addressing, not specified in HDA 1.0 */
  247. dprint(d, 1, "%s: indirect node addressing (guest bug?)\n", __FUNCTION__);
  248. return -1;
  249. }
  250. nid = (verb >> 20) & 0x7f;
  251. data = verb & 0xfffff;
  252. codec = hda_codec_find(&d->codecs, cad);
  253. if (codec == NULL) {
  254. dprint(d, 1, "%s: addressed non-existing codec\n", __FUNCTION__);
  255. return -1;
  256. }
  257. codec->info->command(codec, nid, data);
  258. return 0;
  259. }
  260. static void intel_hda_corb_run(IntelHDAState *d)
  261. {
  262. target_phys_addr_t addr;
  263. uint32_t rp, verb;
  264. if (d->ics & ICH6_IRS_BUSY) {
  265. dprint(d, 2, "%s: [icw] verb 0x%08x\n", __FUNCTION__, d->icw);
  266. intel_hda_send_command(d, d->icw);
  267. return;
  268. }
  269. for (;;) {
  270. if (!(d->corb_ctl & ICH6_CORBCTL_RUN)) {
  271. dprint(d, 2, "%s: !run\n", __FUNCTION__);
  272. return;
  273. }
  274. if ((d->corb_rp & 0xff) == d->corb_wp) {
  275. dprint(d, 2, "%s: corb ring empty\n", __FUNCTION__);
  276. return;
  277. }
  278. if (d->rirb_count == d->rirb_cnt) {
  279. dprint(d, 2, "%s: rirb count reached\n", __FUNCTION__);
  280. return;
  281. }
  282. rp = (d->corb_rp + 1) & 0xff;
  283. addr = intel_hda_addr(d->corb_lbase, d->corb_ubase);
  284. verb = ldl_le_phys(addr + 4*rp);
  285. d->corb_rp = rp;
  286. dprint(d, 2, "%s: [rp 0x%x] verb 0x%08x\n", __FUNCTION__, rp, verb);
  287. intel_hda_send_command(d, verb);
  288. }
  289. }
  290. static void intel_hda_response(HDACodecDevice *dev, bool solicited, uint32_t response)
  291. {
  292. HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
  293. IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
  294. target_phys_addr_t addr;
  295. uint32_t wp, ex;
  296. if (d->ics & ICH6_IRS_BUSY) {
  297. dprint(d, 2, "%s: [irr] response 0x%x, cad 0x%x\n",
  298. __FUNCTION__, response, dev->cad);
  299. d->irr = response;
  300. d->ics &= ~(ICH6_IRS_BUSY | 0xf0);
  301. d->ics |= (ICH6_IRS_VALID | (dev->cad << 4));
  302. return;
  303. }
  304. if (!(d->rirb_ctl & ICH6_RBCTL_DMA_EN)) {
  305. dprint(d, 1, "%s: rirb dma disabled, drop codec response\n", __FUNCTION__);
  306. return;
  307. }
  308. ex = (solicited ? 0 : (1 << 4)) | dev->cad;
  309. wp = (d->rirb_wp + 1) & 0xff;
  310. addr = intel_hda_addr(d->rirb_lbase, d->rirb_ubase);
  311. stl_le_phys(addr + 8*wp, response);
  312. stl_le_phys(addr + 8*wp + 4, ex);
  313. d->rirb_wp = wp;
  314. dprint(d, 2, "%s: [wp 0x%x] response 0x%x, extra 0x%x\n",
  315. __FUNCTION__, wp, response, ex);
  316. d->rirb_count++;
  317. if (d->rirb_count == d->rirb_cnt) {
  318. dprint(d, 2, "%s: rirb count reached (%d)\n", __FUNCTION__, d->rirb_count);
  319. if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
  320. d->rirb_sts |= ICH6_RBSTS_IRQ;
  321. intel_hda_update_irq(d);
  322. }
  323. } else if ((d->corb_rp & 0xff) == d->corb_wp) {
  324. dprint(d, 2, "%s: corb ring empty (%d/%d)\n", __FUNCTION__,
  325. d->rirb_count, d->rirb_cnt);
  326. if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
  327. d->rirb_sts |= ICH6_RBSTS_IRQ;
  328. intel_hda_update_irq(d);
  329. }
  330. }
  331. }
  332. static bool intel_hda_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
  333. uint8_t *buf, uint32_t len)
  334. {
  335. HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
  336. IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
  337. IntelHDAStream *st = NULL;
  338. target_phys_addr_t addr;
  339. uint32_t s, copy, left;
  340. bool irq = false;
  341. for (s = 0; s < ARRAY_SIZE(d->st); s++) {
  342. if (stnr == ((d->st[s].ctl >> 20) & 0x0f)) {
  343. st = d->st + s;
  344. break;
  345. }
  346. }
  347. if (st == NULL) {
  348. return false;
  349. }
  350. if (st->bpl == NULL) {
  351. return false;
  352. }
  353. if (st->ctl & (1 << 26)) {
  354. /*
  355. * Wait with the next DMA xfer until the guest
  356. * has acked the buffer completion interrupt
  357. */
  358. return false;
  359. }
  360. left = len;
  361. while (left > 0) {
  362. copy = left;
  363. if (copy > st->bsize - st->lpib)
  364. copy = st->bsize - st->lpib;
  365. if (copy > st->bpl[st->be].len - st->bp)
  366. copy = st->bpl[st->be].len - st->bp;
  367. dprint(d, 3, "dma: entry %d, pos %d/%d, copy %d\n",
  368. st->be, st->bp, st->bpl[st->be].len, copy);
  369. cpu_physical_memory_rw(st->bpl[st->be].addr + st->bp,
  370. buf, copy, !output);
  371. st->lpib += copy;
  372. st->bp += copy;
  373. buf += copy;
  374. left -= copy;
  375. if (st->bpl[st->be].len == st->bp) {
  376. /* bpl entry filled */
  377. if (st->bpl[st->be].flags & 0x01) {
  378. irq = true;
  379. }
  380. st->bp = 0;
  381. st->be++;
  382. if (st->be == st->bentries) {
  383. /* bpl wrap around */
  384. st->be = 0;
  385. st->lpib = 0;
  386. }
  387. }
  388. }
  389. if (d->dp_lbase & 0x01) {
  390. addr = intel_hda_addr(d->dp_lbase & ~0x01, d->dp_ubase);
  391. stl_le_phys(addr + 8*s, st->lpib);
  392. }
  393. dprint(d, 3, "dma: --\n");
  394. if (irq) {
  395. st->ctl |= (1 << 26); /* buffer completion interrupt */
  396. intel_hda_update_irq(d);
  397. }
  398. return true;
  399. }
  400. static void intel_hda_parse_bdl(IntelHDAState *d, IntelHDAStream *st)
  401. {
  402. target_phys_addr_t addr;
  403. uint8_t buf[16];
  404. uint32_t i;
  405. addr = intel_hda_addr(st->bdlp_lbase, st->bdlp_ubase);
  406. st->bentries = st->lvi +1;
  407. qemu_free(st->bpl);
  408. st->bpl = qemu_malloc(sizeof(bpl) * st->bentries);
  409. for (i = 0; i < st->bentries; i++, addr += 16) {
  410. cpu_physical_memory_read(addr, buf, 16);
  411. st->bpl[i].addr = le64_to_cpu(*(uint64_t *)buf);
  412. st->bpl[i].len = le32_to_cpu(*(uint32_t *)(buf + 8));
  413. st->bpl[i].flags = le32_to_cpu(*(uint32_t *)(buf + 12));
  414. dprint(d, 1, "bdl/%d: 0x%" PRIx64 " +0x%x, 0x%x\n",
  415. i, st->bpl[i].addr, st->bpl[i].len, st->bpl[i].flags);
  416. }
  417. st->bsize = st->cbl;
  418. st->lpib = 0;
  419. st->be = 0;
  420. st->bp = 0;
  421. }
  422. static void intel_hda_notify_codecs(IntelHDAState *d, uint32_t stream, bool running)
  423. {
  424. DeviceState *qdev;
  425. HDACodecDevice *cdev;
  426. QLIST_FOREACH(qdev, &d->codecs.qbus.children, sibling) {
  427. cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
  428. if (cdev->info->stream) {
  429. cdev->info->stream(cdev, stream, running);
  430. }
  431. }
  432. }
  433. /* --------------------------------------------------------------------- */
  434. static void intel_hda_set_g_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  435. {
  436. if ((d->g_ctl & ICH6_GCTL_RESET) == 0) {
  437. intel_hda_reset(&d->pci.qdev);
  438. }
  439. }
  440. static void intel_hda_set_wake_en(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  441. {
  442. intel_hda_update_irq(d);
  443. }
  444. static void intel_hda_set_state_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  445. {
  446. intel_hda_update_irq(d);
  447. }
  448. static void intel_hda_set_int_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  449. {
  450. intel_hda_update_irq(d);
  451. }
  452. static void intel_hda_get_wall_clk(IntelHDAState *d, const IntelHDAReg *reg)
  453. {
  454. int64_t ns;
  455. ns = qemu_get_clock_ns(vm_clock) - d->wall_base_ns;
  456. d->wall_clk = (uint32_t)(ns * 24 / 1000); /* 24 MHz */
  457. }
  458. static void intel_hda_set_corb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  459. {
  460. intel_hda_corb_run(d);
  461. }
  462. static void intel_hda_set_corb_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  463. {
  464. intel_hda_corb_run(d);
  465. }
  466. static void intel_hda_set_rirb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  467. {
  468. if (d->rirb_wp & ICH6_RIRBWP_RST) {
  469. d->rirb_wp = 0;
  470. }
  471. }
  472. static void intel_hda_set_rirb_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  473. {
  474. intel_hda_update_irq(d);
  475. if ((old & ICH6_RBSTS_IRQ) && !(d->rirb_sts & ICH6_RBSTS_IRQ)) {
  476. /* cleared ICH6_RBSTS_IRQ */
  477. d->rirb_count = 0;
  478. intel_hda_corb_run(d);
  479. }
  480. }
  481. static void intel_hda_set_ics(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  482. {
  483. if (d->ics & ICH6_IRS_BUSY) {
  484. intel_hda_corb_run(d);
  485. }
  486. }
  487. static void intel_hda_set_st_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  488. {
  489. IntelHDAStream *st = d->st + reg->stream;
  490. if (st->ctl & 0x01) {
  491. /* reset */
  492. dprint(d, 1, "st #%d: reset\n", reg->stream);
  493. st->ctl = 0;
  494. }
  495. if ((st->ctl & 0x02) != (old & 0x02)) {
  496. uint32_t stnr = (st->ctl >> 20) & 0x0f;
  497. /* run bit flipped */
  498. if (st->ctl & 0x02) {
  499. /* start */
  500. dprint(d, 1, "st #%d: start %d (ring buf %d bytes)\n",
  501. reg->stream, stnr, st->cbl);
  502. intel_hda_parse_bdl(d, st);
  503. intel_hda_notify_codecs(d, stnr, true);
  504. } else {
  505. /* stop */
  506. dprint(d, 1, "st #%d: stop %d\n", reg->stream, stnr);
  507. intel_hda_notify_codecs(d, stnr, false);
  508. }
  509. }
  510. intel_hda_update_irq(d);
  511. }
  512. /* --------------------------------------------------------------------- */
  513. #define ST_REG(_n, _o) (0x80 + (_n) * 0x20 + (_o))
  514. static const struct IntelHDAReg regtab[] = {
  515. /* global */
  516. [ ICH6_REG_GCAP ] = {
  517. .name = "GCAP",
  518. .size = 2,
  519. .reset = 0x4401,
  520. },
  521. [ ICH6_REG_VMIN ] = {
  522. .name = "VMIN",
  523. .size = 1,
  524. },
  525. [ ICH6_REG_VMAJ ] = {
  526. .name = "VMAJ",
  527. .size = 1,
  528. .reset = 1,
  529. },
  530. [ ICH6_REG_OUTPAY ] = {
  531. .name = "OUTPAY",
  532. .size = 2,
  533. .reset = 0x3c,
  534. },
  535. [ ICH6_REG_INPAY ] = {
  536. .name = "INPAY",
  537. .size = 2,
  538. .reset = 0x1d,
  539. },
  540. [ ICH6_REG_GCTL ] = {
  541. .name = "GCTL",
  542. .size = 4,
  543. .wmask = 0x0103,
  544. .offset = offsetof(IntelHDAState, g_ctl),
  545. .whandler = intel_hda_set_g_ctl,
  546. },
  547. [ ICH6_REG_WAKEEN ] = {
  548. .name = "WAKEEN",
  549. .size = 2,
  550. .wmask = 0x7fff,
  551. .offset = offsetof(IntelHDAState, wake_en),
  552. .whandler = intel_hda_set_wake_en,
  553. },
  554. [ ICH6_REG_STATESTS ] = {
  555. .name = "STATESTS",
  556. .size = 2,
  557. .wmask = 0x7fff,
  558. .wclear = 0x7fff,
  559. .offset = offsetof(IntelHDAState, state_sts),
  560. .whandler = intel_hda_set_state_sts,
  561. },
  562. /* interrupts */
  563. [ ICH6_REG_INTCTL ] = {
  564. .name = "INTCTL",
  565. .size = 4,
  566. .wmask = 0xc00000ff,
  567. .offset = offsetof(IntelHDAState, int_ctl),
  568. .whandler = intel_hda_set_int_ctl,
  569. },
  570. [ ICH6_REG_INTSTS ] = {
  571. .name = "INTSTS",
  572. .size = 4,
  573. .wmask = 0xc00000ff,
  574. .wclear = 0xc00000ff,
  575. .offset = offsetof(IntelHDAState, int_sts),
  576. },
  577. /* misc */
  578. [ ICH6_REG_WALLCLK ] = {
  579. .name = "WALLCLK",
  580. .size = 4,
  581. .offset = offsetof(IntelHDAState, wall_clk),
  582. .rhandler = intel_hda_get_wall_clk,
  583. },
  584. [ ICH6_REG_WALLCLK + 0x2000 ] = {
  585. .name = "WALLCLK(alias)",
  586. .size = 4,
  587. .offset = offsetof(IntelHDAState, wall_clk),
  588. .rhandler = intel_hda_get_wall_clk,
  589. },
  590. /* dma engine */
  591. [ ICH6_REG_CORBLBASE ] = {
  592. .name = "CORBLBASE",
  593. .size = 4,
  594. .wmask = 0xffffff80,
  595. .offset = offsetof(IntelHDAState, corb_lbase),
  596. },
  597. [ ICH6_REG_CORBUBASE ] = {
  598. .name = "CORBUBASE",
  599. .size = 4,
  600. .wmask = 0xffffffff,
  601. .offset = offsetof(IntelHDAState, corb_ubase),
  602. },
  603. [ ICH6_REG_CORBWP ] = {
  604. .name = "CORBWP",
  605. .size = 2,
  606. .wmask = 0xff,
  607. .offset = offsetof(IntelHDAState, corb_wp),
  608. .whandler = intel_hda_set_corb_wp,
  609. },
  610. [ ICH6_REG_CORBRP ] = {
  611. .name = "CORBRP",
  612. .size = 2,
  613. .wmask = 0x80ff,
  614. .offset = offsetof(IntelHDAState, corb_rp),
  615. },
  616. [ ICH6_REG_CORBCTL ] = {
  617. .name = "CORBCTL",
  618. .size = 1,
  619. .wmask = 0x03,
  620. .offset = offsetof(IntelHDAState, corb_ctl),
  621. .whandler = intel_hda_set_corb_ctl,
  622. },
  623. [ ICH6_REG_CORBSTS ] = {
  624. .name = "CORBSTS",
  625. .size = 1,
  626. .wmask = 0x01,
  627. .wclear = 0x01,
  628. .offset = offsetof(IntelHDAState, corb_sts),
  629. },
  630. [ ICH6_REG_CORBSIZE ] = {
  631. .name = "CORBSIZE",
  632. .size = 1,
  633. .reset = 0x42,
  634. .offset = offsetof(IntelHDAState, corb_size),
  635. },
  636. [ ICH6_REG_RIRBLBASE ] = {
  637. .name = "RIRBLBASE",
  638. .size = 4,
  639. .wmask = 0xffffff80,
  640. .offset = offsetof(IntelHDAState, rirb_lbase),
  641. },
  642. [ ICH6_REG_RIRBUBASE ] = {
  643. .name = "RIRBUBASE",
  644. .size = 4,
  645. .wmask = 0xffffffff,
  646. .offset = offsetof(IntelHDAState, rirb_ubase),
  647. },
  648. [ ICH6_REG_RIRBWP ] = {
  649. .name = "RIRBWP",
  650. .size = 2,
  651. .wmask = 0x8000,
  652. .offset = offsetof(IntelHDAState, rirb_wp),
  653. .whandler = intel_hda_set_rirb_wp,
  654. },
  655. [ ICH6_REG_RINTCNT ] = {
  656. .name = "RINTCNT",
  657. .size = 2,
  658. .wmask = 0xff,
  659. .offset = offsetof(IntelHDAState, rirb_cnt),
  660. },
  661. [ ICH6_REG_RIRBCTL ] = {
  662. .name = "RIRBCTL",
  663. .size = 1,
  664. .wmask = 0x07,
  665. .offset = offsetof(IntelHDAState, rirb_ctl),
  666. },
  667. [ ICH6_REG_RIRBSTS ] = {
  668. .name = "RIRBSTS",
  669. .size = 1,
  670. .wmask = 0x05,
  671. .wclear = 0x05,
  672. .offset = offsetof(IntelHDAState, rirb_sts),
  673. .whandler = intel_hda_set_rirb_sts,
  674. },
  675. [ ICH6_REG_RIRBSIZE ] = {
  676. .name = "RIRBSIZE",
  677. .size = 1,
  678. .reset = 0x42,
  679. .offset = offsetof(IntelHDAState, rirb_size),
  680. },
  681. [ ICH6_REG_DPLBASE ] = {
  682. .name = "DPLBASE",
  683. .size = 4,
  684. .wmask = 0xffffff81,
  685. .offset = offsetof(IntelHDAState, dp_lbase),
  686. },
  687. [ ICH6_REG_DPUBASE ] = {
  688. .name = "DPUBASE",
  689. .size = 4,
  690. .wmask = 0xffffffff,
  691. .offset = offsetof(IntelHDAState, dp_ubase),
  692. },
  693. [ ICH6_REG_IC ] = {
  694. .name = "ICW",
  695. .size = 4,
  696. .wmask = 0xffffffff,
  697. .offset = offsetof(IntelHDAState, icw),
  698. },
  699. [ ICH6_REG_IR ] = {
  700. .name = "IRR",
  701. .size = 4,
  702. .offset = offsetof(IntelHDAState, irr),
  703. },
  704. [ ICH6_REG_IRS ] = {
  705. .name = "ICS",
  706. .size = 2,
  707. .wmask = 0x0003,
  708. .wclear = 0x0002,
  709. .offset = offsetof(IntelHDAState, ics),
  710. .whandler = intel_hda_set_ics,
  711. },
  712. #define HDA_STREAM(_t, _i) \
  713. [ ST_REG(_i, ICH6_REG_SD_CTL) ] = { \
  714. .stream = _i, \
  715. .name = _t stringify(_i) " CTL", \
  716. .size = 4, \
  717. .wmask = 0x1cff001f, \
  718. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  719. .whandler = intel_hda_set_st_ctl, \
  720. }, \
  721. [ ST_REG(_i, ICH6_REG_SD_CTL) + 2] = { \
  722. .stream = _i, \
  723. .name = _t stringify(_i) " CTL(stnr)", \
  724. .size = 1, \
  725. .shift = 16, \
  726. .wmask = 0x00ff0000, \
  727. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  728. .whandler = intel_hda_set_st_ctl, \
  729. }, \
  730. [ ST_REG(_i, ICH6_REG_SD_STS)] = { \
  731. .stream = _i, \
  732. .name = _t stringify(_i) " CTL(sts)", \
  733. .size = 1, \
  734. .shift = 24, \
  735. .wmask = 0x1c000000, \
  736. .wclear = 0x1c000000, \
  737. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  738. .whandler = intel_hda_set_st_ctl, \
  739. }, \
  740. [ ST_REG(_i, ICH6_REG_SD_LPIB) ] = { \
  741. .stream = _i, \
  742. .name = _t stringify(_i) " LPIB", \
  743. .size = 4, \
  744. .offset = offsetof(IntelHDAState, st[_i].lpib), \
  745. }, \
  746. [ ST_REG(_i, ICH6_REG_SD_LPIB) + 0x2000 ] = { \
  747. .stream = _i, \
  748. .name = _t stringify(_i) " LPIB(alias)", \
  749. .size = 4, \
  750. .offset = offsetof(IntelHDAState, st[_i].lpib), \
  751. }, \
  752. [ ST_REG(_i, ICH6_REG_SD_CBL) ] = { \
  753. .stream = _i, \
  754. .name = _t stringify(_i) " CBL", \
  755. .size = 4, \
  756. .wmask = 0xffffffff, \
  757. .offset = offsetof(IntelHDAState, st[_i].cbl), \
  758. }, \
  759. [ ST_REG(_i, ICH6_REG_SD_LVI) ] = { \
  760. .stream = _i, \
  761. .name = _t stringify(_i) " LVI", \
  762. .size = 2, \
  763. .wmask = 0x00ff, \
  764. .offset = offsetof(IntelHDAState, st[_i].lvi), \
  765. }, \
  766. [ ST_REG(_i, ICH6_REG_SD_FIFOSIZE) ] = { \
  767. .stream = _i, \
  768. .name = _t stringify(_i) " FIFOS", \
  769. .size = 2, \
  770. .reset = HDA_BUFFER_SIZE, \
  771. }, \
  772. [ ST_REG(_i, ICH6_REG_SD_FORMAT) ] = { \
  773. .stream = _i, \
  774. .name = _t stringify(_i) " FMT", \
  775. .size = 2, \
  776. .wmask = 0x7f7f, \
  777. .offset = offsetof(IntelHDAState, st[_i].fmt), \
  778. }, \
  779. [ ST_REG(_i, ICH6_REG_SD_BDLPL) ] = { \
  780. .stream = _i, \
  781. .name = _t stringify(_i) " BDLPL", \
  782. .size = 4, \
  783. .wmask = 0xffffff80, \
  784. .offset = offsetof(IntelHDAState, st[_i].bdlp_lbase), \
  785. }, \
  786. [ ST_REG(_i, ICH6_REG_SD_BDLPU) ] = { \
  787. .stream = _i, \
  788. .name = _t stringify(_i) " BDLPU", \
  789. .size = 4, \
  790. .wmask = 0xffffffff, \
  791. .offset = offsetof(IntelHDAState, st[_i].bdlp_ubase), \
  792. }, \
  793. HDA_STREAM("IN", 0)
  794. HDA_STREAM("IN", 1)
  795. HDA_STREAM("IN", 2)
  796. HDA_STREAM("IN", 3)
  797. HDA_STREAM("OUT", 4)
  798. HDA_STREAM("OUT", 5)
  799. HDA_STREAM("OUT", 6)
  800. HDA_STREAM("OUT", 7)
  801. };
  802. static const IntelHDAReg *intel_hda_reg_find(IntelHDAState *d, target_phys_addr_t addr)
  803. {
  804. const IntelHDAReg *reg;
  805. if (addr >= sizeof(regtab)/sizeof(regtab[0])) {
  806. goto noreg;
  807. }
  808. reg = regtab+addr;
  809. if (reg->name == NULL) {
  810. goto noreg;
  811. }
  812. return reg;
  813. noreg:
  814. dprint(d, 1, "unknown register, addr 0x%x\n", (int) addr);
  815. return NULL;
  816. }
  817. static uint32_t *intel_hda_reg_addr(IntelHDAState *d, const IntelHDAReg *reg)
  818. {
  819. uint8_t *addr = (void*)d;
  820. addr += reg->offset;
  821. return (uint32_t*)addr;
  822. }
  823. static void intel_hda_reg_write(IntelHDAState *d, const IntelHDAReg *reg, uint32_t val,
  824. uint32_t wmask)
  825. {
  826. uint32_t *addr;
  827. uint32_t old;
  828. if (!reg) {
  829. return;
  830. }
  831. if (d->debug) {
  832. time_t now = time(NULL);
  833. if (d->last_write && d->last_reg == reg && d->last_val == val) {
  834. d->repeat_count++;
  835. if (d->last_sec != now) {
  836. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  837. d->last_sec = now;
  838. d->repeat_count = 0;
  839. }
  840. } else {
  841. if (d->repeat_count) {
  842. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  843. }
  844. dprint(d, 2, "write %-16s: 0x%x (%x)\n", reg->name, val, wmask);
  845. d->last_write = 1;
  846. d->last_reg = reg;
  847. d->last_val = val;
  848. d->last_sec = now;
  849. d->repeat_count = 0;
  850. }
  851. }
  852. assert(reg->offset != 0);
  853. addr = intel_hda_reg_addr(d, reg);
  854. old = *addr;
  855. if (reg->shift) {
  856. val <<= reg->shift;
  857. wmask <<= reg->shift;
  858. }
  859. wmask &= reg->wmask;
  860. *addr &= ~wmask;
  861. *addr |= wmask & val;
  862. *addr &= ~(val & reg->wclear);
  863. if (reg->whandler) {
  864. reg->whandler(d, reg, old);
  865. }
  866. }
  867. static uint32_t intel_hda_reg_read(IntelHDAState *d, const IntelHDAReg *reg,
  868. uint32_t rmask)
  869. {
  870. uint32_t *addr, ret;
  871. if (!reg) {
  872. return 0;
  873. }
  874. if (reg->rhandler) {
  875. reg->rhandler(d, reg);
  876. }
  877. if (reg->offset == 0) {
  878. /* constant read-only register */
  879. ret = reg->reset;
  880. } else {
  881. addr = intel_hda_reg_addr(d, reg);
  882. ret = *addr;
  883. if (reg->shift) {
  884. ret >>= reg->shift;
  885. }
  886. ret &= rmask;
  887. }
  888. if (d->debug) {
  889. time_t now = time(NULL);
  890. if (!d->last_write && d->last_reg == reg && d->last_val == ret) {
  891. d->repeat_count++;
  892. if (d->last_sec != now) {
  893. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  894. d->last_sec = now;
  895. d->repeat_count = 0;
  896. }
  897. } else {
  898. if (d->repeat_count) {
  899. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  900. }
  901. dprint(d, 2, "read %-16s: 0x%x (%x)\n", reg->name, ret, rmask);
  902. d->last_write = 0;
  903. d->last_reg = reg;
  904. d->last_val = ret;
  905. d->last_sec = now;
  906. d->repeat_count = 0;
  907. }
  908. }
  909. return ret;
  910. }
  911. static void intel_hda_regs_reset(IntelHDAState *d)
  912. {
  913. uint32_t *addr;
  914. int i;
  915. for (i = 0; i < sizeof(regtab)/sizeof(regtab[0]); i++) {
  916. if (regtab[i].name == NULL) {
  917. continue;
  918. }
  919. if (regtab[i].offset == 0) {
  920. continue;
  921. }
  922. addr = intel_hda_reg_addr(d, regtab + i);
  923. *addr = regtab[i].reset;
  924. }
  925. }
  926. /* --------------------------------------------------------------------- */
  927. static void intel_hda_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
  928. {
  929. IntelHDAState *d = opaque;
  930. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  931. intel_hda_reg_write(d, reg, val, 0xff);
  932. }
  933. static void intel_hda_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
  934. {
  935. IntelHDAState *d = opaque;
  936. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  937. intel_hda_reg_write(d, reg, val, 0xffff);
  938. }
  939. static void intel_hda_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
  940. {
  941. IntelHDAState *d = opaque;
  942. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  943. intel_hda_reg_write(d, reg, val, 0xffffffff);
  944. }
  945. static uint32_t intel_hda_mmio_readb(void *opaque, target_phys_addr_t addr)
  946. {
  947. IntelHDAState *d = opaque;
  948. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  949. return intel_hda_reg_read(d, reg, 0xff);
  950. }
  951. static uint32_t intel_hda_mmio_readw(void *opaque, target_phys_addr_t addr)
  952. {
  953. IntelHDAState *d = opaque;
  954. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  955. return intel_hda_reg_read(d, reg, 0xffff);
  956. }
  957. static uint32_t intel_hda_mmio_readl(void *opaque, target_phys_addr_t addr)
  958. {
  959. IntelHDAState *d = opaque;
  960. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  961. return intel_hda_reg_read(d, reg, 0xffffffff);
  962. }
  963. static CPUReadMemoryFunc * const intel_hda_mmio_read[3] = {
  964. intel_hda_mmio_readb,
  965. intel_hda_mmio_readw,
  966. intel_hda_mmio_readl,
  967. };
  968. static CPUWriteMemoryFunc * const intel_hda_mmio_write[3] = {
  969. intel_hda_mmio_writeb,
  970. intel_hda_mmio_writew,
  971. intel_hda_mmio_writel,
  972. };
  973. /* --------------------------------------------------------------------- */
  974. static void intel_hda_reset(DeviceState *dev)
  975. {
  976. IntelHDAState *d = DO_UPCAST(IntelHDAState, pci.qdev, dev);
  977. DeviceState *qdev;
  978. HDACodecDevice *cdev;
  979. intel_hda_regs_reset(d);
  980. d->wall_base_ns = qemu_get_clock_ns(vm_clock);
  981. /* reset codecs */
  982. QLIST_FOREACH(qdev, &d->codecs.qbus.children, sibling) {
  983. cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
  984. if (qdev->info->reset) {
  985. qdev->info->reset(qdev);
  986. }
  987. d->state_sts |= (1 << cdev->cad);
  988. }
  989. intel_hda_update_irq(d);
  990. }
  991. static int intel_hda_init(PCIDevice *pci)
  992. {
  993. IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
  994. uint8_t *conf = d->pci.config;
  995. d->name = d->pci.qdev.info->name;
  996. pci_config_set_interrupt_pin(conf, 1);
  997. /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */
  998. conf[0x40] = 0x01;
  999. d->mmio_addr = cpu_register_io_memory(intel_hda_mmio_read,
  1000. intel_hda_mmio_write, d,
  1001. DEVICE_NATIVE_ENDIAN);
  1002. pci_register_bar_simple(&d->pci, 0, 0x4000, 0, d->mmio_addr);
  1003. if (d->msi) {
  1004. msi_init(&d->pci, 0x50, 1, true, false);
  1005. }
  1006. hda_codec_bus_init(&d->pci.qdev, &d->codecs,
  1007. intel_hda_response, intel_hda_xfer);
  1008. return 0;
  1009. }
  1010. static int intel_hda_exit(PCIDevice *pci)
  1011. {
  1012. IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
  1013. msi_uninit(&d->pci);
  1014. cpu_unregister_io_memory(d->mmio_addr);
  1015. return 0;
  1016. }
  1017. static void intel_hda_write_config(PCIDevice *pci, uint32_t addr,
  1018. uint32_t val, int len)
  1019. {
  1020. IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
  1021. pci_default_write_config(pci, addr, val, len);
  1022. if (d->msi) {
  1023. msi_write_config(pci, addr, val, len);
  1024. }
  1025. }
  1026. static int intel_hda_post_load(void *opaque, int version)
  1027. {
  1028. IntelHDAState* d = opaque;
  1029. int i;
  1030. dprint(d, 1, "%s\n", __FUNCTION__);
  1031. for (i = 0; i < ARRAY_SIZE(d->st); i++) {
  1032. if (d->st[i].ctl & 0x02) {
  1033. intel_hda_parse_bdl(d, &d->st[i]);
  1034. }
  1035. }
  1036. intel_hda_update_irq(d);
  1037. return 0;
  1038. }
  1039. static const VMStateDescription vmstate_intel_hda_stream = {
  1040. .name = "intel-hda-stream",
  1041. .version_id = 1,
  1042. .fields = (VMStateField []) {
  1043. VMSTATE_UINT32(ctl, IntelHDAStream),
  1044. VMSTATE_UINT32(lpib, IntelHDAStream),
  1045. VMSTATE_UINT32(cbl, IntelHDAStream),
  1046. VMSTATE_UINT32(lvi, IntelHDAStream),
  1047. VMSTATE_UINT32(fmt, IntelHDAStream),
  1048. VMSTATE_UINT32(bdlp_lbase, IntelHDAStream),
  1049. VMSTATE_UINT32(bdlp_ubase, IntelHDAStream),
  1050. VMSTATE_END_OF_LIST()
  1051. }
  1052. };
  1053. static const VMStateDescription vmstate_intel_hda = {
  1054. .name = "intel-hda",
  1055. .version_id = 1,
  1056. .post_load = intel_hda_post_load,
  1057. .fields = (VMStateField []) {
  1058. VMSTATE_PCI_DEVICE(pci, IntelHDAState),
  1059. /* registers */
  1060. VMSTATE_UINT32(g_ctl, IntelHDAState),
  1061. VMSTATE_UINT32(wake_en, IntelHDAState),
  1062. VMSTATE_UINT32(state_sts, IntelHDAState),
  1063. VMSTATE_UINT32(int_ctl, IntelHDAState),
  1064. VMSTATE_UINT32(int_sts, IntelHDAState),
  1065. VMSTATE_UINT32(wall_clk, IntelHDAState),
  1066. VMSTATE_UINT32(corb_lbase, IntelHDAState),
  1067. VMSTATE_UINT32(corb_ubase, IntelHDAState),
  1068. VMSTATE_UINT32(corb_rp, IntelHDAState),
  1069. VMSTATE_UINT32(corb_wp, IntelHDAState),
  1070. VMSTATE_UINT32(corb_ctl, IntelHDAState),
  1071. VMSTATE_UINT32(corb_sts, IntelHDAState),
  1072. VMSTATE_UINT32(corb_size, IntelHDAState),
  1073. VMSTATE_UINT32(rirb_lbase, IntelHDAState),
  1074. VMSTATE_UINT32(rirb_ubase, IntelHDAState),
  1075. VMSTATE_UINT32(rirb_wp, IntelHDAState),
  1076. VMSTATE_UINT32(rirb_cnt, IntelHDAState),
  1077. VMSTATE_UINT32(rirb_ctl, IntelHDAState),
  1078. VMSTATE_UINT32(rirb_sts, IntelHDAState),
  1079. VMSTATE_UINT32(rirb_size, IntelHDAState),
  1080. VMSTATE_UINT32(dp_lbase, IntelHDAState),
  1081. VMSTATE_UINT32(dp_ubase, IntelHDAState),
  1082. VMSTATE_UINT32(icw, IntelHDAState),
  1083. VMSTATE_UINT32(irr, IntelHDAState),
  1084. VMSTATE_UINT32(ics, IntelHDAState),
  1085. VMSTATE_STRUCT_ARRAY(st, IntelHDAState, 8, 0,
  1086. vmstate_intel_hda_stream,
  1087. IntelHDAStream),
  1088. /* additional state info */
  1089. VMSTATE_UINT32(rirb_count, IntelHDAState),
  1090. VMSTATE_INT64(wall_base_ns, IntelHDAState),
  1091. VMSTATE_END_OF_LIST()
  1092. }
  1093. };
  1094. static PCIDeviceInfo intel_hda_info = {
  1095. .qdev.name = "intel-hda",
  1096. .qdev.desc = "Intel HD Audio Controller",
  1097. .qdev.size = sizeof(IntelHDAState),
  1098. .qdev.vmsd = &vmstate_intel_hda,
  1099. .qdev.reset = intel_hda_reset,
  1100. .init = intel_hda_init,
  1101. .exit = intel_hda_exit,
  1102. .config_write = intel_hda_write_config,
  1103. .vendor_id = PCI_VENDOR_ID_INTEL,
  1104. .device_id = 0x2668,
  1105. .revision = 1,
  1106. .class_id = PCI_CLASS_MULTIMEDIA_HD_AUDIO,
  1107. .qdev.props = (Property[]) {
  1108. DEFINE_PROP_UINT32("debug", IntelHDAState, debug, 0),
  1109. DEFINE_PROP_UINT32("msi", IntelHDAState, msi, 1),
  1110. DEFINE_PROP_END_OF_LIST(),
  1111. }
  1112. };
  1113. static void intel_hda_register(void)
  1114. {
  1115. pci_qdev_register(&intel_hda_info);
  1116. }
  1117. device_init(intel_hda_register);
  1118. /*
  1119. * create intel hda controller with codec attached to it,
  1120. * so '-soundhw hda' works.
  1121. */
  1122. int intel_hda_and_codec_init(PCIBus *bus)
  1123. {
  1124. PCIDevice *controller;
  1125. BusState *hdabus;
  1126. DeviceState *codec;
  1127. controller = pci_create_simple(bus, -1, "intel-hda");
  1128. hdabus = QLIST_FIRST(&controller->qdev.child_bus);
  1129. codec = qdev_create(hdabus, "hda-duplex");
  1130. qdev_init_nofail(codec);
  1131. return 0;
  1132. }