2
0

vm86.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483
  1. /*
  2. * vm86 linux syscall support
  3. *
  4. * Copyright (c) 2003 Fabrice Bellard
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
  19. * MA 02110-1301, USA.
  20. */
  21. #include <stdlib.h>
  22. #include <stdio.h>
  23. #include <stdarg.h>
  24. #include <string.h>
  25. #include <errno.h>
  26. #include <unistd.h>
  27. #include "qemu.h"
  28. //#define DEBUG_VM86
  29. #ifdef DEBUG_VM86
  30. # define LOG_VM86(...) qemu_log(__VA_ARGS__);
  31. #else
  32. # define LOG_VM86(...) do { } while (0)
  33. #endif
  34. #define set_flags(X,new,mask) \
  35. ((X) = ((X) & ~(mask)) | ((new) & (mask)))
  36. #define SAFE_MASK (0xDD5)
  37. #define RETURN_MASK (0xDFF)
  38. static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
  39. {
  40. return (((uint8_t *)bitmap)[nr >> 3] >> (nr & 7)) & 1;
  41. }
  42. static inline void vm_putw(uint32_t segptr, unsigned int reg16, unsigned int val)
  43. {
  44. stw(segptr + (reg16 & 0xffff), val);
  45. }
  46. static inline void vm_putl(uint32_t segptr, unsigned int reg16, unsigned int val)
  47. {
  48. stl(segptr + (reg16 & 0xffff), val);
  49. }
  50. static inline unsigned int vm_getb(uint32_t segptr, unsigned int reg16)
  51. {
  52. return ldub(segptr + (reg16 & 0xffff));
  53. }
  54. static inline unsigned int vm_getw(uint32_t segptr, unsigned int reg16)
  55. {
  56. return lduw(segptr + (reg16 & 0xffff));
  57. }
  58. static inline unsigned int vm_getl(uint32_t segptr, unsigned int reg16)
  59. {
  60. return ldl(segptr + (reg16 & 0xffff));
  61. }
  62. void save_v86_state(CPUX86State *env)
  63. {
  64. TaskState *ts = env->opaque;
  65. struct target_vm86plus_struct * target_v86;
  66. if (!lock_user_struct(VERIFY_WRITE, target_v86, ts->target_v86, 0))
  67. /* FIXME - should return an error */
  68. return;
  69. /* put the VM86 registers in the userspace register structure */
  70. target_v86->regs.eax = tswap32(env->regs[R_EAX]);
  71. target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
  72. target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
  73. target_v86->regs.edx = tswap32(env->regs[R_EDX]);
  74. target_v86->regs.esi = tswap32(env->regs[R_ESI]);
  75. target_v86->regs.edi = tswap32(env->regs[R_EDI]);
  76. target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
  77. target_v86->regs.esp = tswap32(env->regs[R_ESP]);
  78. target_v86->regs.eip = tswap32(env->eip);
  79. target_v86->regs.cs = tswap16(env->segs[R_CS].selector);
  80. target_v86->regs.ss = tswap16(env->segs[R_SS].selector);
  81. target_v86->regs.ds = tswap16(env->segs[R_DS].selector);
  82. target_v86->regs.es = tswap16(env->segs[R_ES].selector);
  83. target_v86->regs.fs = tswap16(env->segs[R_FS].selector);
  84. target_v86->regs.gs = tswap16(env->segs[R_GS].selector);
  85. set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask);
  86. target_v86->regs.eflags = tswap32(env->eflags);
  87. unlock_user_struct(target_v86, ts->target_v86, 1);
  88. LOG_VM86("save_v86_state: eflags=%08x cs:ip=%04x:%04x\n",
  89. env->eflags, env->segs[R_CS].selector, env->eip);
  90. /* restore 32 bit registers */
  91. env->regs[R_EAX] = ts->vm86_saved_regs.eax;
  92. env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
  93. env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
  94. env->regs[R_EDX] = ts->vm86_saved_regs.edx;
  95. env->regs[R_ESI] = ts->vm86_saved_regs.esi;
  96. env->regs[R_EDI] = ts->vm86_saved_regs.edi;
  97. env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
  98. env->regs[R_ESP] = ts->vm86_saved_regs.esp;
  99. env->eflags = ts->vm86_saved_regs.eflags;
  100. env->eip = ts->vm86_saved_regs.eip;
  101. cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
  102. cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
  103. cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
  104. cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
  105. cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
  106. cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
  107. }
  108. /* return from vm86 mode to 32 bit. The vm86() syscall will return
  109. 'retval' */
  110. static inline void return_to_32bit(CPUX86State *env, int retval)
  111. {
  112. LOG_VM86("return_to_32bit: ret=0x%x\n", retval);
  113. save_v86_state(env);
  114. env->regs[R_EAX] = retval;
  115. }
  116. static inline int set_IF(CPUX86State *env)
  117. {
  118. TaskState *ts = env->opaque;
  119. ts->v86flags |= VIF_MASK;
  120. if (ts->v86flags & VIP_MASK) {
  121. return_to_32bit(env, TARGET_VM86_STI);
  122. return 1;
  123. }
  124. return 0;
  125. }
  126. static inline void clear_IF(CPUX86State *env)
  127. {
  128. TaskState *ts = env->opaque;
  129. ts->v86flags &= ~VIF_MASK;
  130. }
  131. static inline void clear_TF(CPUX86State *env)
  132. {
  133. env->eflags &= ~TF_MASK;
  134. }
  135. static inline void clear_AC(CPUX86State *env)
  136. {
  137. env->eflags &= ~AC_MASK;
  138. }
  139. static inline int set_vflags_long(unsigned long eflags, CPUX86State *env)
  140. {
  141. TaskState *ts = env->opaque;
  142. set_flags(ts->v86flags, eflags, ts->v86mask);
  143. set_flags(env->eflags, eflags, SAFE_MASK);
  144. if (eflags & IF_MASK)
  145. return set_IF(env);
  146. else
  147. clear_IF(env);
  148. return 0;
  149. }
  150. static inline int set_vflags_short(unsigned short flags, CPUX86State *env)
  151. {
  152. TaskState *ts = env->opaque;
  153. set_flags(ts->v86flags, flags, ts->v86mask & 0xffff);
  154. set_flags(env->eflags, flags, SAFE_MASK);
  155. if (flags & IF_MASK)
  156. return set_IF(env);
  157. else
  158. clear_IF(env);
  159. return 0;
  160. }
  161. static inline unsigned int get_vflags(CPUX86State *env)
  162. {
  163. TaskState *ts = env->opaque;
  164. unsigned int flags;
  165. flags = env->eflags & RETURN_MASK;
  166. if (ts->v86flags & VIF_MASK)
  167. flags |= IF_MASK;
  168. flags |= IOPL_MASK;
  169. return flags | (ts->v86flags & ts->v86mask);
  170. }
  171. #define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)
  172. /* handle VM86 interrupt (NOTE: the CPU core currently does not
  173. support TSS interrupt revectoring, so this code is always executed) */
  174. static void do_int(CPUX86State *env, int intno)
  175. {
  176. TaskState *ts = env->opaque;
  177. uint32_t int_addr, segoffs, ssp;
  178. unsigned int sp;
  179. if (env->segs[R_CS].selector == TARGET_BIOSSEG)
  180. goto cannot_handle;
  181. if (is_revectored(intno, &ts->vm86plus.int_revectored))
  182. goto cannot_handle;
  183. if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff,
  184. &ts->vm86plus.int21_revectored))
  185. goto cannot_handle;
  186. int_addr = (intno << 2);
  187. segoffs = ldl(int_addr);
  188. if ((segoffs >> 16) == TARGET_BIOSSEG)
  189. goto cannot_handle;
  190. LOG_VM86("VM86: emulating int 0x%x. CS:IP=%04x:%04x\n",
  191. intno, segoffs >> 16, segoffs & 0xffff);
  192. /* save old state */
  193. ssp = env->segs[R_SS].selector << 4;
  194. sp = env->regs[R_ESP] & 0xffff;
  195. vm_putw(ssp, sp - 2, get_vflags(env));
  196. vm_putw(ssp, sp - 4, env->segs[R_CS].selector);
  197. vm_putw(ssp, sp - 6, env->eip);
  198. ADD16(env->regs[R_ESP], -6);
  199. /* goto interrupt handler */
  200. env->eip = segoffs & 0xffff;
  201. cpu_x86_load_seg(env, R_CS, segoffs >> 16);
  202. clear_TF(env);
  203. clear_IF(env);
  204. clear_AC(env);
  205. return;
  206. cannot_handle:
  207. LOG_VM86("VM86: return to 32 bits int 0x%x\n", intno);
  208. return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
  209. }
  210. void handle_vm86_trap(CPUX86State *env, int trapno)
  211. {
  212. if (trapno == 1 || trapno == 3) {
  213. return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8));
  214. } else {
  215. do_int(env, trapno);
  216. }
  217. }
  218. #define CHECK_IF_IN_TRAP() \
  219. if ((ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) && \
  220. (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_TFpendig)) \
  221. newflags |= TF_MASK
  222. #define VM86_FAULT_RETURN \
  223. if ((ts->vm86plus.vm86plus.flags & TARGET_force_return_for_pic) && \
  224. (ts->v86flags & (IF_MASK | VIF_MASK))) \
  225. return_to_32bit(env, TARGET_VM86_PICRETURN); \
  226. return
  227. void handle_vm86_fault(CPUX86State *env)
  228. {
  229. TaskState *ts = env->opaque;
  230. uint32_t csp, ssp;
  231. unsigned int ip, sp, newflags, newip, newcs, opcode, intno;
  232. int data32, pref_done;
  233. csp = env->segs[R_CS].selector << 4;
  234. ip = env->eip & 0xffff;
  235. ssp = env->segs[R_SS].selector << 4;
  236. sp = env->regs[R_ESP] & 0xffff;
  237. LOG_VM86("VM86 exception %04x:%08x\n",
  238. env->segs[R_CS].selector, env->eip);
  239. data32 = 0;
  240. pref_done = 0;
  241. do {
  242. opcode = vm_getb(csp, ip);
  243. ADD16(ip, 1);
  244. switch (opcode) {
  245. case 0x66: /* 32-bit data */ data32=1; break;
  246. case 0x67: /* 32-bit address */ break;
  247. case 0x2e: /* CS */ break;
  248. case 0x3e: /* DS */ break;
  249. case 0x26: /* ES */ break;
  250. case 0x36: /* SS */ break;
  251. case 0x65: /* GS */ break;
  252. case 0x64: /* FS */ break;
  253. case 0xf2: /* repnz */ break;
  254. case 0xf3: /* rep */ break;
  255. default: pref_done = 1;
  256. }
  257. } while (!pref_done);
  258. /* VM86 mode */
  259. switch(opcode) {
  260. case 0x9c: /* pushf */
  261. if (data32) {
  262. vm_putl(ssp, sp - 4, get_vflags(env));
  263. ADD16(env->regs[R_ESP], -4);
  264. } else {
  265. vm_putw(ssp, sp - 2, get_vflags(env));
  266. ADD16(env->regs[R_ESP], -2);
  267. }
  268. env->eip = ip;
  269. VM86_FAULT_RETURN;
  270. case 0x9d: /* popf */
  271. if (data32) {
  272. newflags = vm_getl(ssp, sp);
  273. ADD16(env->regs[R_ESP], 4);
  274. } else {
  275. newflags = vm_getw(ssp, sp);
  276. ADD16(env->regs[R_ESP], 2);
  277. }
  278. env->eip = ip;
  279. CHECK_IF_IN_TRAP();
  280. if (data32) {
  281. if (set_vflags_long(newflags, env))
  282. return;
  283. } else {
  284. if (set_vflags_short(newflags, env))
  285. return;
  286. }
  287. VM86_FAULT_RETURN;
  288. case 0xcd: /* int */
  289. intno = vm_getb(csp, ip);
  290. ADD16(ip, 1);
  291. env->eip = ip;
  292. if (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) {
  293. if ( (ts->vm86plus.vm86plus.vm86dbg_intxxtab[intno >> 3] >>
  294. (intno &7)) & 1) {
  295. return_to_32bit(env, TARGET_VM86_INTx + (intno << 8));
  296. return;
  297. }
  298. }
  299. do_int(env, intno);
  300. break;
  301. case 0xcf: /* iret */
  302. if (data32) {
  303. newip = vm_getl(ssp, sp) & 0xffff;
  304. newcs = vm_getl(ssp, sp + 4) & 0xffff;
  305. newflags = vm_getl(ssp, sp + 8);
  306. ADD16(env->regs[R_ESP], 12);
  307. } else {
  308. newip = vm_getw(ssp, sp);
  309. newcs = vm_getw(ssp, sp + 2);
  310. newflags = vm_getw(ssp, sp + 4);
  311. ADD16(env->regs[R_ESP], 6);
  312. }
  313. env->eip = newip;
  314. cpu_x86_load_seg(env, R_CS, newcs);
  315. CHECK_IF_IN_TRAP();
  316. if (data32) {
  317. if (set_vflags_long(newflags, env))
  318. return;
  319. } else {
  320. if (set_vflags_short(newflags, env))
  321. return;
  322. }
  323. VM86_FAULT_RETURN;
  324. case 0xfa: /* cli */
  325. env->eip = ip;
  326. clear_IF(env);
  327. VM86_FAULT_RETURN;
  328. case 0xfb: /* sti */
  329. env->eip = ip;
  330. if (set_IF(env))
  331. return;
  332. VM86_FAULT_RETURN;
  333. default:
  334. /* real VM86 GPF exception */
  335. return_to_32bit(env, TARGET_VM86_UNKNOWN);
  336. break;
  337. }
  338. }
  339. int do_vm86(CPUX86State *env, long subfunction, abi_ulong vm86_addr)
  340. {
  341. TaskState *ts = env->opaque;
  342. struct target_vm86plus_struct * target_v86;
  343. int ret;
  344. switch (subfunction) {
  345. case TARGET_VM86_REQUEST_IRQ:
  346. case TARGET_VM86_FREE_IRQ:
  347. case TARGET_VM86_GET_IRQ_BITS:
  348. case TARGET_VM86_GET_AND_RESET_IRQ:
  349. gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction);
  350. ret = -TARGET_EINVAL;
  351. goto out;
  352. case TARGET_VM86_PLUS_INSTALL_CHECK:
  353. /* NOTE: on old vm86 stuff this will return the error
  354. from verify_area(), because the subfunction is
  355. interpreted as (invalid) address to vm86_struct.
  356. So the installation check works.
  357. */
  358. ret = 0;
  359. goto out;
  360. }
  361. /* save current CPU regs */
  362. ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */
  363. ts->vm86_saved_regs.ebx = env->regs[R_EBX];
  364. ts->vm86_saved_regs.ecx = env->regs[R_ECX];
  365. ts->vm86_saved_regs.edx = env->regs[R_EDX];
  366. ts->vm86_saved_regs.esi = env->regs[R_ESI];
  367. ts->vm86_saved_regs.edi = env->regs[R_EDI];
  368. ts->vm86_saved_regs.ebp = env->regs[R_EBP];
  369. ts->vm86_saved_regs.esp = env->regs[R_ESP];
  370. ts->vm86_saved_regs.eflags = env->eflags;
  371. ts->vm86_saved_regs.eip = env->eip;
  372. ts->vm86_saved_regs.cs = env->segs[R_CS].selector;
  373. ts->vm86_saved_regs.ss = env->segs[R_SS].selector;
  374. ts->vm86_saved_regs.ds = env->segs[R_DS].selector;
  375. ts->vm86_saved_regs.es = env->segs[R_ES].selector;
  376. ts->vm86_saved_regs.fs = env->segs[R_FS].selector;
  377. ts->vm86_saved_regs.gs = env->segs[R_GS].selector;
  378. ts->target_v86 = vm86_addr;
  379. if (!lock_user_struct(VERIFY_READ, target_v86, vm86_addr, 1))
  380. return -TARGET_EFAULT;
  381. /* build vm86 CPU state */
  382. ts->v86flags = tswap32(target_v86->regs.eflags);
  383. env->eflags = (env->eflags & ~SAFE_MASK) |
  384. (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK;
  385. ts->vm86plus.cpu_type = tswapl(target_v86->cpu_type);
  386. switch (ts->vm86plus.cpu_type) {
  387. case TARGET_CPU_286:
  388. ts->v86mask = 0;
  389. break;
  390. case TARGET_CPU_386:
  391. ts->v86mask = NT_MASK | IOPL_MASK;
  392. break;
  393. case TARGET_CPU_486:
  394. ts->v86mask = AC_MASK | NT_MASK | IOPL_MASK;
  395. break;
  396. default:
  397. ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
  398. break;
  399. }
  400. env->regs[R_EBX] = tswap32(target_v86->regs.ebx);
  401. env->regs[R_ECX] = tswap32(target_v86->regs.ecx);
  402. env->regs[R_EDX] = tswap32(target_v86->regs.edx);
  403. env->regs[R_ESI] = tswap32(target_v86->regs.esi);
  404. env->regs[R_EDI] = tswap32(target_v86->regs.edi);
  405. env->regs[R_EBP] = tswap32(target_v86->regs.ebp);
  406. env->regs[R_ESP] = tswap32(target_v86->regs.esp);
  407. env->eip = tswap32(target_v86->regs.eip);
  408. cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs));
  409. cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss));
  410. cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds));
  411. cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es));
  412. cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs));
  413. cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs));
  414. ret = tswap32(target_v86->regs.eax); /* eax will be restored at
  415. the end of the syscall */
  416. memcpy(&ts->vm86plus.int_revectored,
  417. &target_v86->int_revectored, 32);
  418. memcpy(&ts->vm86plus.int21_revectored,
  419. &target_v86->int21_revectored, 32);
  420. ts->vm86plus.vm86plus.flags = tswapl(target_v86->vm86plus.flags);
  421. memcpy(&ts->vm86plus.vm86plus.vm86dbg_intxxtab,
  422. target_v86->vm86plus.vm86dbg_intxxtab, 32);
  423. unlock_user_struct(target_v86, vm86_addr, 0);
  424. LOG_VM86("do_vm86: cs:ip=%04x:%04x\n",
  425. env->segs[R_CS].selector, env->eip);
  426. /* now the virtual CPU is ready for vm86 execution ! */
  427. out:
  428. return ret;
  429. }