kvm-all.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682
  1. /*
  2. * QEMU KVM support
  3. *
  4. * Copyright IBM, Corp. 2008
  5. * Red Hat, Inc. 2008
  6. *
  7. * Authors:
  8. * Anthony Liguori <aliguori@us.ibm.com>
  9. * Glauber Costa <gcosta@redhat.com>
  10. *
  11. * This work is licensed under the terms of the GNU GPL, version 2 or later.
  12. * See the COPYING file in the top-level directory.
  13. *
  14. */
  15. #include <sys/types.h>
  16. #include <sys/ioctl.h>
  17. #include <sys/mman.h>
  18. #include <stdarg.h>
  19. #include <linux/kvm.h>
  20. #include "qemu-common.h"
  21. #include "sysemu.h"
  22. #include "kvm.h"
  23. /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
  24. #define PAGE_SIZE TARGET_PAGE_SIZE
  25. //#define DEBUG_KVM
  26. #ifdef DEBUG_KVM
  27. #define dprintf(fmt, ...) \
  28. do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  29. #else
  30. #define dprintf(fmt, ...) \
  31. do { } while (0)
  32. #endif
  33. typedef struct KVMSlot
  34. {
  35. target_phys_addr_t start_addr;
  36. ram_addr_t memory_size;
  37. ram_addr_t phys_offset;
  38. int slot;
  39. int flags;
  40. } KVMSlot;
  41. typedef struct kvm_dirty_log KVMDirtyLog;
  42. int kvm_allowed = 0;
  43. struct KVMState
  44. {
  45. KVMSlot slots[32];
  46. int fd;
  47. int vmfd;
  48. int coalesced_mmio;
  49. };
  50. static KVMState *kvm_state;
  51. static KVMSlot *kvm_alloc_slot(KVMState *s)
  52. {
  53. int i;
  54. for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
  55. /* KVM private memory slots */
  56. if (i >= 8 && i < 12)
  57. continue;
  58. if (s->slots[i].memory_size == 0)
  59. return &s->slots[i];
  60. }
  61. return NULL;
  62. }
  63. static KVMSlot *kvm_lookup_slot(KVMState *s, target_phys_addr_t start_addr)
  64. {
  65. int i;
  66. for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
  67. KVMSlot *mem = &s->slots[i];
  68. if (start_addr >= mem->start_addr &&
  69. start_addr < (mem->start_addr + mem->memory_size))
  70. return mem;
  71. }
  72. return NULL;
  73. }
  74. static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
  75. {
  76. struct kvm_userspace_memory_region mem;
  77. mem.slot = slot->slot;
  78. mem.guest_phys_addr = slot->start_addr;
  79. mem.memory_size = slot->memory_size;
  80. mem.userspace_addr = (unsigned long)phys_ram_base + slot->phys_offset;
  81. mem.flags = slot->flags;
  82. return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
  83. }
  84. int kvm_init_vcpu(CPUState *env)
  85. {
  86. KVMState *s = kvm_state;
  87. long mmap_size;
  88. int ret;
  89. dprintf("kvm_init_vcpu\n");
  90. ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
  91. if (ret < 0) {
  92. dprintf("kvm_create_vcpu failed\n");
  93. goto err;
  94. }
  95. env->kvm_fd = ret;
  96. env->kvm_state = s;
  97. mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
  98. if (mmap_size < 0) {
  99. dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
  100. goto err;
  101. }
  102. env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
  103. env->kvm_fd, 0);
  104. if (env->kvm_run == MAP_FAILED) {
  105. ret = -errno;
  106. dprintf("mmap'ing vcpu state failed\n");
  107. goto err;
  108. }
  109. ret = kvm_arch_init_vcpu(env);
  110. err:
  111. return ret;
  112. }
  113. int kvm_sync_vcpus(void)
  114. {
  115. CPUState *env;
  116. for (env = first_cpu; env != NULL; env = env->next_cpu) {
  117. int ret;
  118. ret = kvm_arch_put_registers(env);
  119. if (ret)
  120. return ret;
  121. }
  122. return 0;
  123. }
  124. /*
  125. * dirty pages logging control
  126. */
  127. static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, target_phys_addr_t end_addr,
  128. unsigned flags,
  129. unsigned mask)
  130. {
  131. KVMState *s = kvm_state;
  132. KVMSlot *mem = kvm_lookup_slot(s, phys_addr);
  133. if (mem == NULL) {
  134. dprintf("invalid parameters %llx-%llx\n", phys_addr, end_addr);
  135. return -EINVAL;
  136. }
  137. flags = (mem->flags & ~mask) | flags;
  138. /* Nothing changed, no need to issue ioctl */
  139. if (flags == mem->flags)
  140. return 0;
  141. mem->flags = flags;
  142. return kvm_set_user_memory_region(s, mem);
  143. }
  144. int kvm_log_start(target_phys_addr_t phys_addr, target_phys_addr_t end_addr)
  145. {
  146. return kvm_dirty_pages_log_change(phys_addr, end_addr,
  147. KVM_MEM_LOG_DIRTY_PAGES,
  148. KVM_MEM_LOG_DIRTY_PAGES);
  149. }
  150. int kvm_log_stop(target_phys_addr_t phys_addr, target_phys_addr_t end_addr)
  151. {
  152. return kvm_dirty_pages_log_change(phys_addr, end_addr,
  153. 0,
  154. KVM_MEM_LOG_DIRTY_PAGES);
  155. }
  156. /**
  157. * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
  158. * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
  159. * This means all bits are set to dirty.
  160. *
  161. * @start_add: start of logged region. This is what we use to search the memslot
  162. * @end_addr: end of logged region.
  163. */
  164. void kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
  165. {
  166. KVMState *s = kvm_state;
  167. KVMDirtyLog d;
  168. KVMSlot *mem = kvm_lookup_slot(s, start_addr);
  169. unsigned long alloc_size;
  170. ram_addr_t addr;
  171. target_phys_addr_t phys_addr = start_addr;
  172. dprintf("sync addr: %llx into %lx\n", start_addr, mem->phys_offset);
  173. if (mem == NULL) {
  174. fprintf(stderr, "BUG: %s: invalid parameters\n", __func__);
  175. return;
  176. }
  177. alloc_size = mem->memory_size >> TARGET_PAGE_BITS / sizeof(d.dirty_bitmap);
  178. d.dirty_bitmap = qemu_mallocz(alloc_size);
  179. d.slot = mem->slot;
  180. dprintf("slot %d, phys_addr %llx, uaddr: %llx\n",
  181. d.slot, mem->start_addr, mem->phys_offset);
  182. if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
  183. dprintf("ioctl failed %d\n", errno);
  184. goto out;
  185. }
  186. phys_addr = start_addr;
  187. for (addr = mem->phys_offset; phys_addr < end_addr; phys_addr+= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
  188. unsigned long *bitmap = (unsigned long *)d.dirty_bitmap;
  189. unsigned nr = (phys_addr - start_addr) >> TARGET_PAGE_BITS;
  190. unsigned word = nr / (sizeof(*bitmap) * 8);
  191. unsigned bit = nr % (sizeof(*bitmap) * 8);
  192. if ((bitmap[word] >> bit) & 1)
  193. cpu_physical_memory_set_dirty(addr);
  194. }
  195. out:
  196. qemu_free(d.dirty_bitmap);
  197. }
  198. int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
  199. {
  200. int ret = -ENOSYS;
  201. #ifdef KVM_CAP_COALESCED_MMIO
  202. KVMState *s = kvm_state;
  203. if (s->coalesced_mmio) {
  204. struct kvm_coalesced_mmio_zone zone;
  205. zone.addr = start;
  206. zone.size = size;
  207. ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
  208. }
  209. #endif
  210. return ret;
  211. }
  212. int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
  213. {
  214. int ret = -ENOSYS;
  215. #ifdef KVM_CAP_COALESCED_MMIO
  216. KVMState *s = kvm_state;
  217. if (s->coalesced_mmio) {
  218. struct kvm_coalesced_mmio_zone zone;
  219. zone.addr = start;
  220. zone.size = size;
  221. ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
  222. }
  223. #endif
  224. return ret;
  225. }
  226. int kvm_check_extension(KVMState *s, unsigned int extension)
  227. {
  228. int ret;
  229. ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
  230. if (ret < 0) {
  231. ret = 0;
  232. }
  233. return ret;
  234. }
  235. int kvm_init(int smp_cpus)
  236. {
  237. KVMState *s;
  238. int ret;
  239. int i;
  240. if (smp_cpus > 1) {
  241. fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
  242. return -EINVAL;
  243. }
  244. s = qemu_mallocz(sizeof(KVMState));
  245. for (i = 0; i < ARRAY_SIZE(s->slots); i++)
  246. s->slots[i].slot = i;
  247. s->vmfd = -1;
  248. s->fd = open("/dev/kvm", O_RDWR);
  249. if (s->fd == -1) {
  250. fprintf(stderr, "Could not access KVM kernel module: %m\n");
  251. ret = -errno;
  252. goto err;
  253. }
  254. ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
  255. if (ret < KVM_API_VERSION) {
  256. if (ret > 0)
  257. ret = -EINVAL;
  258. fprintf(stderr, "kvm version too old\n");
  259. goto err;
  260. }
  261. if (ret > KVM_API_VERSION) {
  262. ret = -EINVAL;
  263. fprintf(stderr, "kvm version not supported\n");
  264. goto err;
  265. }
  266. s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
  267. if (s->vmfd < 0)
  268. goto err;
  269. /* initially, KVM allocated its own memory and we had to jump through
  270. * hooks to make phys_ram_base point to this. Modern versions of KVM
  271. * just use a user allocated buffer so we can use phys_ram_base
  272. * unmodified. Make sure we have a sufficiently modern version of KVM.
  273. */
  274. if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
  275. ret = -EINVAL;
  276. fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n");
  277. goto err;
  278. }
  279. /* There was a nasty bug in < kvm-80 that prevents memory slots from being
  280. * destroyed properly. Since we rely on this capability, refuse to work
  281. * with any kernel without this capability. */
  282. if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
  283. ret = -EINVAL;
  284. fprintf(stderr,
  285. "KVM kernel module broken (DESTROY_MEMORY_REGION)\n"
  286. "Please upgrade to at least kvm-81.\n");
  287. goto err;
  288. }
  289. #ifdef KVM_CAP_COALESCED_MMIO
  290. s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
  291. #else
  292. s->coalesced_mmio = 0;
  293. #endif
  294. ret = kvm_arch_init(s, smp_cpus);
  295. if (ret < 0)
  296. goto err;
  297. kvm_state = s;
  298. return 0;
  299. err:
  300. if (s) {
  301. if (s->vmfd != -1)
  302. close(s->vmfd);
  303. if (s->fd != -1)
  304. close(s->fd);
  305. }
  306. qemu_free(s);
  307. return ret;
  308. }
  309. static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
  310. int direction, int size, uint32_t count)
  311. {
  312. int i;
  313. uint8_t *ptr = data;
  314. for (i = 0; i < count; i++) {
  315. if (direction == KVM_EXIT_IO_IN) {
  316. switch (size) {
  317. case 1:
  318. stb_p(ptr, cpu_inb(env, port));
  319. break;
  320. case 2:
  321. stw_p(ptr, cpu_inw(env, port));
  322. break;
  323. case 4:
  324. stl_p(ptr, cpu_inl(env, port));
  325. break;
  326. }
  327. } else {
  328. switch (size) {
  329. case 1:
  330. cpu_outb(env, port, ldub_p(ptr));
  331. break;
  332. case 2:
  333. cpu_outw(env, port, lduw_p(ptr));
  334. break;
  335. case 4:
  336. cpu_outl(env, port, ldl_p(ptr));
  337. break;
  338. }
  339. }
  340. ptr += size;
  341. }
  342. return 1;
  343. }
  344. static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
  345. {
  346. #ifdef KVM_CAP_COALESCED_MMIO
  347. KVMState *s = kvm_state;
  348. if (s->coalesced_mmio) {
  349. struct kvm_coalesced_mmio_ring *ring;
  350. ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
  351. while (ring->first != ring->last) {
  352. struct kvm_coalesced_mmio *ent;
  353. ent = &ring->coalesced_mmio[ring->first];
  354. cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
  355. /* FIXME smp_wmb() */
  356. ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
  357. }
  358. }
  359. #endif
  360. }
  361. int kvm_cpu_exec(CPUState *env)
  362. {
  363. struct kvm_run *run = env->kvm_run;
  364. int ret;
  365. dprintf("kvm_cpu_exec()\n");
  366. do {
  367. if (env->exit_request) {
  368. dprintf("interrupt exit requested\n");
  369. ret = 0;
  370. break;
  371. }
  372. kvm_arch_pre_run(env, run);
  373. ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
  374. kvm_arch_post_run(env, run);
  375. if (ret == -EINTR || ret == -EAGAIN) {
  376. dprintf("io window exit\n");
  377. ret = 0;
  378. break;
  379. }
  380. if (ret < 0) {
  381. dprintf("kvm run failed %s\n", strerror(-ret));
  382. abort();
  383. }
  384. kvm_run_coalesced_mmio(env, run);
  385. ret = 0; /* exit loop */
  386. switch (run->exit_reason) {
  387. case KVM_EXIT_IO:
  388. dprintf("handle_io\n");
  389. ret = kvm_handle_io(env, run->io.port,
  390. (uint8_t *)run + run->io.data_offset,
  391. run->io.direction,
  392. run->io.size,
  393. run->io.count);
  394. break;
  395. case KVM_EXIT_MMIO:
  396. dprintf("handle_mmio\n");
  397. cpu_physical_memory_rw(run->mmio.phys_addr,
  398. run->mmio.data,
  399. run->mmio.len,
  400. run->mmio.is_write);
  401. ret = 1;
  402. break;
  403. case KVM_EXIT_IRQ_WINDOW_OPEN:
  404. dprintf("irq_window_open\n");
  405. break;
  406. case KVM_EXIT_SHUTDOWN:
  407. dprintf("shutdown\n");
  408. qemu_system_reset_request();
  409. ret = 1;
  410. break;
  411. case KVM_EXIT_UNKNOWN:
  412. dprintf("kvm_exit_unknown\n");
  413. break;
  414. case KVM_EXIT_FAIL_ENTRY:
  415. dprintf("kvm_exit_fail_entry\n");
  416. break;
  417. case KVM_EXIT_EXCEPTION:
  418. dprintf("kvm_exit_exception\n");
  419. break;
  420. case KVM_EXIT_DEBUG:
  421. dprintf("kvm_exit_debug\n");
  422. break;
  423. default:
  424. dprintf("kvm_arch_handle_exit\n");
  425. ret = kvm_arch_handle_exit(env, run);
  426. break;
  427. }
  428. } while (ret > 0);
  429. if (env->exit_request) {
  430. env->exit_request = 0;
  431. env->exception_index = EXCP_INTERRUPT;
  432. }
  433. return ret;
  434. }
  435. void kvm_set_phys_mem(target_phys_addr_t start_addr,
  436. ram_addr_t size,
  437. ram_addr_t phys_offset)
  438. {
  439. KVMState *s = kvm_state;
  440. ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
  441. KVMSlot *mem;
  442. /* KVM does not support read-only slots */
  443. phys_offset &= ~IO_MEM_ROM;
  444. mem = kvm_lookup_slot(s, start_addr);
  445. if (mem) {
  446. if ((flags == IO_MEM_UNASSIGNED) || (flags >= TLB_MMIO)) {
  447. mem->memory_size = 0;
  448. mem->start_addr = start_addr;
  449. mem->phys_offset = 0;
  450. mem->flags = 0;
  451. kvm_set_user_memory_region(s, mem);
  452. } else if (start_addr >= mem->start_addr &&
  453. (start_addr + size) <= (mem->start_addr +
  454. mem->memory_size)) {
  455. KVMSlot slot;
  456. target_phys_addr_t mem_start;
  457. ram_addr_t mem_size, mem_offset;
  458. /* Not splitting */
  459. if ((phys_offset - (start_addr - mem->start_addr)) ==
  460. mem->phys_offset)
  461. return;
  462. /* unregister whole slot */
  463. memcpy(&slot, mem, sizeof(slot));
  464. mem->memory_size = 0;
  465. kvm_set_user_memory_region(s, mem);
  466. /* register prefix slot */
  467. mem_start = slot.start_addr;
  468. mem_size = start_addr - slot.start_addr;
  469. mem_offset = slot.phys_offset;
  470. if (mem_size)
  471. kvm_set_phys_mem(mem_start, mem_size, mem_offset);
  472. /* register new slot */
  473. kvm_set_phys_mem(start_addr, size, phys_offset);
  474. /* register suffix slot */
  475. mem_start = start_addr + size;
  476. mem_offset += mem_size + size;
  477. mem_size = slot.memory_size - mem_size - size;
  478. if (mem_size)
  479. kvm_set_phys_mem(mem_start, mem_size, mem_offset);
  480. return;
  481. } else {
  482. printf("Registering overlapping slot\n");
  483. abort();
  484. }
  485. }
  486. /* KVM does not need to know about this memory */
  487. if (flags >= IO_MEM_UNASSIGNED)
  488. return;
  489. mem = kvm_alloc_slot(s);
  490. mem->memory_size = size;
  491. mem->start_addr = start_addr;
  492. mem->phys_offset = phys_offset;
  493. mem->flags = 0;
  494. kvm_set_user_memory_region(s, mem);
  495. /* FIXME deal with errors */
  496. }
  497. int kvm_ioctl(KVMState *s, int type, ...)
  498. {
  499. int ret;
  500. void *arg;
  501. va_list ap;
  502. va_start(ap, type);
  503. arg = va_arg(ap, void *);
  504. va_end(ap);
  505. ret = ioctl(s->fd, type, arg);
  506. if (ret == -1)
  507. ret = -errno;
  508. return ret;
  509. }
  510. int kvm_vm_ioctl(KVMState *s, int type, ...)
  511. {
  512. int ret;
  513. void *arg;
  514. va_list ap;
  515. va_start(ap, type);
  516. arg = va_arg(ap, void *);
  517. va_end(ap);
  518. ret = ioctl(s->vmfd, type, arg);
  519. if (ret == -1)
  520. ret = -errno;
  521. return ret;
  522. }
  523. int kvm_vcpu_ioctl(CPUState *env, int type, ...)
  524. {
  525. int ret;
  526. void *arg;
  527. va_list ap;
  528. va_start(ap, type);
  529. arg = va_arg(ap, void *);
  530. va_end(ap);
  531. ret = ioctl(env->kvm_fd, type, arg);
  532. if (ret == -1)
  533. ret = -errno;
  534. return ret;
  535. }
  536. int kvm_has_sync_mmu(void)
  537. {
  538. #ifdef KVM_CAP_SYNC_MMU
  539. KVMState *s = kvm_state;
  540. return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
  541. #else
  542. return 0;
  543. #endif
  544. }
  545. void kvm_setup_guest_memory(void *start, size_t size)
  546. {
  547. if (!kvm_has_sync_mmu()) {
  548. #ifdef MADV_DONTFORK
  549. int ret = madvise(start, size, MADV_DONTFORK);
  550. if (ret) {
  551. perror("madvice");
  552. exit(1);
  553. }
  554. #else
  555. fprintf(stderr,
  556. "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
  557. exit(1);
  558. #endif
  559. }
  560. }