2
0

stellaris_enet.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423
  1. /*
  2. * Luminary Micro Stellaris Ethernet Controller
  3. *
  4. * Copyright (c) 2007 CodeSourcery.
  5. * Written by Paul Brook
  6. *
  7. * This code is licenced under the GPL.
  8. */
  9. #include "hw.h"
  10. #include "arm-misc.h"
  11. #include "net.h"
  12. #include <zlib.h>
  13. //#define DEBUG_STELLARIS_ENET 1
  14. #ifdef DEBUG_STELLARIS_ENET
  15. #define DPRINTF(fmt, args...) \
  16. do { printf("stellaris_enet: " fmt , ##args); } while (0)
  17. #define BADF(fmt, args...) \
  18. do { fprintf(stderr, "stellaris_enet: error: " fmt , ##args); exit(1);} while (0)
  19. #else
  20. #define DPRINTF(fmt, args...) do {} while(0)
  21. #define BADF(fmt, args...) \
  22. do { fprintf(stderr, "stellaris_enet: error: " fmt , ##args);} while (0)
  23. #endif
  24. #define SE_INT_RX 0x01
  25. #define SE_INT_TXER 0x02
  26. #define SE_INT_TXEMP 0x04
  27. #define SE_INT_FOV 0x08
  28. #define SE_INT_RXER 0x10
  29. #define SE_INT_MD 0x20
  30. #define SE_INT_PHY 0x40
  31. #define SE_RCTL_RXEN 0x01
  32. #define SE_RCTL_AMUL 0x02
  33. #define SE_RCTL_PRMS 0x04
  34. #define SE_RCTL_BADCRC 0x08
  35. #define SE_RCTL_RSTFIFO 0x10
  36. #define SE_TCTL_TXEN 0x01
  37. #define SE_TCTL_PADEN 0x02
  38. #define SE_TCTL_CRC 0x04
  39. #define SE_TCTL_DUPLEX 0x08
  40. typedef struct {
  41. uint32_t ris;
  42. uint32_t im;
  43. uint32_t rctl;
  44. uint32_t tctl;
  45. uint32_t thr;
  46. uint32_t mctl;
  47. uint32_t mdv;
  48. uint32_t mtxd;
  49. uint32_t mrxd;
  50. uint32_t np;
  51. int tx_frame_len;
  52. int tx_fifo_len;
  53. uint8_t tx_fifo[2048];
  54. /* Real hardware has a 2k fifo, which works out to be at most 31 packets.
  55. We implement a full 31 packet fifo. */
  56. struct {
  57. uint8_t data[2048];
  58. int len;
  59. } rx[31];
  60. uint8_t *rx_fifo;
  61. int rx_fifo_len;
  62. int next_packet;
  63. VLANClientState *vc;
  64. qemu_irq irq;
  65. uint8_t macaddr[6];
  66. int mmio_index;
  67. } stellaris_enet_state;
  68. static void stellaris_enet_update(stellaris_enet_state *s)
  69. {
  70. qemu_set_irq(s->irq, (s->ris & s->im) != 0);
  71. }
  72. /* TODO: Implement MAC address filtering. */
  73. static void stellaris_enet_receive(void *opaque, const uint8_t *buf, int size)
  74. {
  75. stellaris_enet_state *s = (stellaris_enet_state *)opaque;
  76. int n;
  77. uint8_t *p;
  78. uint32_t crc;
  79. if ((s->rctl & SE_RCTL_RXEN) == 0)
  80. return;
  81. if (s->np >= 31) {
  82. DPRINTF("Packet dropped\n");
  83. return;
  84. }
  85. DPRINTF("Received packet len=%d\n", size);
  86. n = s->next_packet + s->np;
  87. if (n >= 31)
  88. n -= 31;
  89. s->np++;
  90. s->rx[n].len = size + 6;
  91. p = s->rx[n].data;
  92. *(p++) = (size + 6);
  93. *(p++) = (size + 6) >> 8;
  94. memcpy (p, buf, size);
  95. p += size;
  96. crc = crc32(~0, buf, size);
  97. *(p++) = crc;
  98. *(p++) = crc >> 8;
  99. *(p++) = crc >> 16;
  100. *(p++) = crc >> 24;
  101. /* Clear the remaining bytes in the last word. */
  102. if ((size & 3) != 2) {
  103. memset(p, 0, (6 - size) & 3);
  104. }
  105. s->ris |= SE_INT_RX;
  106. stellaris_enet_update(s);
  107. }
  108. static int stellaris_enet_can_receive(void *opaque)
  109. {
  110. stellaris_enet_state *s = (stellaris_enet_state *)opaque;
  111. if ((s->rctl & SE_RCTL_RXEN) == 0)
  112. return 1;
  113. return (s->np < 31);
  114. }
  115. static uint32_t stellaris_enet_read(void *opaque, target_phys_addr_t offset)
  116. {
  117. stellaris_enet_state *s = (stellaris_enet_state *)opaque;
  118. uint32_t val;
  119. switch (offset) {
  120. case 0x00: /* RIS */
  121. DPRINTF("IRQ status %02x\n", s->ris);
  122. return s->ris;
  123. case 0x04: /* IM */
  124. return s->im;
  125. case 0x08: /* RCTL */
  126. return s->rctl;
  127. case 0x0c: /* TCTL */
  128. return s->tctl;
  129. case 0x10: /* DATA */
  130. if (s->rx_fifo_len == 0) {
  131. if (s->np == 0) {
  132. BADF("RX underflow\n");
  133. return 0;
  134. }
  135. s->rx_fifo_len = s->rx[s->next_packet].len;
  136. s->rx_fifo = s->rx[s->next_packet].data;
  137. DPRINTF("RX FIFO start packet len=%d\n", s->rx_fifo_len);
  138. }
  139. val = s->rx_fifo[0] | (s->rx_fifo[1] << 8) | (s->rx_fifo[2] << 16)
  140. | (s->rx_fifo[3] << 24);
  141. s->rx_fifo += 4;
  142. s->rx_fifo_len -= 4;
  143. if (s->rx_fifo_len <= 0) {
  144. s->rx_fifo_len = 0;
  145. s->next_packet++;
  146. if (s->next_packet >= 31)
  147. s->next_packet = 0;
  148. s->np--;
  149. DPRINTF("RX done np=%d\n", s->np);
  150. }
  151. return val;
  152. case 0x14: /* IA0 */
  153. return s->macaddr[0] | (s->macaddr[1] << 8)
  154. | (s->macaddr[2] << 16) | (s->macaddr[3] << 24);
  155. case 0x18: /* IA1 */
  156. return s->macaddr[4] | (s->macaddr[5] << 8);
  157. case 0x1c: /* THR */
  158. return s->thr;
  159. case 0x20: /* MCTL */
  160. return s->mctl;
  161. case 0x24: /* MDV */
  162. return s->mdv;
  163. case 0x28: /* MADD */
  164. return 0;
  165. case 0x2c: /* MTXD */
  166. return s->mtxd;
  167. case 0x30: /* MRXD */
  168. return s->mrxd;
  169. case 0x34: /* NP */
  170. return s->np;
  171. case 0x38: /* TR */
  172. return 0;
  173. case 0x3c: /* Undocuented: Timestamp? */
  174. return 0;
  175. default:
  176. cpu_abort (cpu_single_env, "stellaris_enet_read: Bad offset %x\n",
  177. (int)offset);
  178. return 0;
  179. }
  180. }
  181. static void stellaris_enet_write(void *opaque, target_phys_addr_t offset,
  182. uint32_t value)
  183. {
  184. stellaris_enet_state *s = (stellaris_enet_state *)opaque;
  185. switch (offset) {
  186. case 0x00: /* IACK */
  187. s->ris &= ~value;
  188. DPRINTF("IRQ ack %02x/%02x\n", value, s->ris);
  189. stellaris_enet_update(s);
  190. /* Clearing TXER also resets the TX fifo. */
  191. if (value & SE_INT_TXER)
  192. s->tx_frame_len = -1;
  193. break;
  194. case 0x04: /* IM */
  195. DPRINTF("IRQ mask %02x/%02x\n", value, s->ris);
  196. s->im = value;
  197. stellaris_enet_update(s);
  198. break;
  199. case 0x08: /* RCTL */
  200. s->rctl = value;
  201. if (value & SE_RCTL_RSTFIFO) {
  202. s->rx_fifo_len = 0;
  203. s->np = 0;
  204. stellaris_enet_update(s);
  205. }
  206. break;
  207. case 0x0c: /* TCTL */
  208. s->tctl = value;
  209. break;
  210. case 0x10: /* DATA */
  211. if (s->tx_frame_len == -1) {
  212. s->tx_frame_len = value & 0xffff;
  213. if (s->tx_frame_len > 2032) {
  214. DPRINTF("TX frame too long (%d)\n", s->tx_frame_len);
  215. s->tx_frame_len = 0;
  216. s->ris |= SE_INT_TXER;
  217. stellaris_enet_update(s);
  218. } else {
  219. DPRINTF("Start TX frame len=%d\n", s->tx_frame_len);
  220. /* The value written does not include the ethernet header. */
  221. s->tx_frame_len += 14;
  222. if ((s->tctl & SE_TCTL_CRC) == 0)
  223. s->tx_frame_len += 4;
  224. s->tx_fifo_len = 0;
  225. s->tx_fifo[s->tx_fifo_len++] = value >> 16;
  226. s->tx_fifo[s->tx_fifo_len++] = value >> 24;
  227. }
  228. } else {
  229. s->tx_fifo[s->tx_fifo_len++] = value;
  230. s->tx_fifo[s->tx_fifo_len++] = value >> 8;
  231. s->tx_fifo[s->tx_fifo_len++] = value >> 16;
  232. s->tx_fifo[s->tx_fifo_len++] = value >> 24;
  233. if (s->tx_fifo_len >= s->tx_frame_len) {
  234. /* We don't implement explicit CRC, so just chop it off. */
  235. if ((s->tctl & SE_TCTL_CRC) == 0)
  236. s->tx_frame_len -= 4;
  237. if ((s->tctl & SE_TCTL_PADEN) && s->tx_frame_len < 60) {
  238. memset(&s->tx_fifo[s->tx_frame_len], 0, 60 - s->tx_frame_len);
  239. s->tx_fifo_len = 60;
  240. }
  241. qemu_send_packet(s->vc, s->tx_fifo, s->tx_frame_len);
  242. s->tx_frame_len = -1;
  243. s->ris |= SE_INT_TXEMP;
  244. stellaris_enet_update(s);
  245. DPRINTF("Done TX\n");
  246. }
  247. }
  248. break;
  249. case 0x14: /* IA0 */
  250. s->macaddr[0] = value;
  251. s->macaddr[1] = value >> 8;
  252. s->macaddr[2] = value >> 16;
  253. s->macaddr[3] = value >> 24;
  254. break;
  255. case 0x18: /* IA1 */
  256. s->macaddr[4] = value;
  257. s->macaddr[5] = value >> 8;
  258. break;
  259. case 0x1c: /* THR */
  260. s->thr = value;
  261. break;
  262. case 0x20: /* MCTL */
  263. s->mctl = value;
  264. break;
  265. case 0x24: /* MDV */
  266. s->mdv = value;
  267. break;
  268. case 0x28: /* MADD */
  269. /* ignored. */
  270. break;
  271. case 0x2c: /* MTXD */
  272. s->mtxd = value & 0xff;
  273. break;
  274. case 0x30: /* MRXD */
  275. case 0x34: /* NP */
  276. case 0x38: /* TR */
  277. /* Ignored. */
  278. case 0x3c: /* Undocuented: Timestamp? */
  279. /* Ignored. */
  280. break;
  281. default:
  282. cpu_abort (cpu_single_env, "stellaris_enet_write: Bad offset %x\n",
  283. (int)offset);
  284. }
  285. }
  286. static CPUReadMemoryFunc *stellaris_enet_readfn[] = {
  287. stellaris_enet_read,
  288. stellaris_enet_read,
  289. stellaris_enet_read
  290. };
  291. static CPUWriteMemoryFunc *stellaris_enet_writefn[] = {
  292. stellaris_enet_write,
  293. stellaris_enet_write,
  294. stellaris_enet_write
  295. };
  296. static void stellaris_enet_reset(stellaris_enet_state *s)
  297. {
  298. s->mdv = 0x80;
  299. s->rctl = SE_RCTL_BADCRC;
  300. s->im = SE_INT_PHY | SE_INT_MD | SE_INT_RXER | SE_INT_FOV | SE_INT_TXEMP
  301. | SE_INT_TXER | SE_INT_RX;
  302. s->thr = 0x3f;
  303. s->tx_frame_len = -1;
  304. }
  305. static void stellaris_enet_save(QEMUFile *f, void *opaque)
  306. {
  307. stellaris_enet_state *s = (stellaris_enet_state *)opaque;
  308. int i;
  309. qemu_put_be32(f, s->ris);
  310. qemu_put_be32(f, s->im);
  311. qemu_put_be32(f, s->rctl);
  312. qemu_put_be32(f, s->tctl);
  313. qemu_put_be32(f, s->thr);
  314. qemu_put_be32(f, s->mctl);
  315. qemu_put_be32(f, s->mdv);
  316. qemu_put_be32(f, s->mtxd);
  317. qemu_put_be32(f, s->mrxd);
  318. qemu_put_be32(f, s->np);
  319. qemu_put_be32(f, s->tx_frame_len);
  320. qemu_put_be32(f, s->tx_fifo_len);
  321. qemu_put_buffer(f, s->tx_fifo, sizeof(s->tx_fifo));
  322. for (i = 0; i < 31; i++) {
  323. qemu_put_be32(f, s->rx[i].len);
  324. qemu_put_buffer(f, s->rx[i].data, sizeof(s->rx[i].data));
  325. }
  326. qemu_put_be32(f, s->next_packet);
  327. qemu_put_be32(f, s->rx_fifo - s->rx[s->next_packet].data);
  328. qemu_put_be32(f, s->rx_fifo_len);
  329. }
  330. static int stellaris_enet_load(QEMUFile *f, void *opaque, int version_id)
  331. {
  332. stellaris_enet_state *s = (stellaris_enet_state *)opaque;
  333. int i;
  334. if (version_id != 1)
  335. return -EINVAL;
  336. s->ris = qemu_get_be32(f);
  337. s->im = qemu_get_be32(f);
  338. s->rctl = qemu_get_be32(f);
  339. s->tctl = qemu_get_be32(f);
  340. s->thr = qemu_get_be32(f);
  341. s->mctl = qemu_get_be32(f);
  342. s->mdv = qemu_get_be32(f);
  343. s->mtxd = qemu_get_be32(f);
  344. s->mrxd = qemu_get_be32(f);
  345. s->np = qemu_get_be32(f);
  346. s->tx_frame_len = qemu_get_be32(f);
  347. s->tx_fifo_len = qemu_get_be32(f);
  348. qemu_get_buffer(f, s->tx_fifo, sizeof(s->tx_fifo));
  349. for (i = 0; i < 31; i++) {
  350. s->rx[i].len = qemu_get_be32(f);
  351. qemu_get_buffer(f, s->rx[i].data, sizeof(s->rx[i].data));
  352. }
  353. s->next_packet = qemu_get_be32(f);
  354. s->rx_fifo = s->rx[s->next_packet].data + qemu_get_be32(f);
  355. s->rx_fifo_len = qemu_get_be32(f);
  356. return 0;
  357. }
  358. static void stellaris_enet_cleanup(VLANClientState *vc)
  359. {
  360. stellaris_enet_state *s = vc->opaque;
  361. unregister_savevm("stellaris_enet", s);
  362. cpu_unregister_io_memory(s->mmio_index);
  363. qemu_free(s);
  364. }
  365. void stellaris_enet_init(NICInfo *nd, uint32_t base, qemu_irq irq)
  366. {
  367. stellaris_enet_state *s;
  368. qemu_check_nic_model(nd, "stellaris");
  369. s = (stellaris_enet_state *)qemu_mallocz(sizeof(stellaris_enet_state));
  370. s->mmio_index = cpu_register_io_memory(0, stellaris_enet_readfn,
  371. stellaris_enet_writefn, s);
  372. cpu_register_physical_memory(base, 0x00001000, s->mmio_index);
  373. s->irq = irq;
  374. memcpy(s->macaddr, nd->macaddr, 6);
  375. if (nd->vlan) {
  376. s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
  377. stellaris_enet_receive,
  378. stellaris_enet_can_receive,
  379. stellaris_enet_cleanup, s);
  380. qemu_format_nic_info_str(s->vc, s->macaddr);
  381. }
  382. stellaris_enet_reset(s);
  383. register_savevm("stellaris_enet", -1, 1,
  384. stellaris_enet_save, stellaris_enet_load, s);
  385. }