slavio_intctl.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419
  1. /*
  2. * QEMU Sparc SLAVIO interrupt controller emulation
  3. *
  4. * Copyright (c) 2003-2005 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "hw.h"
  25. #include "sun4m.h"
  26. #include "console.h"
  27. //#define DEBUG_IRQ_COUNT
  28. //#define DEBUG_IRQ
  29. #ifdef DEBUG_IRQ
  30. #define DPRINTF(fmt, args...) \
  31. do { printf("IRQ: " fmt , ##args); } while (0)
  32. #else
  33. #define DPRINTF(fmt, args...)
  34. #endif
  35. /*
  36. * Registers of interrupt controller in sun4m.
  37. *
  38. * This is the interrupt controller part of chip STP2001 (Slave I/O), also
  39. * produced as NCR89C105. See
  40. * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
  41. *
  42. * There is a system master controller and one for each cpu.
  43. *
  44. */
  45. #define MAX_CPUS 16
  46. #define MAX_PILS 16
  47. struct SLAVIO_CPUINTCTLState;
  48. typedef struct SLAVIO_INTCTLState {
  49. uint32_t intregm_pending;
  50. uint32_t intregm_disabled;
  51. uint32_t target_cpu;
  52. #ifdef DEBUG_IRQ_COUNT
  53. uint64_t irq_count[32];
  54. #endif
  55. qemu_irq *cpu_irqs[MAX_CPUS];
  56. const uint32_t *intbit_to_level;
  57. uint32_t cputimer_lbit, cputimer_mbit;
  58. uint32_t pil_out[MAX_CPUS];
  59. struct SLAVIO_CPUINTCTLState *slaves[MAX_CPUS];
  60. } SLAVIO_INTCTLState;
  61. typedef struct SLAVIO_CPUINTCTLState {
  62. uint32_t intreg_pending;
  63. SLAVIO_INTCTLState *master;
  64. uint32_t cpu;
  65. } SLAVIO_CPUINTCTLState;
  66. #define INTCTL_MAXADDR 0xf
  67. #define INTCTL_SIZE (INTCTL_MAXADDR + 1)
  68. #define INTCTLM_SIZE 0x14
  69. #define MASTER_IRQ_MASK ~0x0fa2007f
  70. #define MASTER_DISABLE 0x80000000
  71. #define CPU_SOFTIRQ_MASK 0xfffe0000
  72. #define CPU_HARDIRQ_MASK 0x0000fffe
  73. #define CPU_IRQ_INT15_IN 0x0004000
  74. #define CPU_IRQ_INT15_MASK 0x80000000
  75. static void slavio_check_interrupts(SLAVIO_INTCTLState *s);
  76. // per-cpu interrupt controller
  77. static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
  78. {
  79. SLAVIO_CPUINTCTLState *s = opaque;
  80. uint32_t saddr, ret;
  81. saddr = addr >> 2;
  82. switch (saddr) {
  83. case 0:
  84. ret = s->intreg_pending;
  85. break;
  86. default:
  87. ret = 0;
  88. break;
  89. }
  90. DPRINTF("read cpu %d reg 0x" TARGET_FMT_plx " = %x\n", s->cpu, addr, ret);
  91. return ret;
  92. }
  93. static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr,
  94. uint32_t val)
  95. {
  96. SLAVIO_CPUINTCTLState *s = opaque;
  97. uint32_t saddr;
  98. saddr = addr >> 2;
  99. DPRINTF("write cpu %d reg 0x" TARGET_FMT_plx " = %x\n", s->cpu, addr, val);
  100. switch (saddr) {
  101. case 1: // clear pending softints
  102. if (val & CPU_IRQ_INT15_IN)
  103. val |= CPU_IRQ_INT15_MASK;
  104. val &= CPU_SOFTIRQ_MASK;
  105. s->intreg_pending &= ~val;
  106. slavio_check_interrupts(s->master);
  107. DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", s->cpu, val,
  108. s->intreg_pending);
  109. break;
  110. case 2: // set softint
  111. val &= CPU_SOFTIRQ_MASK;
  112. s->intreg_pending |= val;
  113. slavio_check_interrupts(s->master);
  114. DPRINTF("Set cpu %d irq mask %x, curmask %x\n", s->cpu, val,
  115. s->intreg_pending);
  116. break;
  117. default:
  118. break;
  119. }
  120. }
  121. static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
  122. NULL,
  123. NULL,
  124. slavio_intctl_mem_readl,
  125. };
  126. static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
  127. NULL,
  128. NULL,
  129. slavio_intctl_mem_writel,
  130. };
  131. // master system interrupt controller
  132. static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
  133. {
  134. SLAVIO_INTCTLState *s = opaque;
  135. uint32_t saddr, ret;
  136. saddr = addr >> 2;
  137. switch (saddr) {
  138. case 0:
  139. ret = s->intregm_pending & ~MASTER_DISABLE;
  140. break;
  141. case 1:
  142. ret = s->intregm_disabled & MASTER_IRQ_MASK;
  143. break;
  144. case 4:
  145. ret = s->target_cpu;
  146. break;
  147. default:
  148. ret = 0;
  149. break;
  150. }
  151. DPRINTF("read system reg 0x" TARGET_FMT_plx " = %x\n", addr, ret);
  152. return ret;
  153. }
  154. static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr,
  155. uint32_t val)
  156. {
  157. SLAVIO_INTCTLState *s = opaque;
  158. uint32_t saddr;
  159. saddr = addr >> 2;
  160. DPRINTF("write system reg 0x" TARGET_FMT_plx " = %x\n", addr, val);
  161. switch (saddr) {
  162. case 2: // clear (enable)
  163. // Force clear unused bits
  164. val &= MASTER_IRQ_MASK;
  165. s->intregm_disabled &= ~val;
  166. DPRINTF("Enabled master irq mask %x, curmask %x\n", val,
  167. s->intregm_disabled);
  168. slavio_check_interrupts(s);
  169. break;
  170. case 3: // set (disable, clear pending)
  171. // Force clear unused bits
  172. val &= MASTER_IRQ_MASK;
  173. s->intregm_disabled |= val;
  174. s->intregm_pending &= ~val;
  175. slavio_check_interrupts(s);
  176. DPRINTF("Disabled master irq mask %x, curmask %x\n", val,
  177. s->intregm_disabled);
  178. break;
  179. case 4:
  180. s->target_cpu = val & (MAX_CPUS - 1);
  181. slavio_check_interrupts(s);
  182. DPRINTF("Set master irq cpu %d\n", s->target_cpu);
  183. break;
  184. default:
  185. break;
  186. }
  187. }
  188. static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
  189. NULL,
  190. NULL,
  191. slavio_intctlm_mem_readl,
  192. };
  193. static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
  194. NULL,
  195. NULL,
  196. slavio_intctlm_mem_writel,
  197. };
  198. void slavio_pic_info(void *opaque)
  199. {
  200. SLAVIO_INTCTLState *s = opaque;
  201. int i;
  202. for (i = 0; i < MAX_CPUS; i++) {
  203. term_printf("per-cpu %d: pending 0x%08x\n", i,
  204. s->slaves[i]->intreg_pending);
  205. }
  206. term_printf("master: pending 0x%08x, disabled 0x%08x\n",
  207. s->intregm_pending, s->intregm_disabled);
  208. }
  209. void slavio_irq_info(void *opaque)
  210. {
  211. #ifndef DEBUG_IRQ_COUNT
  212. term_printf("irq statistic code not compiled.\n");
  213. #else
  214. SLAVIO_INTCTLState *s = opaque;
  215. int i;
  216. int64_t count;
  217. term_printf("IRQ statistics:\n");
  218. for (i = 0; i < 32; i++) {
  219. count = s->irq_count[i];
  220. if (count > 0)
  221. term_printf("%2d: %" PRId64 "\n", i, count);
  222. }
  223. #endif
  224. }
  225. static void slavio_check_interrupts(SLAVIO_INTCTLState *s)
  226. {
  227. uint32_t pending = s->intregm_pending, pil_pending;
  228. unsigned int i, j;
  229. pending &= ~s->intregm_disabled;
  230. DPRINTF("pending %x disabled %x\n", pending, s->intregm_disabled);
  231. for (i = 0; i < MAX_CPUS; i++) {
  232. pil_pending = 0;
  233. if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
  234. (i == s->target_cpu)) {
  235. for (j = 0; j < 32; j++) {
  236. if (pending & (1 << j))
  237. pil_pending |= 1 << s->intbit_to_level[j];
  238. }
  239. }
  240. pil_pending |= (s->slaves[i]->intreg_pending & CPU_SOFTIRQ_MASK) >> 16;
  241. for (j = 0; j < MAX_PILS; j++) {
  242. if (pil_pending & (1 << j)) {
  243. if (!(s->pil_out[i] & (1 << j)))
  244. qemu_irq_raise(s->cpu_irqs[i][j]);
  245. } else {
  246. if (s->pil_out[i] & (1 << j))
  247. qemu_irq_lower(s->cpu_irqs[i][j]);
  248. }
  249. }
  250. s->pil_out[i] = pil_pending;
  251. }
  252. }
  253. /*
  254. * "irq" here is the bit number in the system interrupt register to
  255. * separate serial and keyboard interrupts sharing a level.
  256. */
  257. static void slavio_set_irq(void *opaque, int irq, int level)
  258. {
  259. SLAVIO_INTCTLState *s = opaque;
  260. uint32_t mask = 1 << irq;
  261. uint32_t pil = s->intbit_to_level[irq];
  262. DPRINTF("Set cpu %d irq %d -> pil %d level %d\n", s->target_cpu, irq, pil,
  263. level);
  264. if (pil > 0) {
  265. if (level) {
  266. #ifdef DEBUG_IRQ_COUNT
  267. s->irq_count[pil]++;
  268. #endif
  269. s->intregm_pending |= mask;
  270. s->slaves[s->target_cpu]->intreg_pending |= 1 << pil;
  271. } else {
  272. s->intregm_pending &= ~mask;
  273. s->slaves[s->target_cpu]->intreg_pending &= ~(1 << pil);
  274. }
  275. slavio_check_interrupts(s);
  276. }
  277. }
  278. static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
  279. {
  280. SLAVIO_INTCTLState *s = opaque;
  281. DPRINTF("Set cpu %d local timer level %d\n", cpu, level);
  282. if (level) {
  283. s->intregm_pending |= s->cputimer_mbit;
  284. s->slaves[cpu]->intreg_pending |= s->cputimer_lbit;
  285. } else {
  286. s->intregm_pending &= ~s->cputimer_mbit;
  287. s->slaves[cpu]->intreg_pending &= ~s->cputimer_lbit;
  288. }
  289. slavio_check_interrupts(s);
  290. }
  291. static void slavio_intctl_save(QEMUFile *f, void *opaque)
  292. {
  293. SLAVIO_INTCTLState *s = opaque;
  294. int i;
  295. for (i = 0; i < MAX_CPUS; i++) {
  296. qemu_put_be32s(f, &s->slaves[i]->intreg_pending);
  297. }
  298. qemu_put_be32s(f, &s->intregm_pending);
  299. qemu_put_be32s(f, &s->intregm_disabled);
  300. qemu_put_be32s(f, &s->target_cpu);
  301. }
  302. static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
  303. {
  304. SLAVIO_INTCTLState *s = opaque;
  305. int i;
  306. if (version_id != 1)
  307. return -EINVAL;
  308. for (i = 0; i < MAX_CPUS; i++) {
  309. qemu_get_be32s(f, &s->slaves[i]->intreg_pending);
  310. }
  311. qemu_get_be32s(f, &s->intregm_pending);
  312. qemu_get_be32s(f, &s->intregm_disabled);
  313. qemu_get_be32s(f, &s->target_cpu);
  314. slavio_check_interrupts(s);
  315. return 0;
  316. }
  317. static void slavio_intctl_reset(void *opaque)
  318. {
  319. SLAVIO_INTCTLState *s = opaque;
  320. int i;
  321. for (i = 0; i < MAX_CPUS; i++) {
  322. s->slaves[i]->intreg_pending = 0;
  323. }
  324. s->intregm_disabled = ~MASTER_IRQ_MASK;
  325. s->intregm_pending = 0;
  326. s->target_cpu = 0;
  327. slavio_check_interrupts(s);
  328. }
  329. void *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg,
  330. const uint32_t *intbit_to_level,
  331. qemu_irq **irq, qemu_irq **cpu_irq,
  332. qemu_irq **parent_irq, unsigned int cputimer)
  333. {
  334. int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
  335. SLAVIO_INTCTLState *s;
  336. SLAVIO_CPUINTCTLState *slave;
  337. s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
  338. s->intbit_to_level = intbit_to_level;
  339. for (i = 0; i < MAX_CPUS; i++) {
  340. slave = qemu_mallocz(sizeof(SLAVIO_CPUINTCTLState));
  341. slave->cpu = i;
  342. slave->master = s;
  343. slavio_intctl_io_memory = cpu_register_io_memory(0,
  344. slavio_intctl_mem_read,
  345. slavio_intctl_mem_write,
  346. slave);
  347. cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_SIZE,
  348. slavio_intctl_io_memory);
  349. s->slaves[i] = slave;
  350. s->cpu_irqs[i] = parent_irq[i];
  351. }
  352. slavio_intctlm_io_memory = cpu_register_io_memory(0,
  353. slavio_intctlm_mem_read,
  354. slavio_intctlm_mem_write,
  355. s);
  356. cpu_register_physical_memory(addrg, INTCTLM_SIZE, slavio_intctlm_io_memory);
  357. register_savevm("slavio_intctl", addr, 1, slavio_intctl_save,
  358. slavio_intctl_load, s);
  359. qemu_register_reset(slavio_intctl_reset, s);
  360. *irq = qemu_allocate_irqs(slavio_set_irq, s, 32);
  361. *cpu_irq = qemu_allocate_irqs(slavio_set_timer_irq_cpu, s, MAX_CPUS);
  362. s->cputimer_mbit = 1 << cputimer;
  363. s->cputimer_lbit = 1 << intbit_to_level[cputimer];
  364. slavio_intctl_reset(s);
  365. return s;
  366. }