pxa2xx_timer.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492
  1. /*
  2. * Intel XScale PXA255/270 OS Timers.
  3. *
  4. * Copyright (c) 2006 Openedhand Ltd.
  5. * Copyright (c) 2006 Thorsten Zitterell
  6. *
  7. * This code is licenced under the GPL.
  8. */
  9. #include "hw.h"
  10. #include "qemu-timer.h"
  11. #include "sysemu.h"
  12. #include "pxa.h"
  13. #define OSMR0 0x00
  14. #define OSMR1 0x04
  15. #define OSMR2 0x08
  16. #define OSMR3 0x0c
  17. #define OSMR4 0x80
  18. #define OSMR5 0x84
  19. #define OSMR6 0x88
  20. #define OSMR7 0x8c
  21. #define OSMR8 0x90
  22. #define OSMR9 0x94
  23. #define OSMR10 0x98
  24. #define OSMR11 0x9c
  25. #define OSCR 0x10 /* OS Timer Count */
  26. #define OSCR4 0x40
  27. #define OSCR5 0x44
  28. #define OSCR6 0x48
  29. #define OSCR7 0x4c
  30. #define OSCR8 0x50
  31. #define OSCR9 0x54
  32. #define OSCR10 0x58
  33. #define OSCR11 0x5c
  34. #define OSSR 0x14 /* Timer status register */
  35. #define OWER 0x18
  36. #define OIER 0x1c /* Interrupt enable register 3-0 to E3-E0 */
  37. #define OMCR4 0xc0 /* OS Match Control registers */
  38. #define OMCR5 0xc4
  39. #define OMCR6 0xc8
  40. #define OMCR7 0xcc
  41. #define OMCR8 0xd0
  42. #define OMCR9 0xd4
  43. #define OMCR10 0xd8
  44. #define OMCR11 0xdc
  45. #define OSNR 0x20
  46. #define PXA25X_FREQ 3686400 /* 3.6864 MHz */
  47. #define PXA27X_FREQ 3250000 /* 3.25 MHz */
  48. static int pxa2xx_timer4_freq[8] = {
  49. [0] = 0,
  50. [1] = 32768,
  51. [2] = 1000,
  52. [3] = 1,
  53. [4] = 1000000,
  54. /* [5] is the "Externally supplied clock". Assign if necessary. */
  55. [5 ... 7] = 0,
  56. };
  57. struct pxa2xx_timer0_s {
  58. uint32_t value;
  59. int level;
  60. qemu_irq irq;
  61. QEMUTimer *qtimer;
  62. int num;
  63. void *info;
  64. };
  65. struct pxa2xx_timer4_s {
  66. struct pxa2xx_timer0_s tm;
  67. int32_t oldclock;
  68. int32_t clock;
  69. uint64_t lastload;
  70. uint32_t freq;
  71. uint32_t control;
  72. };
  73. typedef struct {
  74. int32_t clock;
  75. int32_t oldclock;
  76. uint64_t lastload;
  77. uint32_t freq;
  78. struct pxa2xx_timer0_s timer[4];
  79. struct pxa2xx_timer4_s *tm4;
  80. uint32_t events;
  81. uint32_t irq_enabled;
  82. uint32_t reset3;
  83. uint32_t snapshot;
  84. } pxa2xx_timer_info;
  85. static void pxa2xx_timer_update(void *opaque, uint64_t now_qemu)
  86. {
  87. pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
  88. int i;
  89. uint32_t now_vm;
  90. uint64_t new_qemu;
  91. now_vm = s->clock +
  92. muldiv64(now_qemu - s->lastload, s->freq, ticks_per_sec);
  93. for (i = 0; i < 4; i ++) {
  94. new_qemu = now_qemu + muldiv64((uint32_t) (s->timer[i].value - now_vm),
  95. ticks_per_sec, s->freq);
  96. qemu_mod_timer(s->timer[i].qtimer, new_qemu);
  97. }
  98. }
  99. static void pxa2xx_timer_update4(void *opaque, uint64_t now_qemu, int n)
  100. {
  101. pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
  102. uint32_t now_vm;
  103. uint64_t new_qemu;
  104. static const int counters[8] = { 0, 0, 0, 0, 4, 4, 6, 6 };
  105. int counter;
  106. if (s->tm4[n].control & (1 << 7))
  107. counter = n;
  108. else
  109. counter = counters[n];
  110. if (!s->tm4[counter].freq) {
  111. qemu_del_timer(s->tm4[n].tm.qtimer);
  112. return;
  113. }
  114. now_vm = s->tm4[counter].clock + muldiv64(now_qemu -
  115. s->tm4[counter].lastload,
  116. s->tm4[counter].freq, ticks_per_sec);
  117. new_qemu = now_qemu + muldiv64((uint32_t) (s->tm4[n].tm.value - now_vm),
  118. ticks_per_sec, s->tm4[counter].freq);
  119. qemu_mod_timer(s->tm4[n].tm.qtimer, new_qemu);
  120. }
  121. static uint32_t pxa2xx_timer_read(void *opaque, target_phys_addr_t offset)
  122. {
  123. pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
  124. int tm = 0;
  125. switch (offset) {
  126. case OSMR3: tm ++;
  127. case OSMR2: tm ++;
  128. case OSMR1: tm ++;
  129. case OSMR0:
  130. return s->timer[tm].value;
  131. case OSMR11: tm ++;
  132. case OSMR10: tm ++;
  133. case OSMR9: tm ++;
  134. case OSMR8: tm ++;
  135. case OSMR7: tm ++;
  136. case OSMR6: tm ++;
  137. case OSMR5: tm ++;
  138. case OSMR4:
  139. if (!s->tm4)
  140. goto badreg;
  141. return s->tm4[tm].tm.value;
  142. case OSCR:
  143. return s->clock + muldiv64(qemu_get_clock(vm_clock) -
  144. s->lastload, s->freq, ticks_per_sec);
  145. case OSCR11: tm ++;
  146. case OSCR10: tm ++;
  147. case OSCR9: tm ++;
  148. case OSCR8: tm ++;
  149. case OSCR7: tm ++;
  150. case OSCR6: tm ++;
  151. case OSCR5: tm ++;
  152. case OSCR4:
  153. if (!s->tm4)
  154. goto badreg;
  155. if ((tm == 9 - 4 || tm == 11 - 4) && (s->tm4[tm].control & (1 << 9))) {
  156. if (s->tm4[tm - 1].freq)
  157. s->snapshot = s->tm4[tm - 1].clock + muldiv64(
  158. qemu_get_clock(vm_clock) -
  159. s->tm4[tm - 1].lastload,
  160. s->tm4[tm - 1].freq, ticks_per_sec);
  161. else
  162. s->snapshot = s->tm4[tm - 1].clock;
  163. }
  164. if (!s->tm4[tm].freq)
  165. return s->tm4[tm].clock;
  166. return s->tm4[tm].clock + muldiv64(qemu_get_clock(vm_clock) -
  167. s->tm4[tm].lastload, s->tm4[tm].freq, ticks_per_sec);
  168. case OIER:
  169. return s->irq_enabled;
  170. case OSSR: /* Status register */
  171. return s->events;
  172. case OWER:
  173. return s->reset3;
  174. case OMCR11: tm ++;
  175. case OMCR10: tm ++;
  176. case OMCR9: tm ++;
  177. case OMCR8: tm ++;
  178. case OMCR7: tm ++;
  179. case OMCR6: tm ++;
  180. case OMCR5: tm ++;
  181. case OMCR4:
  182. if (!s->tm4)
  183. goto badreg;
  184. return s->tm4[tm].control;
  185. case OSNR:
  186. return s->snapshot;
  187. default:
  188. badreg:
  189. cpu_abort(cpu_single_env, "pxa2xx_timer_read: Bad offset "
  190. REG_FMT "\n", offset);
  191. }
  192. return 0;
  193. }
  194. static void pxa2xx_timer_write(void *opaque, target_phys_addr_t offset,
  195. uint32_t value)
  196. {
  197. int i, tm = 0;
  198. pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
  199. switch (offset) {
  200. case OSMR3: tm ++;
  201. case OSMR2: tm ++;
  202. case OSMR1: tm ++;
  203. case OSMR0:
  204. s->timer[tm].value = value;
  205. pxa2xx_timer_update(s, qemu_get_clock(vm_clock));
  206. break;
  207. case OSMR11: tm ++;
  208. case OSMR10: tm ++;
  209. case OSMR9: tm ++;
  210. case OSMR8: tm ++;
  211. case OSMR7: tm ++;
  212. case OSMR6: tm ++;
  213. case OSMR5: tm ++;
  214. case OSMR4:
  215. if (!s->tm4)
  216. goto badreg;
  217. s->tm4[tm].tm.value = value;
  218. pxa2xx_timer_update4(s, qemu_get_clock(vm_clock), tm);
  219. break;
  220. case OSCR:
  221. s->oldclock = s->clock;
  222. s->lastload = qemu_get_clock(vm_clock);
  223. s->clock = value;
  224. pxa2xx_timer_update(s, s->lastload);
  225. break;
  226. case OSCR11: tm ++;
  227. case OSCR10: tm ++;
  228. case OSCR9: tm ++;
  229. case OSCR8: tm ++;
  230. case OSCR7: tm ++;
  231. case OSCR6: tm ++;
  232. case OSCR5: tm ++;
  233. case OSCR4:
  234. if (!s->tm4)
  235. goto badreg;
  236. s->tm4[tm].oldclock = s->tm4[tm].clock;
  237. s->tm4[tm].lastload = qemu_get_clock(vm_clock);
  238. s->tm4[tm].clock = value;
  239. pxa2xx_timer_update4(s, s->tm4[tm].lastload, tm);
  240. break;
  241. case OIER:
  242. s->irq_enabled = value & 0xfff;
  243. break;
  244. case OSSR: /* Status register */
  245. s->events &= ~value;
  246. for (i = 0; i < 4; i ++, value >>= 1) {
  247. if (s->timer[i].level && (value & 1)) {
  248. s->timer[i].level = 0;
  249. qemu_irq_lower(s->timer[i].irq);
  250. }
  251. }
  252. if (s->tm4) {
  253. for (i = 0; i < 8; i ++, value >>= 1)
  254. if (s->tm4[i].tm.level && (value & 1))
  255. s->tm4[i].tm.level = 0;
  256. if (!(s->events & 0xff0))
  257. qemu_irq_lower(s->tm4->tm.irq);
  258. }
  259. break;
  260. case OWER: /* XXX: Reset on OSMR3 match? */
  261. s->reset3 = value;
  262. break;
  263. case OMCR7: tm ++;
  264. case OMCR6: tm ++;
  265. case OMCR5: tm ++;
  266. case OMCR4:
  267. if (!s->tm4)
  268. goto badreg;
  269. s->tm4[tm].control = value & 0x0ff;
  270. /* XXX Stop if running (shouldn't happen) */
  271. if ((value & (1 << 7)) || tm == 0)
  272. s->tm4[tm].freq = pxa2xx_timer4_freq[value & 7];
  273. else {
  274. s->tm4[tm].freq = 0;
  275. pxa2xx_timer_update4(s, qemu_get_clock(vm_clock), tm);
  276. }
  277. break;
  278. case OMCR11: tm ++;
  279. case OMCR10: tm ++;
  280. case OMCR9: tm ++;
  281. case OMCR8: tm += 4;
  282. if (!s->tm4)
  283. goto badreg;
  284. s->tm4[tm].control = value & 0x3ff;
  285. /* XXX Stop if running (shouldn't happen) */
  286. if ((value & (1 << 7)) || !(tm & 1))
  287. s->tm4[tm].freq =
  288. pxa2xx_timer4_freq[(value & (1 << 8)) ? 0 : (value & 7)];
  289. else {
  290. s->tm4[tm].freq = 0;
  291. pxa2xx_timer_update4(s, qemu_get_clock(vm_clock), tm);
  292. }
  293. break;
  294. default:
  295. badreg:
  296. cpu_abort(cpu_single_env, "pxa2xx_timer_write: Bad offset "
  297. REG_FMT "\n", offset);
  298. }
  299. }
  300. static CPUReadMemoryFunc *pxa2xx_timer_readfn[] = {
  301. pxa2xx_timer_read,
  302. pxa2xx_timer_read,
  303. pxa2xx_timer_read,
  304. };
  305. static CPUWriteMemoryFunc *pxa2xx_timer_writefn[] = {
  306. pxa2xx_timer_write,
  307. pxa2xx_timer_write,
  308. pxa2xx_timer_write,
  309. };
  310. static void pxa2xx_timer_tick(void *opaque)
  311. {
  312. struct pxa2xx_timer0_s *t = (struct pxa2xx_timer0_s *) opaque;
  313. pxa2xx_timer_info *i = (pxa2xx_timer_info *) t->info;
  314. if (i->irq_enabled & (1 << t->num)) {
  315. t->level = 1;
  316. i->events |= 1 << t->num;
  317. qemu_irq_raise(t->irq);
  318. }
  319. if (t->num == 3)
  320. if (i->reset3 & 1) {
  321. i->reset3 = 0;
  322. qemu_system_reset_request();
  323. }
  324. }
  325. static void pxa2xx_timer_tick4(void *opaque)
  326. {
  327. struct pxa2xx_timer4_s *t = (struct pxa2xx_timer4_s *) opaque;
  328. pxa2xx_timer_info *i = (pxa2xx_timer_info *) t->tm.info;
  329. pxa2xx_timer_tick(&t->tm);
  330. if (t->control & (1 << 3))
  331. t->clock = 0;
  332. if (t->control & (1 << 6))
  333. pxa2xx_timer_update4(i, qemu_get_clock(vm_clock), t->tm.num - 4);
  334. }
  335. static void pxa2xx_timer_save(QEMUFile *f, void *opaque)
  336. {
  337. pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
  338. int i;
  339. qemu_put_be32s(f, (uint32_t *) &s->clock);
  340. qemu_put_be32s(f, (uint32_t *) &s->oldclock);
  341. qemu_put_be64s(f, &s->lastload);
  342. for (i = 0; i < 4; i ++) {
  343. qemu_put_be32s(f, &s->timer[i].value);
  344. qemu_put_be32(f, s->timer[i].level);
  345. }
  346. if (s->tm4)
  347. for (i = 0; i < 8; i ++) {
  348. qemu_put_be32s(f, &s->tm4[i].tm.value);
  349. qemu_put_be32(f, s->tm4[i].tm.level);
  350. qemu_put_sbe32s(f, &s->tm4[i].oldclock);
  351. qemu_put_sbe32s(f, &s->tm4[i].clock);
  352. qemu_put_be64s(f, &s->tm4[i].lastload);
  353. qemu_put_be32s(f, &s->tm4[i].freq);
  354. qemu_put_be32s(f, &s->tm4[i].control);
  355. }
  356. qemu_put_be32s(f, &s->events);
  357. qemu_put_be32s(f, &s->irq_enabled);
  358. qemu_put_be32s(f, &s->reset3);
  359. qemu_put_be32s(f, &s->snapshot);
  360. }
  361. static int pxa2xx_timer_load(QEMUFile *f, void *opaque, int version_id)
  362. {
  363. pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
  364. int64_t now;
  365. int i;
  366. qemu_get_be32s(f, (uint32_t *) &s->clock);
  367. qemu_get_be32s(f, (uint32_t *) &s->oldclock);
  368. qemu_get_be64s(f, &s->lastload);
  369. now = qemu_get_clock(vm_clock);
  370. for (i = 0; i < 4; i ++) {
  371. qemu_get_be32s(f, &s->timer[i].value);
  372. s->timer[i].level = qemu_get_be32(f);
  373. }
  374. pxa2xx_timer_update(s, now);
  375. if (s->tm4)
  376. for (i = 0; i < 8; i ++) {
  377. qemu_get_be32s(f, &s->tm4[i].tm.value);
  378. s->tm4[i].tm.level = qemu_get_be32(f);
  379. qemu_get_sbe32s(f, &s->tm4[i].oldclock);
  380. qemu_get_sbe32s(f, &s->tm4[i].clock);
  381. qemu_get_be64s(f, &s->tm4[i].lastload);
  382. qemu_get_be32s(f, &s->tm4[i].freq);
  383. qemu_get_be32s(f, &s->tm4[i].control);
  384. pxa2xx_timer_update4(s, now, i);
  385. }
  386. qemu_get_be32s(f, &s->events);
  387. qemu_get_be32s(f, &s->irq_enabled);
  388. qemu_get_be32s(f, &s->reset3);
  389. qemu_get_be32s(f, &s->snapshot);
  390. return 0;
  391. }
  392. static pxa2xx_timer_info *pxa2xx_timer_init(target_phys_addr_t base,
  393. qemu_irq *irqs)
  394. {
  395. int i;
  396. int iomemtype;
  397. pxa2xx_timer_info *s;
  398. s = (pxa2xx_timer_info *) qemu_mallocz(sizeof(pxa2xx_timer_info));
  399. s->irq_enabled = 0;
  400. s->oldclock = 0;
  401. s->clock = 0;
  402. s->lastload = qemu_get_clock(vm_clock);
  403. s->reset3 = 0;
  404. for (i = 0; i < 4; i ++) {
  405. s->timer[i].value = 0;
  406. s->timer[i].irq = irqs[i];
  407. s->timer[i].info = s;
  408. s->timer[i].num = i;
  409. s->timer[i].level = 0;
  410. s->timer[i].qtimer = qemu_new_timer(vm_clock,
  411. pxa2xx_timer_tick, &s->timer[i]);
  412. }
  413. iomemtype = cpu_register_io_memory(0, pxa2xx_timer_readfn,
  414. pxa2xx_timer_writefn, s);
  415. cpu_register_physical_memory(base, 0x00001000, iomemtype);
  416. register_savevm("pxa2xx_timer", 0, 0,
  417. pxa2xx_timer_save, pxa2xx_timer_load, s);
  418. return s;
  419. }
  420. void pxa25x_timer_init(target_phys_addr_t base, qemu_irq *irqs)
  421. {
  422. pxa2xx_timer_info *s = pxa2xx_timer_init(base, irqs);
  423. s->freq = PXA25X_FREQ;
  424. s->tm4 = 0;
  425. }
  426. void pxa27x_timer_init(target_phys_addr_t base,
  427. qemu_irq *irqs, qemu_irq irq4)
  428. {
  429. pxa2xx_timer_info *s = pxa2xx_timer_init(base, irqs);
  430. int i;
  431. s->freq = PXA27X_FREQ;
  432. s->tm4 = (struct pxa2xx_timer4_s *) qemu_mallocz(8 *
  433. sizeof(struct pxa2xx_timer4_s));
  434. for (i = 0; i < 8; i ++) {
  435. s->tm4[i].tm.value = 0;
  436. s->tm4[i].tm.irq = irq4;
  437. s->tm4[i].tm.info = s;
  438. s->tm4[i].tm.num = i + 4;
  439. s->tm4[i].tm.level = 0;
  440. s->tm4[i].freq = 0;
  441. s->tm4[i].control = 0x0;
  442. s->tm4[i].tm.qtimer = qemu_new_timer(vm_clock,
  443. pxa2xx_timer_tick4, &s->tm4[i]);
  444. }
  445. }