pxa2xx_pic.c 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312
  1. /*
  2. * Intel XScale PXA Programmable Interrupt Controller.
  3. *
  4. * Copyright (c) 2006 Openedhand Ltd.
  5. * Copyright (c) 2006 Thorsten Zitterell
  6. * Written by Andrzej Zaborowski <balrog@zabor.org>
  7. *
  8. * This code is licenced under the GPL.
  9. */
  10. #include "hw.h"
  11. #include "pxa.h"
  12. #define ICIP 0x00 /* Interrupt Controller IRQ Pending register */
  13. #define ICMR 0x04 /* Interrupt Controller Mask register */
  14. #define ICLR 0x08 /* Interrupt Controller Level register */
  15. #define ICFP 0x0c /* Interrupt Controller FIQ Pending register */
  16. #define ICPR 0x10 /* Interrupt Controller Pending register */
  17. #define ICCR 0x14 /* Interrupt Controller Control register */
  18. #define ICHP 0x18 /* Interrupt Controller Highest Priority register */
  19. #define IPR0 0x1c /* Interrupt Controller Priority register 0 */
  20. #define IPR31 0x98 /* Interrupt Controller Priority register 31 */
  21. #define ICIP2 0x9c /* Interrupt Controller IRQ Pending register 2 */
  22. #define ICMR2 0xa0 /* Interrupt Controller Mask register 2 */
  23. #define ICLR2 0xa4 /* Interrupt Controller Level register 2 */
  24. #define ICFP2 0xa8 /* Interrupt Controller FIQ Pending register 2 */
  25. #define ICPR2 0xac /* Interrupt Controller Pending register 2 */
  26. #define IPR32 0xb0 /* Interrupt Controller Priority register 32 */
  27. #define IPR39 0xcc /* Interrupt Controller Priority register 39 */
  28. #define PXA2XX_PIC_SRCS 40
  29. struct pxa2xx_pic_state_s {
  30. CPUState *cpu_env;
  31. uint32_t int_enabled[2];
  32. uint32_t int_pending[2];
  33. uint32_t is_fiq[2];
  34. uint32_t int_idle;
  35. uint32_t priority[PXA2XX_PIC_SRCS];
  36. };
  37. static void pxa2xx_pic_update(void *opaque)
  38. {
  39. uint32_t mask[2];
  40. struct pxa2xx_pic_state_s *s = (struct pxa2xx_pic_state_s *) opaque;
  41. if (s->cpu_env->halted) {
  42. mask[0] = s->int_pending[0] & (s->int_enabled[0] | s->int_idle);
  43. mask[1] = s->int_pending[1] & (s->int_enabled[1] | s->int_idle);
  44. if (mask[0] || mask[1])
  45. cpu_interrupt(s->cpu_env, CPU_INTERRUPT_EXITTB);
  46. }
  47. mask[0] = s->int_pending[0] & s->int_enabled[0];
  48. mask[1] = s->int_pending[1] & s->int_enabled[1];
  49. if ((mask[0] & s->is_fiq[0]) || (mask[1] & s->is_fiq[1]))
  50. cpu_interrupt(s->cpu_env, CPU_INTERRUPT_FIQ);
  51. else
  52. cpu_reset_interrupt(s->cpu_env, CPU_INTERRUPT_FIQ);
  53. if ((mask[0] & ~s->is_fiq[0]) || (mask[1] & ~s->is_fiq[1]))
  54. cpu_interrupt(s->cpu_env, CPU_INTERRUPT_HARD);
  55. else
  56. cpu_reset_interrupt(s->cpu_env, CPU_INTERRUPT_HARD);
  57. }
  58. /* Note: Here level means state of the signal on a pin, not
  59. * IRQ/FIQ distinction as in PXA Developer Manual. */
  60. static void pxa2xx_pic_set_irq(void *opaque, int irq, int level)
  61. {
  62. struct pxa2xx_pic_state_s *s = (struct pxa2xx_pic_state_s *) opaque;
  63. int int_set = (irq >= 32);
  64. irq &= 31;
  65. if (level)
  66. s->int_pending[int_set] |= 1 << irq;
  67. else
  68. s->int_pending[int_set] &= ~(1 << irq);
  69. pxa2xx_pic_update(opaque);
  70. }
  71. static inline uint32_t pxa2xx_pic_highest(struct pxa2xx_pic_state_s *s) {
  72. int i, int_set, irq;
  73. uint32_t bit, mask[2];
  74. uint32_t ichp = 0x003f003f; /* Both IDs invalid */
  75. mask[0] = s->int_pending[0] & s->int_enabled[0];
  76. mask[1] = s->int_pending[1] & s->int_enabled[1];
  77. for (i = PXA2XX_PIC_SRCS - 1; i >= 0; i --) {
  78. irq = s->priority[i] & 0x3f;
  79. if ((s->priority[i] & (1 << 31)) && irq < PXA2XX_PIC_SRCS) {
  80. /* Source peripheral ID is valid. */
  81. bit = 1 << (irq & 31);
  82. int_set = (irq >= 32);
  83. if (mask[int_set] & bit & s->is_fiq[int_set]) {
  84. /* FIQ asserted */
  85. ichp &= 0xffff0000;
  86. ichp |= (1 << 15) | irq;
  87. }
  88. if (mask[int_set] & bit & ~s->is_fiq[int_set]) {
  89. /* IRQ asserted */
  90. ichp &= 0x0000ffff;
  91. ichp |= (1 << 31) | (irq << 16);
  92. }
  93. }
  94. }
  95. return ichp;
  96. }
  97. static uint32_t pxa2xx_pic_mem_read(void *opaque, target_phys_addr_t offset)
  98. {
  99. struct pxa2xx_pic_state_s *s = (struct pxa2xx_pic_state_s *) opaque;
  100. switch (offset) {
  101. case ICIP: /* IRQ Pending register */
  102. return s->int_pending[0] & ~s->is_fiq[0] & s->int_enabled[0];
  103. case ICIP2: /* IRQ Pending register 2 */
  104. return s->int_pending[1] & ~s->is_fiq[1] & s->int_enabled[1];
  105. case ICMR: /* Mask register */
  106. return s->int_enabled[0];
  107. case ICMR2: /* Mask register 2 */
  108. return s->int_enabled[1];
  109. case ICLR: /* Level register */
  110. return s->is_fiq[0];
  111. case ICLR2: /* Level register 2 */
  112. return s->is_fiq[1];
  113. case ICCR: /* Idle mask */
  114. return (s->int_idle == 0);
  115. case ICFP: /* FIQ Pending register */
  116. return s->int_pending[0] & s->is_fiq[0] & s->int_enabled[0];
  117. case ICFP2: /* FIQ Pending register 2 */
  118. return s->int_pending[1] & s->is_fiq[1] & s->int_enabled[1];
  119. case ICPR: /* Pending register */
  120. return s->int_pending[0];
  121. case ICPR2: /* Pending register 2 */
  122. return s->int_pending[1];
  123. case IPR0 ... IPR31:
  124. return s->priority[0 + ((offset - IPR0 ) >> 2)];
  125. case IPR32 ... IPR39:
  126. return s->priority[32 + ((offset - IPR32) >> 2)];
  127. case ICHP: /* Highest Priority register */
  128. return pxa2xx_pic_highest(s);
  129. default:
  130. printf("%s: Bad register offset " REG_FMT "\n", __FUNCTION__, offset);
  131. return 0;
  132. }
  133. }
  134. static void pxa2xx_pic_mem_write(void *opaque, target_phys_addr_t offset,
  135. uint32_t value)
  136. {
  137. struct pxa2xx_pic_state_s *s = (struct pxa2xx_pic_state_s *) opaque;
  138. switch (offset) {
  139. case ICMR: /* Mask register */
  140. s->int_enabled[0] = value;
  141. break;
  142. case ICMR2: /* Mask register 2 */
  143. s->int_enabled[1] = value;
  144. break;
  145. case ICLR: /* Level register */
  146. s->is_fiq[0] = value;
  147. break;
  148. case ICLR2: /* Level register 2 */
  149. s->is_fiq[1] = value;
  150. break;
  151. case ICCR: /* Idle mask */
  152. s->int_idle = (value & 1) ? 0 : ~0;
  153. break;
  154. case IPR0 ... IPR31:
  155. s->priority[0 + ((offset - IPR0 ) >> 2)] = value & 0x8000003f;
  156. break;
  157. case IPR32 ... IPR39:
  158. s->priority[32 + ((offset - IPR32) >> 2)] = value & 0x8000003f;
  159. break;
  160. default:
  161. printf("%s: Bad register offset " REG_FMT "\n", __FUNCTION__, offset);
  162. return;
  163. }
  164. pxa2xx_pic_update(opaque);
  165. }
  166. /* Interrupt Controller Coprocessor Space Register Mapping */
  167. static const int pxa2xx_cp_reg_map[0x10] = {
  168. [0x0 ... 0xf] = -1,
  169. [0x0] = ICIP,
  170. [0x1] = ICMR,
  171. [0x2] = ICLR,
  172. [0x3] = ICFP,
  173. [0x4] = ICPR,
  174. [0x5] = ICHP,
  175. [0x6] = ICIP2,
  176. [0x7] = ICMR2,
  177. [0x8] = ICLR2,
  178. [0x9] = ICFP2,
  179. [0xa] = ICPR2,
  180. };
  181. static uint32_t pxa2xx_pic_cp_read(void *opaque, int op2, int reg, int crm)
  182. {
  183. target_phys_addr_t offset;
  184. if (pxa2xx_cp_reg_map[reg] == -1) {
  185. printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
  186. return 0;
  187. }
  188. offset = pxa2xx_cp_reg_map[reg];
  189. return pxa2xx_pic_mem_read(opaque, offset);
  190. }
  191. static void pxa2xx_pic_cp_write(void *opaque, int op2, int reg, int crm,
  192. uint32_t value)
  193. {
  194. target_phys_addr_t offset;
  195. if (pxa2xx_cp_reg_map[reg] == -1) {
  196. printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
  197. return;
  198. }
  199. offset = pxa2xx_cp_reg_map[reg];
  200. pxa2xx_pic_mem_write(opaque, offset, value);
  201. }
  202. static CPUReadMemoryFunc *pxa2xx_pic_readfn[] = {
  203. pxa2xx_pic_mem_read,
  204. pxa2xx_pic_mem_read,
  205. pxa2xx_pic_mem_read,
  206. };
  207. static CPUWriteMemoryFunc *pxa2xx_pic_writefn[] = {
  208. pxa2xx_pic_mem_write,
  209. pxa2xx_pic_mem_write,
  210. pxa2xx_pic_mem_write,
  211. };
  212. static void pxa2xx_pic_save(QEMUFile *f, void *opaque)
  213. {
  214. struct pxa2xx_pic_state_s *s = (struct pxa2xx_pic_state_s *) opaque;
  215. int i;
  216. for (i = 0; i < 2; i ++)
  217. qemu_put_be32s(f, &s->int_enabled[i]);
  218. for (i = 0; i < 2; i ++)
  219. qemu_put_be32s(f, &s->int_pending[i]);
  220. for (i = 0; i < 2; i ++)
  221. qemu_put_be32s(f, &s->is_fiq[i]);
  222. qemu_put_be32s(f, &s->int_idle);
  223. for (i = 0; i < PXA2XX_PIC_SRCS; i ++)
  224. qemu_put_be32s(f, &s->priority[i]);
  225. }
  226. static int pxa2xx_pic_load(QEMUFile *f, void *opaque, int version_id)
  227. {
  228. struct pxa2xx_pic_state_s *s = (struct pxa2xx_pic_state_s *) opaque;
  229. int i;
  230. for (i = 0; i < 2; i ++)
  231. qemu_get_be32s(f, &s->int_enabled[i]);
  232. for (i = 0; i < 2; i ++)
  233. qemu_get_be32s(f, &s->int_pending[i]);
  234. for (i = 0; i < 2; i ++)
  235. qemu_get_be32s(f, &s->is_fiq[i]);
  236. qemu_get_be32s(f, &s->int_idle);
  237. for (i = 0; i < PXA2XX_PIC_SRCS; i ++)
  238. qemu_get_be32s(f, &s->priority[i]);
  239. pxa2xx_pic_update(opaque);
  240. return 0;
  241. }
  242. qemu_irq *pxa2xx_pic_init(target_phys_addr_t base, CPUState *env)
  243. {
  244. struct pxa2xx_pic_state_s *s;
  245. int iomemtype;
  246. qemu_irq *qi;
  247. s = (struct pxa2xx_pic_state_s *)
  248. qemu_mallocz(sizeof(struct pxa2xx_pic_state_s));
  249. if (!s)
  250. return NULL;
  251. s->cpu_env = env;
  252. s->int_pending[0] = 0;
  253. s->int_pending[1] = 0;
  254. s->int_enabled[0] = 0;
  255. s->int_enabled[1] = 0;
  256. s->is_fiq[0] = 0;
  257. s->is_fiq[1] = 0;
  258. qi = qemu_allocate_irqs(pxa2xx_pic_set_irq, s, PXA2XX_PIC_SRCS);
  259. /* Enable IC memory-mapped registers access. */
  260. iomemtype = cpu_register_io_memory(0, pxa2xx_pic_readfn,
  261. pxa2xx_pic_writefn, s);
  262. cpu_register_physical_memory(base, 0x00100000, iomemtype);
  263. /* Enable IC coprocessor access. */
  264. cpu_arm_set_cp_io(env, 6, pxa2xx_pic_cp_read, pxa2xx_pic_cp_write, s);
  265. register_savevm("pxa2xx_pic", 0, 0, pxa2xx_pic_save, pxa2xx_pic_load, s);
  266. return qi;
  267. }