pxa2xx_mmci.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549
  1. /*
  2. * Intel XScale PXA255/270 MultiMediaCard/SD/SDIO Controller emulation.
  3. *
  4. * Copyright (c) 2006 Openedhand Ltd.
  5. * Written by Andrzej Zaborowski <balrog@zabor.org>
  6. *
  7. * This code is licensed under the GPLv2.
  8. */
  9. #include "hw.h"
  10. #include "pxa.h"
  11. #include "sd.h"
  12. struct pxa2xx_mmci_s {
  13. qemu_irq irq;
  14. void *dma;
  15. SDState *card;
  16. uint32_t status;
  17. uint32_t clkrt;
  18. uint32_t spi;
  19. uint32_t cmdat;
  20. uint32_t resp_tout;
  21. uint32_t read_tout;
  22. int blklen;
  23. int numblk;
  24. uint32_t intmask;
  25. uint32_t intreq;
  26. int cmd;
  27. uint32_t arg;
  28. int active;
  29. int bytesleft;
  30. uint8_t tx_fifo[64];
  31. int tx_start;
  32. int tx_len;
  33. uint8_t rx_fifo[32];
  34. int rx_start;
  35. int rx_len;
  36. uint16_t resp_fifo[9];
  37. int resp_len;
  38. int cmdreq;
  39. int ac_width;
  40. };
  41. #define MMC_STRPCL 0x00 /* MMC Clock Start/Stop register */
  42. #define MMC_STAT 0x04 /* MMC Status register */
  43. #define MMC_CLKRT 0x08 /* MMC Clock Rate register */
  44. #define MMC_SPI 0x0c /* MMC SPI Mode register */
  45. #define MMC_CMDAT 0x10 /* MMC Command/Data register */
  46. #define MMC_RESTO 0x14 /* MMC Response Time-Out register */
  47. #define MMC_RDTO 0x18 /* MMC Read Time-Out register */
  48. #define MMC_BLKLEN 0x1c /* MMC Block Length register */
  49. #define MMC_NUMBLK 0x20 /* MMC Number of Blocks register */
  50. #define MMC_PRTBUF 0x24 /* MMC Buffer Partly Full register */
  51. #define MMC_I_MASK 0x28 /* MMC Interrupt Mask register */
  52. #define MMC_I_REG 0x2c /* MMC Interrupt Request register */
  53. #define MMC_CMD 0x30 /* MMC Command register */
  54. #define MMC_ARGH 0x34 /* MMC Argument High register */
  55. #define MMC_ARGL 0x38 /* MMC Argument Low register */
  56. #define MMC_RES 0x3c /* MMC Response FIFO */
  57. #define MMC_RXFIFO 0x40 /* MMC Receive FIFO */
  58. #define MMC_TXFIFO 0x44 /* MMC Transmit FIFO */
  59. #define MMC_RDWAIT 0x48 /* MMC RD_WAIT register */
  60. #define MMC_BLKS_REM 0x4c /* MMC Blocks Remaining register */
  61. /* Bitfield masks */
  62. #define STRPCL_STOP_CLK (1 << 0)
  63. #define STRPCL_STRT_CLK (1 << 1)
  64. #define STAT_TOUT_RES (1 << 1)
  65. #define STAT_CLK_EN (1 << 8)
  66. #define STAT_DATA_DONE (1 << 11)
  67. #define STAT_PRG_DONE (1 << 12)
  68. #define STAT_END_CMDRES (1 << 13)
  69. #define SPI_SPI_MODE (1 << 0)
  70. #define CMDAT_RES_TYPE (3 << 0)
  71. #define CMDAT_DATA_EN (1 << 2)
  72. #define CMDAT_WR_RD (1 << 3)
  73. #define CMDAT_DMA_EN (1 << 7)
  74. #define CMDAT_STOP_TRAN (1 << 10)
  75. #define INT_DATA_DONE (1 << 0)
  76. #define INT_PRG_DONE (1 << 1)
  77. #define INT_END_CMD (1 << 2)
  78. #define INT_STOP_CMD (1 << 3)
  79. #define INT_CLK_OFF (1 << 4)
  80. #define INT_RXFIFO_REQ (1 << 5)
  81. #define INT_TXFIFO_REQ (1 << 6)
  82. #define INT_TINT (1 << 7)
  83. #define INT_DAT_ERR (1 << 8)
  84. #define INT_RES_ERR (1 << 9)
  85. #define INT_RD_STALLED (1 << 10)
  86. #define INT_SDIO_INT (1 << 11)
  87. #define INT_SDIO_SACK (1 << 12)
  88. #define PRTBUF_PRT_BUF (1 << 0)
  89. /* Route internal interrupt lines to the global IC and DMA */
  90. static void pxa2xx_mmci_int_update(struct pxa2xx_mmci_s *s)
  91. {
  92. uint32_t mask = s->intmask;
  93. if (s->cmdat & CMDAT_DMA_EN) {
  94. mask |= INT_RXFIFO_REQ | INT_TXFIFO_REQ;
  95. pxa2xx_dma_request((struct pxa2xx_dma_state_s *) s->dma,
  96. PXA2XX_RX_RQ_MMCI, !!(s->intreq & INT_RXFIFO_REQ));
  97. pxa2xx_dma_request((struct pxa2xx_dma_state_s *) s->dma,
  98. PXA2XX_TX_RQ_MMCI, !!(s->intreq & INT_TXFIFO_REQ));
  99. }
  100. qemu_set_irq(s->irq, !!(s->intreq & ~mask));
  101. }
  102. static void pxa2xx_mmci_fifo_update(struct pxa2xx_mmci_s *s)
  103. {
  104. if (!s->active)
  105. return;
  106. if (s->cmdat & CMDAT_WR_RD) {
  107. while (s->bytesleft && s->tx_len) {
  108. sd_write_data(s->card, s->tx_fifo[s->tx_start ++]);
  109. s->tx_start &= 0x1f;
  110. s->tx_len --;
  111. s->bytesleft --;
  112. }
  113. if (s->bytesleft)
  114. s->intreq |= INT_TXFIFO_REQ;
  115. } else
  116. while (s->bytesleft && s->rx_len < 32) {
  117. s->rx_fifo[(s->rx_start + (s->rx_len ++)) & 0x1f] =
  118. sd_read_data(s->card);
  119. s->bytesleft --;
  120. s->intreq |= INT_RXFIFO_REQ;
  121. }
  122. if (!s->bytesleft) {
  123. s->active = 0;
  124. s->intreq |= INT_DATA_DONE;
  125. s->status |= STAT_DATA_DONE;
  126. if (s->cmdat & CMDAT_WR_RD) {
  127. s->intreq |= INT_PRG_DONE;
  128. s->status |= STAT_PRG_DONE;
  129. }
  130. }
  131. pxa2xx_mmci_int_update(s);
  132. }
  133. static void pxa2xx_mmci_wakequeues(struct pxa2xx_mmci_s *s)
  134. {
  135. int rsplen, i;
  136. struct sd_request_s request;
  137. uint8_t response[16];
  138. s->active = 1;
  139. s->rx_len = 0;
  140. s->tx_len = 0;
  141. s->cmdreq = 0;
  142. request.cmd = s->cmd;
  143. request.arg = s->arg;
  144. request.crc = 0; /* FIXME */
  145. rsplen = sd_do_command(s->card, &request, response);
  146. s->intreq |= INT_END_CMD;
  147. memset(s->resp_fifo, 0, sizeof(s->resp_fifo));
  148. switch (s->cmdat & CMDAT_RES_TYPE) {
  149. #define PXAMMCI_RESP(wd, value0, value1) \
  150. s->resp_fifo[(wd) + 0] |= (value0); \
  151. s->resp_fifo[(wd) + 1] |= (value1) << 8;
  152. case 0: /* No response */
  153. goto complete;
  154. case 1: /* R1, R4, R5 or R6 */
  155. if (rsplen < 4)
  156. goto timeout;
  157. goto complete;
  158. case 2: /* R2 */
  159. if (rsplen < 16)
  160. goto timeout;
  161. goto complete;
  162. case 3: /* R3 */
  163. if (rsplen < 4)
  164. goto timeout;
  165. goto complete;
  166. complete:
  167. for (i = 0; rsplen > 0; i ++, rsplen -= 2) {
  168. PXAMMCI_RESP(i, response[i * 2], response[i * 2 + 1]);
  169. }
  170. s->status |= STAT_END_CMDRES;
  171. if (!(s->cmdat & CMDAT_DATA_EN))
  172. s->active = 0;
  173. else
  174. s->bytesleft = s->numblk * s->blklen;
  175. s->resp_len = 0;
  176. break;
  177. timeout:
  178. s->active = 0;
  179. s->status |= STAT_TOUT_RES;
  180. break;
  181. }
  182. pxa2xx_mmci_fifo_update(s);
  183. }
  184. static uint32_t pxa2xx_mmci_read(void *opaque, target_phys_addr_t offset)
  185. {
  186. struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
  187. uint32_t ret;
  188. switch (offset) {
  189. case MMC_STRPCL:
  190. return 0;
  191. case MMC_STAT:
  192. return s->status;
  193. case MMC_CLKRT:
  194. return s->clkrt;
  195. case MMC_SPI:
  196. return s->spi;
  197. case MMC_CMDAT:
  198. return s->cmdat;
  199. case MMC_RESTO:
  200. return s->resp_tout;
  201. case MMC_RDTO:
  202. return s->read_tout;
  203. case MMC_BLKLEN:
  204. return s->blklen;
  205. case MMC_NUMBLK:
  206. return s->numblk;
  207. case MMC_PRTBUF:
  208. return 0;
  209. case MMC_I_MASK:
  210. return s->intmask;
  211. case MMC_I_REG:
  212. return s->intreq;
  213. case MMC_CMD:
  214. return s->cmd | 0x40;
  215. case MMC_ARGH:
  216. return s->arg >> 16;
  217. case MMC_ARGL:
  218. return s->arg & 0xffff;
  219. case MMC_RES:
  220. if (s->resp_len < 9)
  221. return s->resp_fifo[s->resp_len ++];
  222. return 0;
  223. case MMC_RXFIFO:
  224. ret = 0;
  225. while (s->ac_width -- && s->rx_len) {
  226. ret |= s->rx_fifo[s->rx_start ++] << (s->ac_width << 3);
  227. s->rx_start &= 0x1f;
  228. s->rx_len --;
  229. }
  230. s->intreq &= ~INT_RXFIFO_REQ;
  231. pxa2xx_mmci_fifo_update(s);
  232. return ret;
  233. case MMC_RDWAIT:
  234. return 0;
  235. case MMC_BLKS_REM:
  236. return s->numblk;
  237. default:
  238. cpu_abort(cpu_single_env, "%s: Bad offset " REG_FMT "\n",
  239. __FUNCTION__, offset);
  240. }
  241. return 0;
  242. }
  243. static void pxa2xx_mmci_write(void *opaque,
  244. target_phys_addr_t offset, uint32_t value)
  245. {
  246. struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
  247. switch (offset) {
  248. case MMC_STRPCL:
  249. if (value & STRPCL_STRT_CLK) {
  250. s->status |= STAT_CLK_EN;
  251. s->intreq &= ~INT_CLK_OFF;
  252. if (s->cmdreq && !(s->cmdat & CMDAT_STOP_TRAN)) {
  253. s->status &= STAT_CLK_EN;
  254. pxa2xx_mmci_wakequeues(s);
  255. }
  256. }
  257. if (value & STRPCL_STOP_CLK) {
  258. s->status &= ~STAT_CLK_EN;
  259. s->intreq |= INT_CLK_OFF;
  260. s->active = 0;
  261. }
  262. pxa2xx_mmci_int_update(s);
  263. break;
  264. case MMC_CLKRT:
  265. s->clkrt = value & 7;
  266. break;
  267. case MMC_SPI:
  268. s->spi = value & 0xf;
  269. if (value & SPI_SPI_MODE)
  270. printf("%s: attempted to use card in SPI mode\n", __FUNCTION__);
  271. break;
  272. case MMC_CMDAT:
  273. s->cmdat = value & 0x3dff;
  274. s->active = 0;
  275. s->cmdreq = 1;
  276. if (!(value & CMDAT_STOP_TRAN)) {
  277. s->status &= STAT_CLK_EN;
  278. if (s->status & STAT_CLK_EN)
  279. pxa2xx_mmci_wakequeues(s);
  280. }
  281. pxa2xx_mmci_int_update(s);
  282. break;
  283. case MMC_RESTO:
  284. s->resp_tout = value & 0x7f;
  285. break;
  286. case MMC_RDTO:
  287. s->read_tout = value & 0xffff;
  288. break;
  289. case MMC_BLKLEN:
  290. s->blklen = value & 0xfff;
  291. break;
  292. case MMC_NUMBLK:
  293. s->numblk = value & 0xffff;
  294. break;
  295. case MMC_PRTBUF:
  296. if (value & PRTBUF_PRT_BUF) {
  297. s->tx_start ^= 32;
  298. s->tx_len = 0;
  299. }
  300. pxa2xx_mmci_fifo_update(s);
  301. break;
  302. case MMC_I_MASK:
  303. s->intmask = value & 0x1fff;
  304. pxa2xx_mmci_int_update(s);
  305. break;
  306. case MMC_CMD:
  307. s->cmd = value & 0x3f;
  308. break;
  309. case MMC_ARGH:
  310. s->arg &= 0x0000ffff;
  311. s->arg |= value << 16;
  312. break;
  313. case MMC_ARGL:
  314. s->arg &= 0xffff0000;
  315. s->arg |= value & 0x0000ffff;
  316. break;
  317. case MMC_TXFIFO:
  318. while (s->ac_width -- && s->tx_len < 0x20)
  319. s->tx_fifo[(s->tx_start + (s->tx_len ++)) & 0x1f] =
  320. (value >> (s->ac_width << 3)) & 0xff;
  321. s->intreq &= ~INT_TXFIFO_REQ;
  322. pxa2xx_mmci_fifo_update(s);
  323. break;
  324. case MMC_RDWAIT:
  325. case MMC_BLKS_REM:
  326. break;
  327. default:
  328. cpu_abort(cpu_single_env, "%s: Bad offset " REG_FMT "\n",
  329. __FUNCTION__, offset);
  330. }
  331. }
  332. static uint32_t pxa2xx_mmci_readb(void *opaque, target_phys_addr_t offset)
  333. {
  334. struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
  335. s->ac_width = 1;
  336. return pxa2xx_mmci_read(opaque, offset);
  337. }
  338. static uint32_t pxa2xx_mmci_readh(void *opaque, target_phys_addr_t offset)
  339. {
  340. struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
  341. s->ac_width = 2;
  342. return pxa2xx_mmci_read(opaque, offset);
  343. }
  344. static uint32_t pxa2xx_mmci_readw(void *opaque, target_phys_addr_t offset)
  345. {
  346. struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
  347. s->ac_width = 4;
  348. return pxa2xx_mmci_read(opaque, offset);
  349. }
  350. static CPUReadMemoryFunc *pxa2xx_mmci_readfn[] = {
  351. pxa2xx_mmci_readb,
  352. pxa2xx_mmci_readh,
  353. pxa2xx_mmci_readw
  354. };
  355. static void pxa2xx_mmci_writeb(void *opaque,
  356. target_phys_addr_t offset, uint32_t value)
  357. {
  358. struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
  359. s->ac_width = 1;
  360. pxa2xx_mmci_write(opaque, offset, value);
  361. }
  362. static void pxa2xx_mmci_writeh(void *opaque,
  363. target_phys_addr_t offset, uint32_t value)
  364. {
  365. struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
  366. s->ac_width = 2;
  367. pxa2xx_mmci_write(opaque, offset, value);
  368. }
  369. static void pxa2xx_mmci_writew(void *opaque,
  370. target_phys_addr_t offset, uint32_t value)
  371. {
  372. struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
  373. s->ac_width = 4;
  374. pxa2xx_mmci_write(opaque, offset, value);
  375. }
  376. static CPUWriteMemoryFunc *pxa2xx_mmci_writefn[] = {
  377. pxa2xx_mmci_writeb,
  378. pxa2xx_mmci_writeh,
  379. pxa2xx_mmci_writew
  380. };
  381. static void pxa2xx_mmci_save(QEMUFile *f, void *opaque)
  382. {
  383. struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
  384. int i;
  385. qemu_put_be32s(f, &s->status);
  386. qemu_put_be32s(f, &s->clkrt);
  387. qemu_put_be32s(f, &s->spi);
  388. qemu_put_be32s(f, &s->cmdat);
  389. qemu_put_be32s(f, &s->resp_tout);
  390. qemu_put_be32s(f, &s->read_tout);
  391. qemu_put_be32(f, s->blklen);
  392. qemu_put_be32(f, s->numblk);
  393. qemu_put_be32s(f, &s->intmask);
  394. qemu_put_be32s(f, &s->intreq);
  395. qemu_put_be32(f, s->cmd);
  396. qemu_put_be32s(f, &s->arg);
  397. qemu_put_be32(f, s->cmdreq);
  398. qemu_put_be32(f, s->active);
  399. qemu_put_be32(f, s->bytesleft);
  400. qemu_put_byte(f, s->tx_len);
  401. for (i = 0; i < s->tx_len; i ++)
  402. qemu_put_byte(f, s->tx_fifo[(s->tx_start + i) & 63]);
  403. qemu_put_byte(f, s->rx_len);
  404. for (i = 0; i < s->rx_len; i ++)
  405. qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 31]);
  406. qemu_put_byte(f, s->resp_len);
  407. for (i = s->resp_len; i < 9; i ++)
  408. qemu_put_be16s(f, &s->resp_fifo[i]);
  409. }
  410. static int pxa2xx_mmci_load(QEMUFile *f, void *opaque, int version_id)
  411. {
  412. struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
  413. int i;
  414. qemu_get_be32s(f, &s->status);
  415. qemu_get_be32s(f, &s->clkrt);
  416. qemu_get_be32s(f, &s->spi);
  417. qemu_get_be32s(f, &s->cmdat);
  418. qemu_get_be32s(f, &s->resp_tout);
  419. qemu_get_be32s(f, &s->read_tout);
  420. s->blklen = qemu_get_be32(f);
  421. s->numblk = qemu_get_be32(f);
  422. qemu_get_be32s(f, &s->intmask);
  423. qemu_get_be32s(f, &s->intreq);
  424. s->cmd = qemu_get_be32(f);
  425. qemu_get_be32s(f, &s->arg);
  426. s->cmdreq = qemu_get_be32(f);
  427. s->active = qemu_get_be32(f);
  428. s->bytesleft = qemu_get_be32(f);
  429. s->tx_len = qemu_get_byte(f);
  430. s->tx_start = 0;
  431. if (s->tx_len >= sizeof(s->tx_fifo) || s->tx_len < 0)
  432. return -EINVAL;
  433. for (i = 0; i < s->tx_len; i ++)
  434. s->tx_fifo[i] = qemu_get_byte(f);
  435. s->rx_len = qemu_get_byte(f);
  436. s->rx_start = 0;
  437. if (s->rx_len >= sizeof(s->rx_fifo) || s->rx_len < 0)
  438. return -EINVAL;
  439. for (i = 0; i < s->rx_len; i ++)
  440. s->rx_fifo[i] = qemu_get_byte(f);
  441. s->resp_len = qemu_get_byte(f);
  442. if (s->resp_len > 9 || s->resp_len < 0)
  443. return -EINVAL;
  444. for (i = s->resp_len; i < 9; i ++)
  445. qemu_get_be16s(f, &s->resp_fifo[i]);
  446. return 0;
  447. }
  448. struct pxa2xx_mmci_s *pxa2xx_mmci_init(target_phys_addr_t base,
  449. BlockDriverState *bd, qemu_irq irq, void *dma)
  450. {
  451. int iomemtype;
  452. struct pxa2xx_mmci_s *s;
  453. s = (struct pxa2xx_mmci_s *) qemu_mallocz(sizeof(struct pxa2xx_mmci_s));
  454. s->irq = irq;
  455. s->dma = dma;
  456. iomemtype = cpu_register_io_memory(0, pxa2xx_mmci_readfn,
  457. pxa2xx_mmci_writefn, s);
  458. cpu_register_physical_memory(base, 0x00100000, iomemtype);
  459. /* Instantiate the actual storage */
  460. s->card = sd_init(bd, 0);
  461. register_savevm("pxa2xx_mmci", 0, 0,
  462. pxa2xx_mmci_save, pxa2xx_mmci_load, s);
  463. return s;
  464. }
  465. void pxa2xx_mmci_handlers(struct pxa2xx_mmci_s *s, qemu_irq readonly,
  466. qemu_irq coverswitch)
  467. {
  468. sd_set_cb(s->card, readonly, coverswitch);
  469. }