pxa2xx.c 65 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259
  1. /*
  2. * Intel XScale PXA255/270 processor support.
  3. *
  4. * Copyright (c) 2006 Openedhand Ltd.
  5. * Written by Andrzej Zaborowski <balrog@zabor.org>
  6. *
  7. * This code is licenced under the GPL.
  8. */
  9. #include "hw.h"
  10. #include "pxa.h"
  11. #include "sysemu.h"
  12. #include "pc.h"
  13. #include "i2c.h"
  14. #include "qemu-timer.h"
  15. #include "qemu-char.h"
  16. static struct {
  17. target_phys_addr_t io_base;
  18. int irqn;
  19. } pxa255_serial[] = {
  20. { 0x40100000, PXA2XX_PIC_FFUART },
  21. { 0x40200000, PXA2XX_PIC_BTUART },
  22. { 0x40700000, PXA2XX_PIC_STUART },
  23. { 0x41600000, PXA25X_PIC_HWUART },
  24. { 0, 0 }
  25. }, pxa270_serial[] = {
  26. { 0x40100000, PXA2XX_PIC_FFUART },
  27. { 0x40200000, PXA2XX_PIC_BTUART },
  28. { 0x40700000, PXA2XX_PIC_STUART },
  29. { 0, 0 }
  30. };
  31. typedef struct PXASSPDef {
  32. target_phys_addr_t io_base;
  33. int irqn;
  34. } PXASSPDef;
  35. #if 0
  36. static PXASSPDef pxa250_ssp[] = {
  37. { 0x41000000, PXA2XX_PIC_SSP },
  38. { 0, 0 }
  39. };
  40. #endif
  41. static PXASSPDef pxa255_ssp[] = {
  42. { 0x41000000, PXA2XX_PIC_SSP },
  43. { 0x41400000, PXA25X_PIC_NSSP },
  44. { 0, 0 }
  45. };
  46. #if 0
  47. static PXASSPDef pxa26x_ssp[] = {
  48. { 0x41000000, PXA2XX_PIC_SSP },
  49. { 0x41400000, PXA25X_PIC_NSSP },
  50. { 0x41500000, PXA26X_PIC_ASSP },
  51. { 0, 0 }
  52. };
  53. #endif
  54. static PXASSPDef pxa27x_ssp[] = {
  55. { 0x41000000, PXA2XX_PIC_SSP },
  56. { 0x41700000, PXA27X_PIC_SSP2 },
  57. { 0x41900000, PXA2XX_PIC_SSP3 },
  58. { 0, 0 }
  59. };
  60. #define PMCR 0x00 /* Power Manager Control register */
  61. #define PSSR 0x04 /* Power Manager Sleep Status register */
  62. #define PSPR 0x08 /* Power Manager Scratch-Pad register */
  63. #define PWER 0x0c /* Power Manager Wake-Up Enable register */
  64. #define PRER 0x10 /* Power Manager Rising-Edge Detect Enable register */
  65. #define PFER 0x14 /* Power Manager Falling-Edge Detect Enable register */
  66. #define PEDR 0x18 /* Power Manager Edge-Detect Status register */
  67. #define PCFR 0x1c /* Power Manager General Configuration register */
  68. #define PGSR0 0x20 /* Power Manager GPIO Sleep-State register 0 */
  69. #define PGSR1 0x24 /* Power Manager GPIO Sleep-State register 1 */
  70. #define PGSR2 0x28 /* Power Manager GPIO Sleep-State register 2 */
  71. #define PGSR3 0x2c /* Power Manager GPIO Sleep-State register 3 */
  72. #define RCSR 0x30 /* Reset Controller Status register */
  73. #define PSLR 0x34 /* Power Manager Sleep Configuration register */
  74. #define PTSR 0x38 /* Power Manager Standby Configuration register */
  75. #define PVCR 0x40 /* Power Manager Voltage Change Control register */
  76. #define PUCR 0x4c /* Power Manager USIM Card Control/Status register */
  77. #define PKWR 0x50 /* Power Manager Keyboard Wake-Up Enable register */
  78. #define PKSR 0x54 /* Power Manager Keyboard Level-Detect Status */
  79. #define PCMD0 0x80 /* Power Manager I2C Command register File 0 */
  80. #define PCMD31 0xfc /* Power Manager I2C Command register File 31 */
  81. static uint32_t pxa2xx_pm_read(void *opaque, target_phys_addr_t addr)
  82. {
  83. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  84. switch (addr) {
  85. case PMCR ... PCMD31:
  86. if (addr & 3)
  87. goto fail;
  88. return s->pm_regs[addr >> 2];
  89. default:
  90. fail:
  91. printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
  92. break;
  93. }
  94. return 0;
  95. }
  96. static void pxa2xx_pm_write(void *opaque, target_phys_addr_t addr,
  97. uint32_t value)
  98. {
  99. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  100. switch (addr) {
  101. case PMCR:
  102. s->pm_regs[addr >> 2] &= 0x15 & ~(value & 0x2a);
  103. s->pm_regs[addr >> 2] |= value & 0x15;
  104. break;
  105. case PSSR: /* Read-clean registers */
  106. case RCSR:
  107. case PKSR:
  108. s->pm_regs[addr >> 2] &= ~value;
  109. break;
  110. default: /* Read-write registers */
  111. if (addr >= PMCR && addr <= PCMD31 && !(addr & 3)) {
  112. s->pm_regs[addr >> 2] = value;
  113. break;
  114. }
  115. printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
  116. break;
  117. }
  118. }
  119. static CPUReadMemoryFunc *pxa2xx_pm_readfn[] = {
  120. pxa2xx_pm_read,
  121. pxa2xx_pm_read,
  122. pxa2xx_pm_read,
  123. };
  124. static CPUWriteMemoryFunc *pxa2xx_pm_writefn[] = {
  125. pxa2xx_pm_write,
  126. pxa2xx_pm_write,
  127. pxa2xx_pm_write,
  128. };
  129. static void pxa2xx_pm_save(QEMUFile *f, void *opaque)
  130. {
  131. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  132. int i;
  133. for (i = 0; i < 0x40; i ++)
  134. qemu_put_be32s(f, &s->pm_regs[i]);
  135. }
  136. static int pxa2xx_pm_load(QEMUFile *f, void *opaque, int version_id)
  137. {
  138. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  139. int i;
  140. for (i = 0; i < 0x40; i ++)
  141. qemu_get_be32s(f, &s->pm_regs[i]);
  142. return 0;
  143. }
  144. #define CCCR 0x00 /* Core Clock Configuration register */
  145. #define CKEN 0x04 /* Clock Enable register */
  146. #define OSCC 0x08 /* Oscillator Configuration register */
  147. #define CCSR 0x0c /* Core Clock Status register */
  148. static uint32_t pxa2xx_cm_read(void *opaque, target_phys_addr_t addr)
  149. {
  150. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  151. switch (addr) {
  152. case CCCR:
  153. case CKEN:
  154. case OSCC:
  155. return s->cm_regs[addr >> 2];
  156. case CCSR:
  157. return s->cm_regs[CCCR >> 2] | (3 << 28);
  158. default:
  159. printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
  160. break;
  161. }
  162. return 0;
  163. }
  164. static void pxa2xx_cm_write(void *opaque, target_phys_addr_t addr,
  165. uint32_t value)
  166. {
  167. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  168. switch (addr) {
  169. case CCCR:
  170. case CKEN:
  171. s->cm_regs[addr >> 2] = value;
  172. break;
  173. case OSCC:
  174. s->cm_regs[addr >> 2] &= ~0x6c;
  175. s->cm_regs[addr >> 2] |= value & 0x6e;
  176. if ((value >> 1) & 1) /* OON */
  177. s->cm_regs[addr >> 2] |= 1 << 0; /* Oscillator is now stable */
  178. break;
  179. default:
  180. printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
  181. break;
  182. }
  183. }
  184. static CPUReadMemoryFunc *pxa2xx_cm_readfn[] = {
  185. pxa2xx_cm_read,
  186. pxa2xx_cm_read,
  187. pxa2xx_cm_read,
  188. };
  189. static CPUWriteMemoryFunc *pxa2xx_cm_writefn[] = {
  190. pxa2xx_cm_write,
  191. pxa2xx_cm_write,
  192. pxa2xx_cm_write,
  193. };
  194. static void pxa2xx_cm_save(QEMUFile *f, void *opaque)
  195. {
  196. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  197. int i;
  198. for (i = 0; i < 4; i ++)
  199. qemu_put_be32s(f, &s->cm_regs[i]);
  200. qemu_put_be32s(f, &s->clkcfg);
  201. qemu_put_be32s(f, &s->pmnc);
  202. }
  203. static int pxa2xx_cm_load(QEMUFile *f, void *opaque, int version_id)
  204. {
  205. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  206. int i;
  207. for (i = 0; i < 4; i ++)
  208. qemu_get_be32s(f, &s->cm_regs[i]);
  209. qemu_get_be32s(f, &s->clkcfg);
  210. qemu_get_be32s(f, &s->pmnc);
  211. return 0;
  212. }
  213. static uint32_t pxa2xx_clkpwr_read(void *opaque, int op2, int reg, int crm)
  214. {
  215. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  216. switch (reg) {
  217. case 6: /* Clock Configuration register */
  218. return s->clkcfg;
  219. case 7: /* Power Mode register */
  220. return 0;
  221. default:
  222. printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
  223. break;
  224. }
  225. return 0;
  226. }
  227. static void pxa2xx_clkpwr_write(void *opaque, int op2, int reg, int crm,
  228. uint32_t value)
  229. {
  230. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  231. static const char *pwrmode[8] = {
  232. "Normal", "Idle", "Deep-idle", "Standby",
  233. "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
  234. };
  235. switch (reg) {
  236. case 6: /* Clock Configuration register */
  237. s->clkcfg = value & 0xf;
  238. if (value & 2)
  239. printf("%s: CPU frequency change attempt\n", __FUNCTION__);
  240. break;
  241. case 7: /* Power Mode register */
  242. if (value & 8)
  243. printf("%s: CPU voltage change attempt\n", __FUNCTION__);
  244. switch (value & 7) {
  245. case 0:
  246. /* Do nothing */
  247. break;
  248. case 1:
  249. /* Idle */
  250. if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) { /* CPDIS */
  251. cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
  252. break;
  253. }
  254. /* Fall through. */
  255. case 2:
  256. /* Deep-Idle */
  257. cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
  258. s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
  259. goto message;
  260. case 3:
  261. s->env->uncached_cpsr =
  262. ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
  263. s->env->cp15.c1_sys = 0;
  264. s->env->cp15.c1_coproc = 0;
  265. s->env->cp15.c2_base0 = 0;
  266. s->env->cp15.c3 = 0;
  267. s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */
  268. s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
  269. /*
  270. * The scratch-pad register is almost universally used
  271. * for storing the return address on suspend. For the
  272. * lack of a resuming bootloader, perform a jump
  273. * directly to that address.
  274. */
  275. memset(s->env->regs, 0, 4 * 15);
  276. s->env->regs[15] = s->pm_regs[PSPR >> 2];
  277. #if 0
  278. buffer = 0xe59ff000; /* ldr pc, [pc, #0] */
  279. cpu_physical_memory_write(0, &buffer, 4);
  280. buffer = s->pm_regs[PSPR >> 2];
  281. cpu_physical_memory_write(8, &buffer, 4);
  282. #endif
  283. /* Suspend */
  284. cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);
  285. goto message;
  286. default:
  287. message:
  288. printf("%s: machine entered %s mode\n", __FUNCTION__,
  289. pwrmode[value & 7]);
  290. }
  291. break;
  292. default:
  293. printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
  294. break;
  295. }
  296. }
  297. /* Performace Monitoring Registers */
  298. #define CPPMNC 0 /* Performance Monitor Control register */
  299. #define CPCCNT 1 /* Clock Counter register */
  300. #define CPINTEN 4 /* Interrupt Enable register */
  301. #define CPFLAG 5 /* Overflow Flag register */
  302. #define CPEVTSEL 8 /* Event Selection register */
  303. #define CPPMN0 0 /* Performance Count register 0 */
  304. #define CPPMN1 1 /* Performance Count register 1 */
  305. #define CPPMN2 2 /* Performance Count register 2 */
  306. #define CPPMN3 3 /* Performance Count register 3 */
  307. static uint32_t pxa2xx_perf_read(void *opaque, int op2, int reg, int crm)
  308. {
  309. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  310. switch (reg) {
  311. case CPPMNC:
  312. return s->pmnc;
  313. case CPCCNT:
  314. if (s->pmnc & 1)
  315. return qemu_get_clock(vm_clock);
  316. else
  317. return 0;
  318. case CPINTEN:
  319. case CPFLAG:
  320. case CPEVTSEL:
  321. return 0;
  322. default:
  323. printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
  324. break;
  325. }
  326. return 0;
  327. }
  328. static void pxa2xx_perf_write(void *opaque, int op2, int reg, int crm,
  329. uint32_t value)
  330. {
  331. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  332. switch (reg) {
  333. case CPPMNC:
  334. s->pmnc = value;
  335. break;
  336. case CPCCNT:
  337. case CPINTEN:
  338. case CPFLAG:
  339. case CPEVTSEL:
  340. break;
  341. default:
  342. printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
  343. break;
  344. }
  345. }
  346. static uint32_t pxa2xx_cp14_read(void *opaque, int op2, int reg, int crm)
  347. {
  348. switch (crm) {
  349. case 0:
  350. return pxa2xx_clkpwr_read(opaque, op2, reg, crm);
  351. case 1:
  352. return pxa2xx_perf_read(opaque, op2, reg, crm);
  353. case 2:
  354. switch (reg) {
  355. case CPPMN0:
  356. case CPPMN1:
  357. case CPPMN2:
  358. case CPPMN3:
  359. return 0;
  360. }
  361. /* Fall through */
  362. default:
  363. printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
  364. break;
  365. }
  366. return 0;
  367. }
  368. static void pxa2xx_cp14_write(void *opaque, int op2, int reg, int crm,
  369. uint32_t value)
  370. {
  371. switch (crm) {
  372. case 0:
  373. pxa2xx_clkpwr_write(opaque, op2, reg, crm, value);
  374. break;
  375. case 1:
  376. pxa2xx_perf_write(opaque, op2, reg, crm, value);
  377. break;
  378. case 2:
  379. switch (reg) {
  380. case CPPMN0:
  381. case CPPMN1:
  382. case CPPMN2:
  383. case CPPMN3:
  384. return;
  385. }
  386. /* Fall through */
  387. default:
  388. printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
  389. break;
  390. }
  391. }
  392. #define MDCNFG 0x00 /* SDRAM Configuration register */
  393. #define MDREFR 0x04 /* SDRAM Refresh Control register */
  394. #define MSC0 0x08 /* Static Memory Control register 0 */
  395. #define MSC1 0x0c /* Static Memory Control register 1 */
  396. #define MSC2 0x10 /* Static Memory Control register 2 */
  397. #define MECR 0x14 /* Expansion Memory Bus Config register */
  398. #define SXCNFG 0x1c /* Synchronous Static Memory Config register */
  399. #define MCMEM0 0x28 /* PC Card Memory Socket 0 Timing register */
  400. #define MCMEM1 0x2c /* PC Card Memory Socket 1 Timing register */
  401. #define MCATT0 0x30 /* PC Card Attribute Socket 0 register */
  402. #define MCATT1 0x34 /* PC Card Attribute Socket 1 register */
  403. #define MCIO0 0x38 /* PC Card I/O Socket 0 Timing register */
  404. #define MCIO1 0x3c /* PC Card I/O Socket 1 Timing register */
  405. #define MDMRS 0x40 /* SDRAM Mode Register Set Config register */
  406. #define BOOT_DEF 0x44 /* Boot-time Default Configuration register */
  407. #define ARB_CNTL 0x48 /* Arbiter Control register */
  408. #define BSCNTR0 0x4c /* Memory Buffer Strength Control register 0 */
  409. #define BSCNTR1 0x50 /* Memory Buffer Strength Control register 1 */
  410. #define LCDBSCNTR 0x54 /* LCD Buffer Strength Control register */
  411. #define MDMRSLP 0x58 /* Low Power SDRAM Mode Set Config register */
  412. #define BSCNTR2 0x5c /* Memory Buffer Strength Control register 2 */
  413. #define BSCNTR3 0x60 /* Memory Buffer Strength Control register 3 */
  414. #define SA1110 0x64 /* SA-1110 Memory Compatibility register */
  415. static uint32_t pxa2xx_mm_read(void *opaque, target_phys_addr_t addr)
  416. {
  417. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  418. switch (addr) {
  419. case MDCNFG ... SA1110:
  420. if ((addr & 3) == 0)
  421. return s->mm_regs[addr >> 2];
  422. default:
  423. printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
  424. break;
  425. }
  426. return 0;
  427. }
  428. static void pxa2xx_mm_write(void *opaque, target_phys_addr_t addr,
  429. uint32_t value)
  430. {
  431. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  432. switch (addr) {
  433. case MDCNFG ... SA1110:
  434. if ((addr & 3) == 0) {
  435. s->mm_regs[addr >> 2] = value;
  436. break;
  437. }
  438. default:
  439. printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
  440. break;
  441. }
  442. }
  443. static CPUReadMemoryFunc *pxa2xx_mm_readfn[] = {
  444. pxa2xx_mm_read,
  445. pxa2xx_mm_read,
  446. pxa2xx_mm_read,
  447. };
  448. static CPUWriteMemoryFunc *pxa2xx_mm_writefn[] = {
  449. pxa2xx_mm_write,
  450. pxa2xx_mm_write,
  451. pxa2xx_mm_write,
  452. };
  453. static void pxa2xx_mm_save(QEMUFile *f, void *opaque)
  454. {
  455. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  456. int i;
  457. for (i = 0; i < 0x1a; i ++)
  458. qemu_put_be32s(f, &s->mm_regs[i]);
  459. }
  460. static int pxa2xx_mm_load(QEMUFile *f, void *opaque, int version_id)
  461. {
  462. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  463. int i;
  464. for (i = 0; i < 0x1a; i ++)
  465. qemu_get_be32s(f, &s->mm_regs[i]);
  466. return 0;
  467. }
  468. /* Synchronous Serial Ports */
  469. struct pxa2xx_ssp_s {
  470. qemu_irq irq;
  471. int enable;
  472. uint32_t sscr[2];
  473. uint32_t sspsp;
  474. uint32_t ssto;
  475. uint32_t ssitr;
  476. uint32_t sssr;
  477. uint8_t sstsa;
  478. uint8_t ssrsa;
  479. uint8_t ssacd;
  480. uint32_t rx_fifo[16];
  481. int rx_level;
  482. int rx_start;
  483. uint32_t (*readfn)(void *opaque);
  484. void (*writefn)(void *opaque, uint32_t value);
  485. void *opaque;
  486. };
  487. #define SSCR0 0x00 /* SSP Control register 0 */
  488. #define SSCR1 0x04 /* SSP Control register 1 */
  489. #define SSSR 0x08 /* SSP Status register */
  490. #define SSITR 0x0c /* SSP Interrupt Test register */
  491. #define SSDR 0x10 /* SSP Data register */
  492. #define SSTO 0x28 /* SSP Time-Out register */
  493. #define SSPSP 0x2c /* SSP Programmable Serial Protocol register */
  494. #define SSTSA 0x30 /* SSP TX Time Slot Active register */
  495. #define SSRSA 0x34 /* SSP RX Time Slot Active register */
  496. #define SSTSS 0x38 /* SSP Time Slot Status register */
  497. #define SSACD 0x3c /* SSP Audio Clock Divider register */
  498. /* Bitfields for above registers */
  499. #define SSCR0_SPI(x) (((x) & 0x30) == 0x00)
  500. #define SSCR0_SSP(x) (((x) & 0x30) == 0x10)
  501. #define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20)
  502. #define SSCR0_PSP(x) (((x) & 0x30) == 0x30)
  503. #define SSCR0_SSE (1 << 7)
  504. #define SSCR0_RIM (1 << 22)
  505. #define SSCR0_TIM (1 << 23)
  506. #define SSCR0_MOD (1 << 31)
  507. #define SSCR0_DSS(x) (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
  508. #define SSCR1_RIE (1 << 0)
  509. #define SSCR1_TIE (1 << 1)
  510. #define SSCR1_LBM (1 << 2)
  511. #define SSCR1_MWDS (1 << 5)
  512. #define SSCR1_TFT(x) ((((x) >> 6) & 0xf) + 1)
  513. #define SSCR1_RFT(x) ((((x) >> 10) & 0xf) + 1)
  514. #define SSCR1_EFWR (1 << 14)
  515. #define SSCR1_PINTE (1 << 18)
  516. #define SSCR1_TINTE (1 << 19)
  517. #define SSCR1_RSRE (1 << 20)
  518. #define SSCR1_TSRE (1 << 21)
  519. #define SSCR1_EBCEI (1 << 29)
  520. #define SSITR_INT (7 << 5)
  521. #define SSSR_TNF (1 << 2)
  522. #define SSSR_RNE (1 << 3)
  523. #define SSSR_TFS (1 << 5)
  524. #define SSSR_RFS (1 << 6)
  525. #define SSSR_ROR (1 << 7)
  526. #define SSSR_PINT (1 << 18)
  527. #define SSSR_TINT (1 << 19)
  528. #define SSSR_EOC (1 << 20)
  529. #define SSSR_TUR (1 << 21)
  530. #define SSSR_BCE (1 << 23)
  531. #define SSSR_RW 0x00bc0080
  532. static void pxa2xx_ssp_int_update(struct pxa2xx_ssp_s *s)
  533. {
  534. int level = 0;
  535. level |= s->ssitr & SSITR_INT;
  536. level |= (s->sssr & SSSR_BCE) && (s->sscr[1] & SSCR1_EBCEI);
  537. level |= (s->sssr & SSSR_TUR) && !(s->sscr[0] & SSCR0_TIM);
  538. level |= (s->sssr & SSSR_EOC) && (s->sssr & (SSSR_TINT | SSSR_PINT));
  539. level |= (s->sssr & SSSR_TINT) && (s->sscr[1] & SSCR1_TINTE);
  540. level |= (s->sssr & SSSR_PINT) && (s->sscr[1] & SSCR1_PINTE);
  541. level |= (s->sssr & SSSR_ROR) && !(s->sscr[0] & SSCR0_RIM);
  542. level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE);
  543. level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE);
  544. qemu_set_irq(s->irq, !!level);
  545. }
  546. static void pxa2xx_ssp_fifo_update(struct pxa2xx_ssp_s *s)
  547. {
  548. s->sssr &= ~(0xf << 12); /* Clear RFL */
  549. s->sssr &= ~(0xf << 8); /* Clear TFL */
  550. s->sssr &= ~SSSR_TNF;
  551. if (s->enable) {
  552. s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
  553. if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
  554. s->sssr |= SSSR_RFS;
  555. else
  556. s->sssr &= ~SSSR_RFS;
  557. if (0 <= SSCR1_TFT(s->sscr[1]))
  558. s->sssr |= SSSR_TFS;
  559. else
  560. s->sssr &= ~SSSR_TFS;
  561. if (s->rx_level)
  562. s->sssr |= SSSR_RNE;
  563. else
  564. s->sssr &= ~SSSR_RNE;
  565. s->sssr |= SSSR_TNF;
  566. }
  567. pxa2xx_ssp_int_update(s);
  568. }
  569. static uint32_t pxa2xx_ssp_read(void *opaque, target_phys_addr_t addr)
  570. {
  571. struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
  572. uint32_t retval;
  573. switch (addr) {
  574. case SSCR0:
  575. return s->sscr[0];
  576. case SSCR1:
  577. return s->sscr[1];
  578. case SSPSP:
  579. return s->sspsp;
  580. case SSTO:
  581. return s->ssto;
  582. case SSITR:
  583. return s->ssitr;
  584. case SSSR:
  585. return s->sssr | s->ssitr;
  586. case SSDR:
  587. if (!s->enable)
  588. return 0xffffffff;
  589. if (s->rx_level < 1) {
  590. printf("%s: SSP Rx Underrun\n", __FUNCTION__);
  591. return 0xffffffff;
  592. }
  593. s->rx_level --;
  594. retval = s->rx_fifo[s->rx_start ++];
  595. s->rx_start &= 0xf;
  596. pxa2xx_ssp_fifo_update(s);
  597. return retval;
  598. case SSTSA:
  599. return s->sstsa;
  600. case SSRSA:
  601. return s->ssrsa;
  602. case SSTSS:
  603. return 0;
  604. case SSACD:
  605. return s->ssacd;
  606. default:
  607. printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
  608. break;
  609. }
  610. return 0;
  611. }
  612. static void pxa2xx_ssp_write(void *opaque, target_phys_addr_t addr,
  613. uint32_t value)
  614. {
  615. struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
  616. switch (addr) {
  617. case SSCR0:
  618. s->sscr[0] = value & 0xc7ffffff;
  619. s->enable = value & SSCR0_SSE;
  620. if (value & SSCR0_MOD)
  621. printf("%s: Attempt to use network mode\n", __FUNCTION__);
  622. if (s->enable && SSCR0_DSS(value) < 4)
  623. printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
  624. SSCR0_DSS(value));
  625. if (!(value & SSCR0_SSE)) {
  626. s->sssr = 0;
  627. s->ssitr = 0;
  628. s->rx_level = 0;
  629. }
  630. pxa2xx_ssp_fifo_update(s);
  631. break;
  632. case SSCR1:
  633. s->sscr[1] = value;
  634. if (value & (SSCR1_LBM | SSCR1_EFWR))
  635. printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
  636. pxa2xx_ssp_fifo_update(s);
  637. break;
  638. case SSPSP:
  639. s->sspsp = value;
  640. break;
  641. case SSTO:
  642. s->ssto = value;
  643. break;
  644. case SSITR:
  645. s->ssitr = value & SSITR_INT;
  646. pxa2xx_ssp_int_update(s);
  647. break;
  648. case SSSR:
  649. s->sssr &= ~(value & SSSR_RW);
  650. pxa2xx_ssp_int_update(s);
  651. break;
  652. case SSDR:
  653. if (SSCR0_UWIRE(s->sscr[0])) {
  654. if (s->sscr[1] & SSCR1_MWDS)
  655. value &= 0xffff;
  656. else
  657. value &= 0xff;
  658. } else
  659. /* Note how 32bits overflow does no harm here */
  660. value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
  661. /* Data goes from here to the Tx FIFO and is shifted out from
  662. * there directly to the slave, no need to buffer it.
  663. */
  664. if (s->enable) {
  665. if (s->writefn)
  666. s->writefn(s->opaque, value);
  667. if (s->rx_level < 0x10) {
  668. if (s->readfn)
  669. s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] =
  670. s->readfn(s->opaque);
  671. else
  672. s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = 0x0;
  673. } else
  674. s->sssr |= SSSR_ROR;
  675. }
  676. pxa2xx_ssp_fifo_update(s);
  677. break;
  678. case SSTSA:
  679. s->sstsa = value;
  680. break;
  681. case SSRSA:
  682. s->ssrsa = value;
  683. break;
  684. case SSACD:
  685. s->ssacd = value;
  686. break;
  687. default:
  688. printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
  689. break;
  690. }
  691. }
  692. void pxa2xx_ssp_attach(struct pxa2xx_ssp_s *port,
  693. uint32_t (*readfn)(void *opaque),
  694. void (*writefn)(void *opaque, uint32_t value), void *opaque)
  695. {
  696. if (!port) {
  697. printf("%s: no such SSP\n", __FUNCTION__);
  698. exit(-1);
  699. }
  700. port->opaque = opaque;
  701. port->readfn = readfn;
  702. port->writefn = writefn;
  703. }
  704. static CPUReadMemoryFunc *pxa2xx_ssp_readfn[] = {
  705. pxa2xx_ssp_read,
  706. pxa2xx_ssp_read,
  707. pxa2xx_ssp_read,
  708. };
  709. static CPUWriteMemoryFunc *pxa2xx_ssp_writefn[] = {
  710. pxa2xx_ssp_write,
  711. pxa2xx_ssp_write,
  712. pxa2xx_ssp_write,
  713. };
  714. static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
  715. {
  716. struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
  717. int i;
  718. qemu_put_be32(f, s->enable);
  719. qemu_put_be32s(f, &s->sscr[0]);
  720. qemu_put_be32s(f, &s->sscr[1]);
  721. qemu_put_be32s(f, &s->sspsp);
  722. qemu_put_be32s(f, &s->ssto);
  723. qemu_put_be32s(f, &s->ssitr);
  724. qemu_put_be32s(f, &s->sssr);
  725. qemu_put_8s(f, &s->sstsa);
  726. qemu_put_8s(f, &s->ssrsa);
  727. qemu_put_8s(f, &s->ssacd);
  728. qemu_put_byte(f, s->rx_level);
  729. for (i = 0; i < s->rx_level; i ++)
  730. qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
  731. }
  732. static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
  733. {
  734. struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
  735. int i;
  736. s->enable = qemu_get_be32(f);
  737. qemu_get_be32s(f, &s->sscr[0]);
  738. qemu_get_be32s(f, &s->sscr[1]);
  739. qemu_get_be32s(f, &s->sspsp);
  740. qemu_get_be32s(f, &s->ssto);
  741. qemu_get_be32s(f, &s->ssitr);
  742. qemu_get_be32s(f, &s->sssr);
  743. qemu_get_8s(f, &s->sstsa);
  744. qemu_get_8s(f, &s->ssrsa);
  745. qemu_get_8s(f, &s->ssacd);
  746. s->rx_level = qemu_get_byte(f);
  747. s->rx_start = 0;
  748. for (i = 0; i < s->rx_level; i ++)
  749. s->rx_fifo[i] = qemu_get_byte(f);
  750. return 0;
  751. }
  752. /* Real-Time Clock */
  753. #define RCNR 0x00 /* RTC Counter register */
  754. #define RTAR 0x04 /* RTC Alarm register */
  755. #define RTSR 0x08 /* RTC Status register */
  756. #define RTTR 0x0c /* RTC Timer Trim register */
  757. #define RDCR 0x10 /* RTC Day Counter register */
  758. #define RYCR 0x14 /* RTC Year Counter register */
  759. #define RDAR1 0x18 /* RTC Wristwatch Day Alarm register 1 */
  760. #define RYAR1 0x1c /* RTC Wristwatch Year Alarm register 1 */
  761. #define RDAR2 0x20 /* RTC Wristwatch Day Alarm register 2 */
  762. #define RYAR2 0x24 /* RTC Wristwatch Year Alarm register 2 */
  763. #define SWCR 0x28 /* RTC Stopwatch Counter register */
  764. #define SWAR1 0x2c /* RTC Stopwatch Alarm register 1 */
  765. #define SWAR2 0x30 /* RTC Stopwatch Alarm register 2 */
  766. #define RTCPICR 0x34 /* RTC Periodic Interrupt Counter register */
  767. #define PIAR 0x38 /* RTC Periodic Interrupt Alarm register */
  768. static inline void pxa2xx_rtc_int_update(struct pxa2xx_state_s *s)
  769. {
  770. qemu_set_irq(s->pic[PXA2XX_PIC_RTCALARM], !!(s->rtsr & 0x2553));
  771. }
  772. static void pxa2xx_rtc_hzupdate(struct pxa2xx_state_s *s)
  773. {
  774. int64_t rt = qemu_get_clock(rt_clock);
  775. s->last_rcnr += ((rt - s->last_hz) << 15) /
  776. (1000 * ((s->rttr & 0xffff) + 1));
  777. s->last_rdcr += ((rt - s->last_hz) << 15) /
  778. (1000 * ((s->rttr & 0xffff) + 1));
  779. s->last_hz = rt;
  780. }
  781. static void pxa2xx_rtc_swupdate(struct pxa2xx_state_s *s)
  782. {
  783. int64_t rt = qemu_get_clock(rt_clock);
  784. if (s->rtsr & (1 << 12))
  785. s->last_swcr += (rt - s->last_sw) / 10;
  786. s->last_sw = rt;
  787. }
  788. static void pxa2xx_rtc_piupdate(struct pxa2xx_state_s *s)
  789. {
  790. int64_t rt = qemu_get_clock(rt_clock);
  791. if (s->rtsr & (1 << 15))
  792. s->last_swcr += rt - s->last_pi;
  793. s->last_pi = rt;
  794. }
  795. static inline void pxa2xx_rtc_alarm_update(struct pxa2xx_state_s *s,
  796. uint32_t rtsr)
  797. {
  798. if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
  799. qemu_mod_timer(s->rtc_hz, s->last_hz +
  800. (((s->rtar - s->last_rcnr) * 1000 *
  801. ((s->rttr & 0xffff) + 1)) >> 15));
  802. else
  803. qemu_del_timer(s->rtc_hz);
  804. if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
  805. qemu_mod_timer(s->rtc_rdal1, s->last_hz +
  806. (((s->rdar1 - s->last_rdcr) * 1000 *
  807. ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
  808. else
  809. qemu_del_timer(s->rtc_rdal1);
  810. if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
  811. qemu_mod_timer(s->rtc_rdal2, s->last_hz +
  812. (((s->rdar2 - s->last_rdcr) * 1000 *
  813. ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
  814. else
  815. qemu_del_timer(s->rtc_rdal2);
  816. if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
  817. qemu_mod_timer(s->rtc_swal1, s->last_sw +
  818. (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
  819. else
  820. qemu_del_timer(s->rtc_swal1);
  821. if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
  822. qemu_mod_timer(s->rtc_swal2, s->last_sw +
  823. (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
  824. else
  825. qemu_del_timer(s->rtc_swal2);
  826. if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
  827. qemu_mod_timer(s->rtc_pi, s->last_pi +
  828. (s->piar & 0xffff) - s->last_rtcpicr);
  829. else
  830. qemu_del_timer(s->rtc_pi);
  831. }
  832. static inline void pxa2xx_rtc_hz_tick(void *opaque)
  833. {
  834. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  835. s->rtsr |= (1 << 0);
  836. pxa2xx_rtc_alarm_update(s, s->rtsr);
  837. pxa2xx_rtc_int_update(s);
  838. }
  839. static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
  840. {
  841. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  842. s->rtsr |= (1 << 4);
  843. pxa2xx_rtc_alarm_update(s, s->rtsr);
  844. pxa2xx_rtc_int_update(s);
  845. }
  846. static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
  847. {
  848. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  849. s->rtsr |= (1 << 6);
  850. pxa2xx_rtc_alarm_update(s, s->rtsr);
  851. pxa2xx_rtc_int_update(s);
  852. }
  853. static inline void pxa2xx_rtc_swal1_tick(void *opaque)
  854. {
  855. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  856. s->rtsr |= (1 << 8);
  857. pxa2xx_rtc_alarm_update(s, s->rtsr);
  858. pxa2xx_rtc_int_update(s);
  859. }
  860. static inline void pxa2xx_rtc_swal2_tick(void *opaque)
  861. {
  862. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  863. s->rtsr |= (1 << 10);
  864. pxa2xx_rtc_alarm_update(s, s->rtsr);
  865. pxa2xx_rtc_int_update(s);
  866. }
  867. static inline void pxa2xx_rtc_pi_tick(void *opaque)
  868. {
  869. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  870. s->rtsr |= (1 << 13);
  871. pxa2xx_rtc_piupdate(s);
  872. s->last_rtcpicr = 0;
  873. pxa2xx_rtc_alarm_update(s, s->rtsr);
  874. pxa2xx_rtc_int_update(s);
  875. }
  876. static uint32_t pxa2xx_rtc_read(void *opaque, target_phys_addr_t addr)
  877. {
  878. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  879. switch (addr) {
  880. case RTTR:
  881. return s->rttr;
  882. case RTSR:
  883. return s->rtsr;
  884. case RTAR:
  885. return s->rtar;
  886. case RDAR1:
  887. return s->rdar1;
  888. case RDAR2:
  889. return s->rdar2;
  890. case RYAR1:
  891. return s->ryar1;
  892. case RYAR2:
  893. return s->ryar2;
  894. case SWAR1:
  895. return s->swar1;
  896. case SWAR2:
  897. return s->swar2;
  898. case PIAR:
  899. return s->piar;
  900. case RCNR:
  901. return s->last_rcnr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
  902. (1000 * ((s->rttr & 0xffff) + 1));
  903. case RDCR:
  904. return s->last_rdcr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
  905. (1000 * ((s->rttr & 0xffff) + 1));
  906. case RYCR:
  907. return s->last_rycr;
  908. case SWCR:
  909. if (s->rtsr & (1 << 12))
  910. return s->last_swcr + (qemu_get_clock(rt_clock) - s->last_sw) / 10;
  911. else
  912. return s->last_swcr;
  913. default:
  914. printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
  915. break;
  916. }
  917. return 0;
  918. }
  919. static void pxa2xx_rtc_write(void *opaque, target_phys_addr_t addr,
  920. uint32_t value)
  921. {
  922. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  923. switch (addr) {
  924. case RTTR:
  925. if (!(s->rttr & (1 << 31))) {
  926. pxa2xx_rtc_hzupdate(s);
  927. s->rttr = value;
  928. pxa2xx_rtc_alarm_update(s, s->rtsr);
  929. }
  930. break;
  931. case RTSR:
  932. if ((s->rtsr ^ value) & (1 << 15))
  933. pxa2xx_rtc_piupdate(s);
  934. if ((s->rtsr ^ value) & (1 << 12))
  935. pxa2xx_rtc_swupdate(s);
  936. if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
  937. pxa2xx_rtc_alarm_update(s, value);
  938. s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
  939. pxa2xx_rtc_int_update(s);
  940. break;
  941. case RTAR:
  942. s->rtar = value;
  943. pxa2xx_rtc_alarm_update(s, s->rtsr);
  944. break;
  945. case RDAR1:
  946. s->rdar1 = value;
  947. pxa2xx_rtc_alarm_update(s, s->rtsr);
  948. break;
  949. case RDAR2:
  950. s->rdar2 = value;
  951. pxa2xx_rtc_alarm_update(s, s->rtsr);
  952. break;
  953. case RYAR1:
  954. s->ryar1 = value;
  955. pxa2xx_rtc_alarm_update(s, s->rtsr);
  956. break;
  957. case RYAR2:
  958. s->ryar2 = value;
  959. pxa2xx_rtc_alarm_update(s, s->rtsr);
  960. break;
  961. case SWAR1:
  962. pxa2xx_rtc_swupdate(s);
  963. s->swar1 = value;
  964. s->last_swcr = 0;
  965. pxa2xx_rtc_alarm_update(s, s->rtsr);
  966. break;
  967. case SWAR2:
  968. s->swar2 = value;
  969. pxa2xx_rtc_alarm_update(s, s->rtsr);
  970. break;
  971. case PIAR:
  972. s->piar = value;
  973. pxa2xx_rtc_alarm_update(s, s->rtsr);
  974. break;
  975. case RCNR:
  976. pxa2xx_rtc_hzupdate(s);
  977. s->last_rcnr = value;
  978. pxa2xx_rtc_alarm_update(s, s->rtsr);
  979. break;
  980. case RDCR:
  981. pxa2xx_rtc_hzupdate(s);
  982. s->last_rdcr = value;
  983. pxa2xx_rtc_alarm_update(s, s->rtsr);
  984. break;
  985. case RYCR:
  986. s->last_rycr = value;
  987. break;
  988. case SWCR:
  989. pxa2xx_rtc_swupdate(s);
  990. s->last_swcr = value;
  991. pxa2xx_rtc_alarm_update(s, s->rtsr);
  992. break;
  993. case RTCPICR:
  994. pxa2xx_rtc_piupdate(s);
  995. s->last_rtcpicr = value & 0xffff;
  996. pxa2xx_rtc_alarm_update(s, s->rtsr);
  997. break;
  998. default:
  999. printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
  1000. }
  1001. }
  1002. static CPUReadMemoryFunc *pxa2xx_rtc_readfn[] = {
  1003. pxa2xx_rtc_read,
  1004. pxa2xx_rtc_read,
  1005. pxa2xx_rtc_read,
  1006. };
  1007. static CPUWriteMemoryFunc *pxa2xx_rtc_writefn[] = {
  1008. pxa2xx_rtc_write,
  1009. pxa2xx_rtc_write,
  1010. pxa2xx_rtc_write,
  1011. };
  1012. static void pxa2xx_rtc_init(struct pxa2xx_state_s *s)
  1013. {
  1014. struct tm tm;
  1015. int wom;
  1016. s->rttr = 0x7fff;
  1017. s->rtsr = 0;
  1018. qemu_get_timedate(&tm, 0);
  1019. wom = ((tm.tm_mday - 1) / 7) + 1;
  1020. s->last_rcnr = (uint32_t) mktimegm(&tm);
  1021. s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
  1022. (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
  1023. s->last_rycr = ((tm.tm_year + 1900) << 9) |
  1024. ((tm.tm_mon + 1) << 5) | tm.tm_mday;
  1025. s->last_swcr = (tm.tm_hour << 19) |
  1026. (tm.tm_min << 13) | (tm.tm_sec << 7);
  1027. s->last_rtcpicr = 0;
  1028. s->last_hz = s->last_sw = s->last_pi = qemu_get_clock(rt_clock);
  1029. s->rtc_hz = qemu_new_timer(rt_clock, pxa2xx_rtc_hz_tick, s);
  1030. s->rtc_rdal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal1_tick, s);
  1031. s->rtc_rdal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal2_tick, s);
  1032. s->rtc_swal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal1_tick, s);
  1033. s->rtc_swal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal2_tick, s);
  1034. s->rtc_pi = qemu_new_timer(rt_clock, pxa2xx_rtc_pi_tick, s);
  1035. }
  1036. static void pxa2xx_rtc_save(QEMUFile *f, void *opaque)
  1037. {
  1038. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  1039. pxa2xx_rtc_hzupdate(s);
  1040. pxa2xx_rtc_piupdate(s);
  1041. pxa2xx_rtc_swupdate(s);
  1042. qemu_put_be32s(f, &s->rttr);
  1043. qemu_put_be32s(f, &s->rtsr);
  1044. qemu_put_be32s(f, &s->rtar);
  1045. qemu_put_be32s(f, &s->rdar1);
  1046. qemu_put_be32s(f, &s->rdar2);
  1047. qemu_put_be32s(f, &s->ryar1);
  1048. qemu_put_be32s(f, &s->ryar2);
  1049. qemu_put_be32s(f, &s->swar1);
  1050. qemu_put_be32s(f, &s->swar2);
  1051. qemu_put_be32s(f, &s->piar);
  1052. qemu_put_be32s(f, &s->last_rcnr);
  1053. qemu_put_be32s(f, &s->last_rdcr);
  1054. qemu_put_be32s(f, &s->last_rycr);
  1055. qemu_put_be32s(f, &s->last_swcr);
  1056. qemu_put_be32s(f, &s->last_rtcpicr);
  1057. qemu_put_sbe64s(f, &s->last_hz);
  1058. qemu_put_sbe64s(f, &s->last_sw);
  1059. qemu_put_sbe64s(f, &s->last_pi);
  1060. }
  1061. static int pxa2xx_rtc_load(QEMUFile *f, void *opaque, int version_id)
  1062. {
  1063. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  1064. qemu_get_be32s(f, &s->rttr);
  1065. qemu_get_be32s(f, &s->rtsr);
  1066. qemu_get_be32s(f, &s->rtar);
  1067. qemu_get_be32s(f, &s->rdar1);
  1068. qemu_get_be32s(f, &s->rdar2);
  1069. qemu_get_be32s(f, &s->ryar1);
  1070. qemu_get_be32s(f, &s->ryar2);
  1071. qemu_get_be32s(f, &s->swar1);
  1072. qemu_get_be32s(f, &s->swar2);
  1073. qemu_get_be32s(f, &s->piar);
  1074. qemu_get_be32s(f, &s->last_rcnr);
  1075. qemu_get_be32s(f, &s->last_rdcr);
  1076. qemu_get_be32s(f, &s->last_rycr);
  1077. qemu_get_be32s(f, &s->last_swcr);
  1078. qemu_get_be32s(f, &s->last_rtcpicr);
  1079. qemu_get_sbe64s(f, &s->last_hz);
  1080. qemu_get_sbe64s(f, &s->last_sw);
  1081. qemu_get_sbe64s(f, &s->last_pi);
  1082. pxa2xx_rtc_alarm_update(s, s->rtsr);
  1083. return 0;
  1084. }
  1085. /* I2C Interface */
  1086. struct pxa2xx_i2c_s {
  1087. i2c_slave slave;
  1088. i2c_bus *bus;
  1089. qemu_irq irq;
  1090. target_phys_addr_t offset;
  1091. uint16_t control;
  1092. uint16_t status;
  1093. uint8_t ibmr;
  1094. uint8_t data;
  1095. };
  1096. #define IBMR 0x80 /* I2C Bus Monitor register */
  1097. #define IDBR 0x88 /* I2C Data Buffer register */
  1098. #define ICR 0x90 /* I2C Control register */
  1099. #define ISR 0x98 /* I2C Status register */
  1100. #define ISAR 0xa0 /* I2C Slave Address register */
  1101. static void pxa2xx_i2c_update(struct pxa2xx_i2c_s *s)
  1102. {
  1103. uint16_t level = 0;
  1104. level |= s->status & s->control & (1 << 10); /* BED */
  1105. level |= (s->status & (1 << 7)) && (s->control & (1 << 9)); /* IRF */
  1106. level |= (s->status & (1 << 6)) && (s->control & (1 << 8)); /* ITE */
  1107. level |= s->status & (1 << 9); /* SAD */
  1108. qemu_set_irq(s->irq, !!level);
  1109. }
  1110. /* These are only stubs now. */
  1111. static void pxa2xx_i2c_event(i2c_slave *i2c, enum i2c_event event)
  1112. {
  1113. struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
  1114. switch (event) {
  1115. case I2C_START_SEND:
  1116. s->status |= (1 << 9); /* set SAD */
  1117. s->status &= ~(1 << 0); /* clear RWM */
  1118. break;
  1119. case I2C_START_RECV:
  1120. s->status |= (1 << 9); /* set SAD */
  1121. s->status |= 1 << 0; /* set RWM */
  1122. break;
  1123. case I2C_FINISH:
  1124. s->status |= (1 << 4); /* set SSD */
  1125. break;
  1126. case I2C_NACK:
  1127. s->status |= 1 << 1; /* set ACKNAK */
  1128. break;
  1129. }
  1130. pxa2xx_i2c_update(s);
  1131. }
  1132. static int pxa2xx_i2c_rx(i2c_slave *i2c)
  1133. {
  1134. struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
  1135. if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
  1136. return 0;
  1137. if (s->status & (1 << 0)) { /* RWM */
  1138. s->status |= 1 << 6; /* set ITE */
  1139. }
  1140. pxa2xx_i2c_update(s);
  1141. return s->data;
  1142. }
  1143. static int pxa2xx_i2c_tx(i2c_slave *i2c, uint8_t data)
  1144. {
  1145. struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
  1146. if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
  1147. return 1;
  1148. if (!(s->status & (1 << 0))) { /* RWM */
  1149. s->status |= 1 << 7; /* set IRF */
  1150. s->data = data;
  1151. }
  1152. pxa2xx_i2c_update(s);
  1153. return 1;
  1154. }
  1155. static uint32_t pxa2xx_i2c_read(void *opaque, target_phys_addr_t addr)
  1156. {
  1157. struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
  1158. addr -= s->offset;
  1159. switch (addr) {
  1160. case ICR:
  1161. return s->control;
  1162. case ISR:
  1163. return s->status | (i2c_bus_busy(s->bus) << 2);
  1164. case ISAR:
  1165. return s->slave.address;
  1166. case IDBR:
  1167. return s->data;
  1168. case IBMR:
  1169. if (s->status & (1 << 2))
  1170. s->ibmr ^= 3; /* Fake SCL and SDA pin changes */
  1171. else
  1172. s->ibmr = 0;
  1173. return s->ibmr;
  1174. default:
  1175. printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
  1176. break;
  1177. }
  1178. return 0;
  1179. }
  1180. static void pxa2xx_i2c_write(void *opaque, target_phys_addr_t addr,
  1181. uint32_t value)
  1182. {
  1183. struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
  1184. int ack;
  1185. addr -= s->offset;
  1186. switch (addr) {
  1187. case ICR:
  1188. s->control = value & 0xfff7;
  1189. if ((value & (1 << 3)) && (value & (1 << 6))) { /* TB and IUE */
  1190. /* TODO: slave mode */
  1191. if (value & (1 << 0)) { /* START condition */
  1192. if (s->data & 1)
  1193. s->status |= 1 << 0; /* set RWM */
  1194. else
  1195. s->status &= ~(1 << 0); /* clear RWM */
  1196. ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
  1197. } else {
  1198. if (s->status & (1 << 0)) { /* RWM */
  1199. s->data = i2c_recv(s->bus);
  1200. if (value & (1 << 2)) /* ACKNAK */
  1201. i2c_nack(s->bus);
  1202. ack = 1;
  1203. } else
  1204. ack = !i2c_send(s->bus, s->data);
  1205. }
  1206. if (value & (1 << 1)) /* STOP condition */
  1207. i2c_end_transfer(s->bus);
  1208. if (ack) {
  1209. if (value & (1 << 0)) /* START condition */
  1210. s->status |= 1 << 6; /* set ITE */
  1211. else
  1212. if (s->status & (1 << 0)) /* RWM */
  1213. s->status |= 1 << 7; /* set IRF */
  1214. else
  1215. s->status |= 1 << 6; /* set ITE */
  1216. s->status &= ~(1 << 1); /* clear ACKNAK */
  1217. } else {
  1218. s->status |= 1 << 6; /* set ITE */
  1219. s->status |= 1 << 10; /* set BED */
  1220. s->status |= 1 << 1; /* set ACKNAK */
  1221. }
  1222. }
  1223. if (!(value & (1 << 3)) && (value & (1 << 6))) /* !TB and IUE */
  1224. if (value & (1 << 4)) /* MA */
  1225. i2c_end_transfer(s->bus);
  1226. pxa2xx_i2c_update(s);
  1227. break;
  1228. case ISR:
  1229. s->status &= ~(value & 0x07f0);
  1230. pxa2xx_i2c_update(s);
  1231. break;
  1232. case ISAR:
  1233. i2c_set_slave_address(&s->slave, value & 0x7f);
  1234. break;
  1235. case IDBR:
  1236. s->data = value & 0xff;
  1237. break;
  1238. default:
  1239. printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
  1240. }
  1241. }
  1242. static CPUReadMemoryFunc *pxa2xx_i2c_readfn[] = {
  1243. pxa2xx_i2c_read,
  1244. pxa2xx_i2c_read,
  1245. pxa2xx_i2c_read,
  1246. };
  1247. static CPUWriteMemoryFunc *pxa2xx_i2c_writefn[] = {
  1248. pxa2xx_i2c_write,
  1249. pxa2xx_i2c_write,
  1250. pxa2xx_i2c_write,
  1251. };
  1252. static void pxa2xx_i2c_save(QEMUFile *f, void *opaque)
  1253. {
  1254. struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
  1255. qemu_put_be16s(f, &s->control);
  1256. qemu_put_be16s(f, &s->status);
  1257. qemu_put_8s(f, &s->ibmr);
  1258. qemu_put_8s(f, &s->data);
  1259. i2c_slave_save(f, &s->slave);
  1260. }
  1261. static int pxa2xx_i2c_load(QEMUFile *f, void *opaque, int version_id)
  1262. {
  1263. struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
  1264. if (version_id != 1)
  1265. return -EINVAL;
  1266. qemu_get_be16s(f, &s->control);
  1267. qemu_get_be16s(f, &s->status);
  1268. qemu_get_8s(f, &s->ibmr);
  1269. qemu_get_8s(f, &s->data);
  1270. i2c_slave_load(f, &s->slave);
  1271. return 0;
  1272. }
  1273. struct pxa2xx_i2c_s *pxa2xx_i2c_init(target_phys_addr_t base,
  1274. qemu_irq irq, uint32_t region_size)
  1275. {
  1276. int iomemtype;
  1277. /* FIXME: Should the slave device really be on a separate bus? */
  1278. struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *)
  1279. i2c_slave_init(i2c_init_bus(), 0, sizeof(struct pxa2xx_i2c_s));
  1280. s->irq = irq;
  1281. s->slave.event = pxa2xx_i2c_event;
  1282. s->slave.recv = pxa2xx_i2c_rx;
  1283. s->slave.send = pxa2xx_i2c_tx;
  1284. s->bus = i2c_init_bus();
  1285. s->offset = base - (base & (~region_size) & TARGET_PAGE_MASK);
  1286. iomemtype = cpu_register_io_memory(0, pxa2xx_i2c_readfn,
  1287. pxa2xx_i2c_writefn, s);
  1288. cpu_register_physical_memory(base & ~region_size,
  1289. region_size + 1, iomemtype);
  1290. register_savevm("pxa2xx_i2c", base, 1,
  1291. pxa2xx_i2c_save, pxa2xx_i2c_load, s);
  1292. return s;
  1293. }
  1294. i2c_bus *pxa2xx_i2c_bus(struct pxa2xx_i2c_s *s)
  1295. {
  1296. return s->bus;
  1297. }
  1298. /* PXA Inter-IC Sound Controller */
  1299. static void pxa2xx_i2s_reset(struct pxa2xx_i2s_s *i2s)
  1300. {
  1301. i2s->rx_len = 0;
  1302. i2s->tx_len = 0;
  1303. i2s->fifo_len = 0;
  1304. i2s->clk = 0x1a;
  1305. i2s->control[0] = 0x00;
  1306. i2s->control[1] = 0x00;
  1307. i2s->status = 0x00;
  1308. i2s->mask = 0x00;
  1309. }
  1310. #define SACR_TFTH(val) ((val >> 8) & 0xf)
  1311. #define SACR_RFTH(val) ((val >> 12) & 0xf)
  1312. #define SACR_DREC(val) (val & (1 << 3))
  1313. #define SACR_DPRL(val) (val & (1 << 4))
  1314. static inline void pxa2xx_i2s_update(struct pxa2xx_i2s_s *i2s)
  1315. {
  1316. int rfs, tfs;
  1317. rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
  1318. !SACR_DREC(i2s->control[1]);
  1319. tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
  1320. i2s->enable && !SACR_DPRL(i2s->control[1]);
  1321. pxa2xx_dma_request(i2s->dma, PXA2XX_RX_RQ_I2S, rfs);
  1322. pxa2xx_dma_request(i2s->dma, PXA2XX_TX_RQ_I2S, tfs);
  1323. i2s->status &= 0xe0;
  1324. if (i2s->fifo_len < 16 || !i2s->enable)
  1325. i2s->status |= 1 << 0; /* TNF */
  1326. if (i2s->rx_len)
  1327. i2s->status |= 1 << 1; /* RNE */
  1328. if (i2s->enable)
  1329. i2s->status |= 1 << 2; /* BSY */
  1330. if (tfs)
  1331. i2s->status |= 1 << 3; /* TFS */
  1332. if (rfs)
  1333. i2s->status |= 1 << 4; /* RFS */
  1334. if (!(i2s->tx_len && i2s->enable))
  1335. i2s->status |= i2s->fifo_len << 8; /* TFL */
  1336. i2s->status |= MAX(i2s->rx_len, 0xf) << 12; /* RFL */
  1337. qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
  1338. }
  1339. #define SACR0 0x00 /* Serial Audio Global Control register */
  1340. #define SACR1 0x04 /* Serial Audio I2S/MSB-Justified Control register */
  1341. #define SASR0 0x0c /* Serial Audio Interface and FIFO Status register */
  1342. #define SAIMR 0x14 /* Serial Audio Interrupt Mask register */
  1343. #define SAICR 0x18 /* Serial Audio Interrupt Clear register */
  1344. #define SADIV 0x60 /* Serial Audio Clock Divider register */
  1345. #define SADR 0x80 /* Serial Audio Data register */
  1346. static uint32_t pxa2xx_i2s_read(void *opaque, target_phys_addr_t addr)
  1347. {
  1348. struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
  1349. switch (addr) {
  1350. case SACR0:
  1351. return s->control[0];
  1352. case SACR1:
  1353. return s->control[1];
  1354. case SASR0:
  1355. return s->status;
  1356. case SAIMR:
  1357. return s->mask;
  1358. case SAICR:
  1359. return 0;
  1360. case SADIV:
  1361. return s->clk;
  1362. case SADR:
  1363. if (s->rx_len > 0) {
  1364. s->rx_len --;
  1365. pxa2xx_i2s_update(s);
  1366. return s->codec_in(s->opaque);
  1367. }
  1368. return 0;
  1369. default:
  1370. printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
  1371. break;
  1372. }
  1373. return 0;
  1374. }
  1375. static void pxa2xx_i2s_write(void *opaque, target_phys_addr_t addr,
  1376. uint32_t value)
  1377. {
  1378. struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
  1379. uint32_t *sample;
  1380. switch (addr) {
  1381. case SACR0:
  1382. if (value & (1 << 3)) /* RST */
  1383. pxa2xx_i2s_reset(s);
  1384. s->control[0] = value & 0xff3d;
  1385. if (!s->enable && (value & 1) && s->tx_len) { /* ENB */
  1386. for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
  1387. s->codec_out(s->opaque, *sample);
  1388. s->status &= ~(1 << 7); /* I2SOFF */
  1389. }
  1390. if (value & (1 << 4)) /* EFWR */
  1391. printf("%s: Attempt to use special function\n", __FUNCTION__);
  1392. s->enable = ((value ^ 4) & 5) == 5; /* ENB && !RST*/
  1393. pxa2xx_i2s_update(s);
  1394. break;
  1395. case SACR1:
  1396. s->control[1] = value & 0x0039;
  1397. if (value & (1 << 5)) /* ENLBF */
  1398. printf("%s: Attempt to use loopback function\n", __FUNCTION__);
  1399. if (value & (1 << 4)) /* DPRL */
  1400. s->fifo_len = 0;
  1401. pxa2xx_i2s_update(s);
  1402. break;
  1403. case SAIMR:
  1404. s->mask = value & 0x0078;
  1405. pxa2xx_i2s_update(s);
  1406. break;
  1407. case SAICR:
  1408. s->status &= ~(value & (3 << 5));
  1409. pxa2xx_i2s_update(s);
  1410. break;
  1411. case SADIV:
  1412. s->clk = value & 0x007f;
  1413. break;
  1414. case SADR:
  1415. if (s->tx_len && s->enable) {
  1416. s->tx_len --;
  1417. pxa2xx_i2s_update(s);
  1418. s->codec_out(s->opaque, value);
  1419. } else if (s->fifo_len < 16) {
  1420. s->fifo[s->fifo_len ++] = value;
  1421. pxa2xx_i2s_update(s);
  1422. }
  1423. break;
  1424. default:
  1425. printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
  1426. }
  1427. }
  1428. static CPUReadMemoryFunc *pxa2xx_i2s_readfn[] = {
  1429. pxa2xx_i2s_read,
  1430. pxa2xx_i2s_read,
  1431. pxa2xx_i2s_read,
  1432. };
  1433. static CPUWriteMemoryFunc *pxa2xx_i2s_writefn[] = {
  1434. pxa2xx_i2s_write,
  1435. pxa2xx_i2s_write,
  1436. pxa2xx_i2s_write,
  1437. };
  1438. static void pxa2xx_i2s_save(QEMUFile *f, void *opaque)
  1439. {
  1440. struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
  1441. qemu_put_be32s(f, &s->control[0]);
  1442. qemu_put_be32s(f, &s->control[1]);
  1443. qemu_put_be32s(f, &s->status);
  1444. qemu_put_be32s(f, &s->mask);
  1445. qemu_put_be32s(f, &s->clk);
  1446. qemu_put_be32(f, s->enable);
  1447. qemu_put_be32(f, s->rx_len);
  1448. qemu_put_be32(f, s->tx_len);
  1449. qemu_put_be32(f, s->fifo_len);
  1450. }
  1451. static int pxa2xx_i2s_load(QEMUFile *f, void *opaque, int version_id)
  1452. {
  1453. struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
  1454. qemu_get_be32s(f, &s->control[0]);
  1455. qemu_get_be32s(f, &s->control[1]);
  1456. qemu_get_be32s(f, &s->status);
  1457. qemu_get_be32s(f, &s->mask);
  1458. qemu_get_be32s(f, &s->clk);
  1459. s->enable = qemu_get_be32(f);
  1460. s->rx_len = qemu_get_be32(f);
  1461. s->tx_len = qemu_get_be32(f);
  1462. s->fifo_len = qemu_get_be32(f);
  1463. return 0;
  1464. }
  1465. static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
  1466. {
  1467. struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
  1468. uint32_t *sample;
  1469. /* Signal FIFO errors */
  1470. if (s->enable && s->tx_len)
  1471. s->status |= 1 << 5; /* TUR */
  1472. if (s->enable && s->rx_len)
  1473. s->status |= 1 << 6; /* ROR */
  1474. /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
  1475. * handle the cases where it makes a difference. */
  1476. s->tx_len = tx - s->fifo_len;
  1477. s->rx_len = rx;
  1478. /* Note that is s->codec_out wasn't set, we wouldn't get called. */
  1479. if (s->enable)
  1480. for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
  1481. s->codec_out(s->opaque, *sample);
  1482. pxa2xx_i2s_update(s);
  1483. }
  1484. static struct pxa2xx_i2s_s *pxa2xx_i2s_init(target_phys_addr_t base,
  1485. qemu_irq irq, struct pxa2xx_dma_state_s *dma)
  1486. {
  1487. int iomemtype;
  1488. struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *)
  1489. qemu_mallocz(sizeof(struct pxa2xx_i2s_s));
  1490. s->irq = irq;
  1491. s->dma = dma;
  1492. s->data_req = pxa2xx_i2s_data_req;
  1493. pxa2xx_i2s_reset(s);
  1494. iomemtype = cpu_register_io_memory(0, pxa2xx_i2s_readfn,
  1495. pxa2xx_i2s_writefn, s);
  1496. cpu_register_physical_memory(base, 0x100000, iomemtype);
  1497. register_savevm("pxa2xx_i2s", base, 0,
  1498. pxa2xx_i2s_save, pxa2xx_i2s_load, s);
  1499. return s;
  1500. }
  1501. /* PXA Fast Infra-red Communications Port */
  1502. struct pxa2xx_fir_s {
  1503. qemu_irq irq;
  1504. struct pxa2xx_dma_state_s *dma;
  1505. int enable;
  1506. CharDriverState *chr;
  1507. uint8_t control[3];
  1508. uint8_t status[2];
  1509. int rx_len;
  1510. int rx_start;
  1511. uint8_t rx_fifo[64];
  1512. };
  1513. static void pxa2xx_fir_reset(struct pxa2xx_fir_s *s)
  1514. {
  1515. s->control[0] = 0x00;
  1516. s->control[1] = 0x00;
  1517. s->control[2] = 0x00;
  1518. s->status[0] = 0x00;
  1519. s->status[1] = 0x00;
  1520. s->enable = 0;
  1521. }
  1522. static inline void pxa2xx_fir_update(struct pxa2xx_fir_s *s)
  1523. {
  1524. static const int tresh[4] = { 8, 16, 32, 0 };
  1525. int intr = 0;
  1526. if ((s->control[0] & (1 << 4)) && /* RXE */
  1527. s->rx_len >= tresh[s->control[2] & 3]) /* TRIG */
  1528. s->status[0] |= 1 << 4; /* RFS */
  1529. else
  1530. s->status[0] &= ~(1 << 4); /* RFS */
  1531. if (s->control[0] & (1 << 3)) /* TXE */
  1532. s->status[0] |= 1 << 3; /* TFS */
  1533. else
  1534. s->status[0] &= ~(1 << 3); /* TFS */
  1535. if (s->rx_len)
  1536. s->status[1] |= 1 << 2; /* RNE */
  1537. else
  1538. s->status[1] &= ~(1 << 2); /* RNE */
  1539. if (s->control[0] & (1 << 4)) /* RXE */
  1540. s->status[1] |= 1 << 0; /* RSY */
  1541. else
  1542. s->status[1] &= ~(1 << 0); /* RSY */
  1543. intr |= (s->control[0] & (1 << 5)) && /* RIE */
  1544. (s->status[0] & (1 << 4)); /* RFS */
  1545. intr |= (s->control[0] & (1 << 6)) && /* TIE */
  1546. (s->status[0] & (1 << 3)); /* TFS */
  1547. intr |= (s->control[2] & (1 << 4)) && /* TRAIL */
  1548. (s->status[0] & (1 << 6)); /* EOC */
  1549. intr |= (s->control[0] & (1 << 2)) && /* TUS */
  1550. (s->status[0] & (1 << 1)); /* TUR */
  1551. intr |= s->status[0] & 0x25; /* FRE, RAB, EIF */
  1552. pxa2xx_dma_request(s->dma, PXA2XX_RX_RQ_ICP, (s->status[0] >> 4) & 1);
  1553. pxa2xx_dma_request(s->dma, PXA2XX_TX_RQ_ICP, (s->status[0] >> 3) & 1);
  1554. qemu_set_irq(s->irq, intr && s->enable);
  1555. }
  1556. #define ICCR0 0x00 /* FICP Control register 0 */
  1557. #define ICCR1 0x04 /* FICP Control register 1 */
  1558. #define ICCR2 0x08 /* FICP Control register 2 */
  1559. #define ICDR 0x0c /* FICP Data register */
  1560. #define ICSR0 0x14 /* FICP Status register 0 */
  1561. #define ICSR1 0x18 /* FICP Status register 1 */
  1562. #define ICFOR 0x1c /* FICP FIFO Occupancy Status register */
  1563. static uint32_t pxa2xx_fir_read(void *opaque, target_phys_addr_t addr)
  1564. {
  1565. struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
  1566. uint8_t ret;
  1567. switch (addr) {
  1568. case ICCR0:
  1569. return s->control[0];
  1570. case ICCR1:
  1571. return s->control[1];
  1572. case ICCR2:
  1573. return s->control[2];
  1574. case ICDR:
  1575. s->status[0] &= ~0x01;
  1576. s->status[1] &= ~0x72;
  1577. if (s->rx_len) {
  1578. s->rx_len --;
  1579. ret = s->rx_fifo[s->rx_start ++];
  1580. s->rx_start &= 63;
  1581. pxa2xx_fir_update(s);
  1582. return ret;
  1583. }
  1584. printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
  1585. break;
  1586. case ICSR0:
  1587. return s->status[0];
  1588. case ICSR1:
  1589. return s->status[1] | (1 << 3); /* TNF */
  1590. case ICFOR:
  1591. return s->rx_len;
  1592. default:
  1593. printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
  1594. break;
  1595. }
  1596. return 0;
  1597. }
  1598. static void pxa2xx_fir_write(void *opaque, target_phys_addr_t addr,
  1599. uint32_t value)
  1600. {
  1601. struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
  1602. uint8_t ch;
  1603. switch (addr) {
  1604. case ICCR0:
  1605. s->control[0] = value;
  1606. if (!(value & (1 << 4))) /* RXE */
  1607. s->rx_len = s->rx_start = 0;
  1608. if (!(value & (1 << 3))) /* TXE */
  1609. /* Nop */;
  1610. s->enable = value & 1; /* ITR */
  1611. if (!s->enable)
  1612. s->status[0] = 0;
  1613. pxa2xx_fir_update(s);
  1614. break;
  1615. case ICCR1:
  1616. s->control[1] = value;
  1617. break;
  1618. case ICCR2:
  1619. s->control[2] = value & 0x3f;
  1620. pxa2xx_fir_update(s);
  1621. break;
  1622. case ICDR:
  1623. if (s->control[2] & (1 << 2)) /* TXP */
  1624. ch = value;
  1625. else
  1626. ch = ~value;
  1627. if (s->chr && s->enable && (s->control[0] & (1 << 3))) /* TXE */
  1628. qemu_chr_write(s->chr, &ch, 1);
  1629. break;
  1630. case ICSR0:
  1631. s->status[0] &= ~(value & 0x66);
  1632. pxa2xx_fir_update(s);
  1633. break;
  1634. case ICFOR:
  1635. break;
  1636. default:
  1637. printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
  1638. }
  1639. }
  1640. static CPUReadMemoryFunc *pxa2xx_fir_readfn[] = {
  1641. pxa2xx_fir_read,
  1642. pxa2xx_fir_read,
  1643. pxa2xx_fir_read,
  1644. };
  1645. static CPUWriteMemoryFunc *pxa2xx_fir_writefn[] = {
  1646. pxa2xx_fir_write,
  1647. pxa2xx_fir_write,
  1648. pxa2xx_fir_write,
  1649. };
  1650. static int pxa2xx_fir_is_empty(void *opaque)
  1651. {
  1652. struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
  1653. return (s->rx_len < 64);
  1654. }
  1655. static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
  1656. {
  1657. struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
  1658. if (!(s->control[0] & (1 << 4))) /* RXE */
  1659. return;
  1660. while (size --) {
  1661. s->status[1] |= 1 << 4; /* EOF */
  1662. if (s->rx_len >= 64) {
  1663. s->status[1] |= 1 << 6; /* ROR */
  1664. break;
  1665. }
  1666. if (s->control[2] & (1 << 3)) /* RXP */
  1667. s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
  1668. else
  1669. s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
  1670. }
  1671. pxa2xx_fir_update(s);
  1672. }
  1673. static void pxa2xx_fir_event(void *opaque, int event)
  1674. {
  1675. }
  1676. static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
  1677. {
  1678. struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
  1679. int i;
  1680. qemu_put_be32(f, s->enable);
  1681. qemu_put_8s(f, &s->control[0]);
  1682. qemu_put_8s(f, &s->control[1]);
  1683. qemu_put_8s(f, &s->control[2]);
  1684. qemu_put_8s(f, &s->status[0]);
  1685. qemu_put_8s(f, &s->status[1]);
  1686. qemu_put_byte(f, s->rx_len);
  1687. for (i = 0; i < s->rx_len; i ++)
  1688. qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
  1689. }
  1690. static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
  1691. {
  1692. struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
  1693. int i;
  1694. s->enable = qemu_get_be32(f);
  1695. qemu_get_8s(f, &s->control[0]);
  1696. qemu_get_8s(f, &s->control[1]);
  1697. qemu_get_8s(f, &s->control[2]);
  1698. qemu_get_8s(f, &s->status[0]);
  1699. qemu_get_8s(f, &s->status[1]);
  1700. s->rx_len = qemu_get_byte(f);
  1701. s->rx_start = 0;
  1702. for (i = 0; i < s->rx_len; i ++)
  1703. s->rx_fifo[i] = qemu_get_byte(f);
  1704. return 0;
  1705. }
  1706. static struct pxa2xx_fir_s *pxa2xx_fir_init(target_phys_addr_t base,
  1707. qemu_irq irq, struct pxa2xx_dma_state_s *dma,
  1708. CharDriverState *chr)
  1709. {
  1710. int iomemtype;
  1711. struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *)
  1712. qemu_mallocz(sizeof(struct pxa2xx_fir_s));
  1713. s->irq = irq;
  1714. s->dma = dma;
  1715. s->chr = chr;
  1716. pxa2xx_fir_reset(s);
  1717. iomemtype = cpu_register_io_memory(0, pxa2xx_fir_readfn,
  1718. pxa2xx_fir_writefn, s);
  1719. cpu_register_physical_memory(base, 0x1000, iomemtype);
  1720. if (chr)
  1721. qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
  1722. pxa2xx_fir_rx, pxa2xx_fir_event, s);
  1723. register_savevm("pxa2xx_fir", 0, 0, pxa2xx_fir_save, pxa2xx_fir_load, s);
  1724. return s;
  1725. }
  1726. static void pxa2xx_reset(void *opaque, int line, int level)
  1727. {
  1728. struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
  1729. if (level && (s->pm_regs[PCFR >> 2] & 0x10)) { /* GPR_EN */
  1730. cpu_reset(s->env);
  1731. /* TODO: reset peripherals */
  1732. }
  1733. }
  1734. /* Initialise a PXA270 integrated chip (ARM based core). */
  1735. struct pxa2xx_state_s *pxa270_init(unsigned int sdram_size, const char *revision)
  1736. {
  1737. struct pxa2xx_state_s *s;
  1738. struct pxa2xx_ssp_s *ssp;
  1739. int iomemtype, i;
  1740. int index;
  1741. s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s));
  1742. if (revision && strncmp(revision, "pxa27", 5)) {
  1743. fprintf(stderr, "Machine requires a PXA27x processor.\n");
  1744. exit(1);
  1745. }
  1746. if (!revision)
  1747. revision = "pxa270";
  1748. s->env = cpu_init(revision);
  1749. if (!s->env) {
  1750. fprintf(stderr, "Unable to find CPU definition\n");
  1751. exit(1);
  1752. }
  1753. s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
  1754. /* SDRAM & Internal Memory Storage */
  1755. cpu_register_physical_memory(PXA2XX_SDRAM_BASE,
  1756. sdram_size, qemu_ram_alloc(sdram_size) | IO_MEM_RAM);
  1757. cpu_register_physical_memory(PXA2XX_INTERNAL_BASE,
  1758. 0x40000, qemu_ram_alloc(0x40000) | IO_MEM_RAM);
  1759. s->pic = pxa2xx_pic_init(0x40d00000, s->env);
  1760. s->dma = pxa27x_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
  1761. pxa27x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0],
  1762. s->pic[PXA27X_PIC_OST_4_11]);
  1763. s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121);
  1764. index = drive_get_index(IF_SD, 0, 0);
  1765. if (index == -1) {
  1766. fprintf(stderr, "qemu: missing SecureDigital device\n");
  1767. exit(1);
  1768. }
  1769. s->mmc = pxa2xx_mmci_init(0x41100000, drives_table[index].bdrv,
  1770. s->pic[PXA2XX_PIC_MMC], s->dma);
  1771. for (i = 0; pxa270_serial[i].io_base; i ++)
  1772. if (serial_hds[i])
  1773. serial_mm_init(pxa270_serial[i].io_base, 2,
  1774. s->pic[pxa270_serial[i].irqn], 14857000/16,
  1775. serial_hds[i], 1);
  1776. else
  1777. break;
  1778. if (serial_hds[i])
  1779. s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
  1780. s->dma, serial_hds[i]);
  1781. s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD]);
  1782. s->cm_base = 0x41300000;
  1783. s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */
  1784. s->clkcfg = 0x00000009; /* Turbo mode active */
  1785. iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn,
  1786. pxa2xx_cm_writefn, s);
  1787. cpu_register_physical_memory(s->cm_base, 0x1000, iomemtype);
  1788. register_savevm("pxa2xx_cm", 0, 0, pxa2xx_cm_save, pxa2xx_cm_load, s);
  1789. cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
  1790. s->mm_base = 0x48000000;
  1791. s->mm_regs[MDMRS >> 2] = 0x00020002;
  1792. s->mm_regs[MDREFR >> 2] = 0x03ca4000;
  1793. s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
  1794. iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn,
  1795. pxa2xx_mm_writefn, s);
  1796. cpu_register_physical_memory(s->mm_base, 0x1000, iomemtype);
  1797. register_savevm("pxa2xx_mm", 0, 0, pxa2xx_mm_save, pxa2xx_mm_load, s);
  1798. s->pm_base = 0x40f00000;
  1799. iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn,
  1800. pxa2xx_pm_writefn, s);
  1801. cpu_register_physical_memory(s->pm_base, 0x100, iomemtype);
  1802. register_savevm("pxa2xx_pm", 0, 0, pxa2xx_pm_save, pxa2xx_pm_load, s);
  1803. for (i = 0; pxa27x_ssp[i].io_base; i ++);
  1804. s->ssp = (struct pxa2xx_ssp_s **)
  1805. qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i);
  1806. ssp = (struct pxa2xx_ssp_s *)
  1807. qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i);
  1808. for (i = 0; pxa27x_ssp[i].io_base; i ++) {
  1809. target_phys_addr_t ssp_base;
  1810. s->ssp[i] = &ssp[i];
  1811. ssp_base = pxa27x_ssp[i].io_base;
  1812. ssp[i].irq = s->pic[pxa27x_ssp[i].irqn];
  1813. iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn,
  1814. pxa2xx_ssp_writefn, &ssp[i]);
  1815. cpu_register_physical_memory(ssp_base, 0x1000, iomemtype);
  1816. register_savevm("pxa2xx_ssp", i, 0,
  1817. pxa2xx_ssp_save, pxa2xx_ssp_load, s);
  1818. }
  1819. if (usb_enabled) {
  1820. usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]);
  1821. }
  1822. s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
  1823. s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
  1824. s->rtc_base = 0x40900000;
  1825. iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn,
  1826. pxa2xx_rtc_writefn, s);
  1827. cpu_register_physical_memory(s->rtc_base, 0x1000, iomemtype);
  1828. pxa2xx_rtc_init(s);
  1829. register_savevm("pxa2xx_rtc", 0, 0, pxa2xx_rtc_save, pxa2xx_rtc_load, s);
  1830. s->i2c[0] = pxa2xx_i2c_init(0x40301600, s->pic[PXA2XX_PIC_I2C], 0xffff);
  1831. s->i2c[1] = pxa2xx_i2c_init(0x40f00100, s->pic[PXA2XX_PIC_PWRI2C], 0xff);
  1832. s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
  1833. s->kp = pxa27x_keypad_init(0x41500000, s->pic[PXA2XX_PIC_KEYPAD]);
  1834. /* GPIO1 resets the processor */
  1835. /* The handler can be overridden by board-specific code */
  1836. pxa2xx_gpio_out_set(s->gpio, 1, s->reset);
  1837. return s;
  1838. }
  1839. /* Initialise a PXA255 integrated chip (ARM based core). */
  1840. struct pxa2xx_state_s *pxa255_init(unsigned int sdram_size)
  1841. {
  1842. struct pxa2xx_state_s *s;
  1843. struct pxa2xx_ssp_s *ssp;
  1844. int iomemtype, i;
  1845. int index;
  1846. s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s));
  1847. s->env = cpu_init("pxa255");
  1848. if (!s->env) {
  1849. fprintf(stderr, "Unable to find CPU definition\n");
  1850. exit(1);
  1851. }
  1852. s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
  1853. /* SDRAM & Internal Memory Storage */
  1854. cpu_register_physical_memory(PXA2XX_SDRAM_BASE, sdram_size,
  1855. qemu_ram_alloc(sdram_size) | IO_MEM_RAM);
  1856. cpu_register_physical_memory(PXA2XX_INTERNAL_BASE, PXA2XX_INTERNAL_SIZE,
  1857. qemu_ram_alloc(PXA2XX_INTERNAL_SIZE) | IO_MEM_RAM);
  1858. s->pic = pxa2xx_pic_init(0x40d00000, s->env);
  1859. s->dma = pxa255_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
  1860. pxa25x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0]);
  1861. s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 85);
  1862. index = drive_get_index(IF_SD, 0, 0);
  1863. if (index == -1) {
  1864. fprintf(stderr, "qemu: missing SecureDigital device\n");
  1865. exit(1);
  1866. }
  1867. s->mmc = pxa2xx_mmci_init(0x41100000, drives_table[index].bdrv,
  1868. s->pic[PXA2XX_PIC_MMC], s->dma);
  1869. for (i = 0; pxa255_serial[i].io_base; i ++)
  1870. if (serial_hds[i])
  1871. serial_mm_init(pxa255_serial[i].io_base, 2,
  1872. s->pic[pxa255_serial[i].irqn], 14745600/16,
  1873. serial_hds[i], 1);
  1874. else
  1875. break;
  1876. if (serial_hds[i])
  1877. s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
  1878. s->dma, serial_hds[i]);
  1879. s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD]);
  1880. s->cm_base = 0x41300000;
  1881. s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */
  1882. s->clkcfg = 0x00000009; /* Turbo mode active */
  1883. iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn,
  1884. pxa2xx_cm_writefn, s);
  1885. cpu_register_physical_memory(s->cm_base, 0x1000, iomemtype);
  1886. register_savevm("pxa2xx_cm", 0, 0, pxa2xx_cm_save, pxa2xx_cm_load, s);
  1887. cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
  1888. s->mm_base = 0x48000000;
  1889. s->mm_regs[MDMRS >> 2] = 0x00020002;
  1890. s->mm_regs[MDREFR >> 2] = 0x03ca4000;
  1891. s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
  1892. iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn,
  1893. pxa2xx_mm_writefn, s);
  1894. cpu_register_physical_memory(s->mm_base, 0x1000, iomemtype);
  1895. register_savevm("pxa2xx_mm", 0, 0, pxa2xx_mm_save, pxa2xx_mm_load, s);
  1896. s->pm_base = 0x40f00000;
  1897. iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn,
  1898. pxa2xx_pm_writefn, s);
  1899. cpu_register_physical_memory(s->pm_base, 0x100, iomemtype);
  1900. register_savevm("pxa2xx_pm", 0, 0, pxa2xx_pm_save, pxa2xx_pm_load, s);
  1901. for (i = 0; pxa255_ssp[i].io_base; i ++);
  1902. s->ssp = (struct pxa2xx_ssp_s **)
  1903. qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i);
  1904. ssp = (struct pxa2xx_ssp_s *)
  1905. qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i);
  1906. for (i = 0; pxa255_ssp[i].io_base; i ++) {
  1907. target_phys_addr_t ssp_base;
  1908. s->ssp[i] = &ssp[i];
  1909. ssp_base = pxa255_ssp[i].io_base;
  1910. ssp[i].irq = s->pic[pxa255_ssp[i].irqn];
  1911. iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn,
  1912. pxa2xx_ssp_writefn, &ssp[i]);
  1913. cpu_register_physical_memory(ssp_base, 0x1000, iomemtype);
  1914. register_savevm("pxa2xx_ssp", i, 0,
  1915. pxa2xx_ssp_save, pxa2xx_ssp_load, s);
  1916. }
  1917. if (usb_enabled) {
  1918. usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]);
  1919. }
  1920. s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
  1921. s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
  1922. s->rtc_base = 0x40900000;
  1923. iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn,
  1924. pxa2xx_rtc_writefn, s);
  1925. cpu_register_physical_memory(s->rtc_base, 0x1000, iomemtype);
  1926. pxa2xx_rtc_init(s);
  1927. register_savevm("pxa2xx_rtc", 0, 0, pxa2xx_rtc_save, pxa2xx_rtc_load, s);
  1928. s->i2c[0] = pxa2xx_i2c_init(0x40301600, s->pic[PXA2XX_PIC_I2C], 0xffff);
  1929. s->i2c[1] = pxa2xx_i2c_init(0x40f00100, s->pic[PXA2XX_PIC_PWRI2C], 0xff);
  1930. s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
  1931. /* GPIO1 resets the processor */
  1932. /* The handler can be overridden by board-specific code */
  1933. pxa2xx_gpio_out_set(s->gpio, 1, s->reset);
  1934. return s;
  1935. }