2
0

pl190.c 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246
  1. /*
  2. * Arm PrimeCell PL190 Vector Interrupt Controller
  3. *
  4. * Copyright (c) 2006 CodeSourcery.
  5. * Written by Paul Brook
  6. *
  7. * This code is licenced under the GPL.
  8. */
  9. #include "hw.h"
  10. #include "primecell.h"
  11. #include "arm-misc.h"
  12. /* The number of virtual priority levels. 16 user vectors plus the
  13. unvectored IRQ. Chained interrupts would require an additional level
  14. if implemented. */
  15. #define PL190_NUM_PRIO 17
  16. typedef struct {
  17. uint32_t level;
  18. uint32_t soft_level;
  19. uint32_t irq_enable;
  20. uint32_t fiq_select;
  21. uint32_t default_addr;
  22. uint8_t vect_control[16];
  23. uint32_t vect_addr[PL190_NUM_PRIO];
  24. /* Mask containing interrupts with higher priority than this one. */
  25. uint32_t prio_mask[PL190_NUM_PRIO + 1];
  26. int protected;
  27. /* Current priority level. */
  28. int priority;
  29. int prev_prio[PL190_NUM_PRIO];
  30. qemu_irq irq;
  31. qemu_irq fiq;
  32. } pl190_state;
  33. static const unsigned char pl190_id[] =
  34. { 0x90, 0x11, 0x04, 0x00, 0x0D, 0xf0, 0x05, 0xb1 };
  35. static inline uint32_t pl190_irq_level(pl190_state *s)
  36. {
  37. return (s->level | s->soft_level) & s->irq_enable & ~s->fiq_select;
  38. }
  39. /* Update interrupts. */
  40. static void pl190_update(pl190_state *s)
  41. {
  42. uint32_t level = pl190_irq_level(s);
  43. int set;
  44. set = (level & s->prio_mask[s->priority]) != 0;
  45. qemu_set_irq(s->irq, set);
  46. set = ((s->level | s->soft_level) & s->fiq_select) != 0;
  47. qemu_set_irq(s->fiq, set);
  48. }
  49. static void pl190_set_irq(void *opaque, int irq, int level)
  50. {
  51. pl190_state *s = (pl190_state *)opaque;
  52. if (level)
  53. s->level |= 1u << irq;
  54. else
  55. s->level &= ~(1u << irq);
  56. pl190_update(s);
  57. }
  58. static void pl190_update_vectors(pl190_state *s)
  59. {
  60. uint32_t mask;
  61. int i;
  62. int n;
  63. mask = 0;
  64. for (i = 0; i < 16; i++)
  65. {
  66. s->prio_mask[i] = mask;
  67. if (s->vect_control[i] & 0x20)
  68. {
  69. n = s->vect_control[i] & 0x1f;
  70. mask |= 1 << n;
  71. }
  72. }
  73. s->prio_mask[16] = mask;
  74. pl190_update(s);
  75. }
  76. static uint32_t pl190_read(void *opaque, target_phys_addr_t offset)
  77. {
  78. pl190_state *s = (pl190_state *)opaque;
  79. int i;
  80. if (offset >= 0xfe0 && offset < 0x1000) {
  81. return pl190_id[(offset - 0xfe0) >> 2];
  82. }
  83. if (offset >= 0x100 && offset < 0x140) {
  84. return s->vect_addr[(offset - 0x100) >> 2];
  85. }
  86. if (offset >= 0x200 && offset < 0x240) {
  87. return s->vect_control[(offset - 0x200) >> 2];
  88. }
  89. switch (offset >> 2) {
  90. case 0: /* IRQSTATUS */
  91. return pl190_irq_level(s);
  92. case 1: /* FIQSATUS */
  93. return (s->level | s->soft_level) & s->fiq_select;
  94. case 2: /* RAWINTR */
  95. return s->level | s->soft_level;
  96. case 3: /* INTSELECT */
  97. return s->fiq_select;
  98. case 4: /* INTENABLE */
  99. return s->irq_enable;
  100. case 6: /* SOFTINT */
  101. return s->soft_level;
  102. case 8: /* PROTECTION */
  103. return s->protected;
  104. case 12: /* VECTADDR */
  105. /* Read vector address at the start of an ISR. Increases the
  106. current priority level to that of the current interrupt. */
  107. for (i = 0; i < s->priority; i++)
  108. {
  109. if ((s->level | s->soft_level) & s->prio_mask[i])
  110. break;
  111. }
  112. /* Reading this value with no pending interrupts is undefined.
  113. We return the default address. */
  114. if (i == PL190_NUM_PRIO)
  115. return s->vect_addr[16];
  116. if (i < s->priority)
  117. {
  118. s->prev_prio[i] = s->priority;
  119. s->priority = i;
  120. pl190_update(s);
  121. }
  122. return s->vect_addr[s->priority];
  123. case 13: /* DEFVECTADDR */
  124. return s->vect_addr[16];
  125. default:
  126. cpu_abort (cpu_single_env, "pl190_read: Bad offset %x\n", (int)offset);
  127. return 0;
  128. }
  129. }
  130. static void pl190_write(void *opaque, target_phys_addr_t offset, uint32_t val)
  131. {
  132. pl190_state *s = (pl190_state *)opaque;
  133. if (offset >= 0x100 && offset < 0x140) {
  134. s->vect_addr[(offset - 0x100) >> 2] = val;
  135. pl190_update_vectors(s);
  136. return;
  137. }
  138. if (offset >= 0x200 && offset < 0x240) {
  139. s->vect_control[(offset - 0x200) >> 2] = val;
  140. pl190_update_vectors(s);
  141. return;
  142. }
  143. switch (offset >> 2) {
  144. case 0: /* SELECT */
  145. /* This is a readonly register, but linux tries to write to it
  146. anyway. Ignore the write. */
  147. break;
  148. case 3: /* INTSELECT */
  149. s->fiq_select = val;
  150. break;
  151. case 4: /* INTENABLE */
  152. s->irq_enable |= val;
  153. break;
  154. case 5: /* INTENCLEAR */
  155. s->irq_enable &= ~val;
  156. break;
  157. case 6: /* SOFTINT */
  158. s->soft_level |= val;
  159. break;
  160. case 7: /* SOFTINTCLEAR */
  161. s->soft_level &= ~val;
  162. break;
  163. case 8: /* PROTECTION */
  164. /* TODO: Protection (supervisor only access) is not implemented. */
  165. s->protected = val & 1;
  166. break;
  167. case 12: /* VECTADDR */
  168. /* Restore the previous priority level. The value written is
  169. ignored. */
  170. if (s->priority < PL190_NUM_PRIO)
  171. s->priority = s->prev_prio[s->priority];
  172. break;
  173. case 13: /* DEFVECTADDR */
  174. s->default_addr = val;
  175. break;
  176. case 0xc0: /* ITCR */
  177. if (val)
  178. cpu_abort(cpu_single_env, "pl190: Test mode not implemented\n");
  179. break;
  180. default:
  181. cpu_abort(cpu_single_env, "pl190_write: Bad offset %x\n", (int)offset);
  182. return;
  183. }
  184. pl190_update(s);
  185. }
  186. static CPUReadMemoryFunc *pl190_readfn[] = {
  187. pl190_read,
  188. pl190_read,
  189. pl190_read
  190. };
  191. static CPUWriteMemoryFunc *pl190_writefn[] = {
  192. pl190_write,
  193. pl190_write,
  194. pl190_write
  195. };
  196. static void pl190_reset(pl190_state *s)
  197. {
  198. int i;
  199. for (i = 0; i < 16; i++)
  200. {
  201. s->vect_addr[i] = 0;
  202. s->vect_control[i] = 0;
  203. }
  204. s->vect_addr[16] = 0;
  205. s->prio_mask[17] = 0xffffffff;
  206. s->priority = PL190_NUM_PRIO;
  207. pl190_update_vectors(s);
  208. }
  209. qemu_irq *pl190_init(uint32_t base, qemu_irq irq, qemu_irq fiq)
  210. {
  211. pl190_state *s;
  212. qemu_irq *qi;
  213. int iomemtype;
  214. s = (pl190_state *)qemu_mallocz(sizeof(pl190_state));
  215. iomemtype = cpu_register_io_memory(0, pl190_readfn,
  216. pl190_writefn, s);
  217. cpu_register_physical_memory(base, 0x00001000, iomemtype);
  218. qi = qemu_allocate_irqs(pl190_set_irq, s, 32);
  219. s->irq = irq;
  220. s->fiq = fiq;
  221. pl190_reset(s);
  222. /* ??? Save/restore. */
  223. return qi;
  224. }